9 Supplementary Material

9.1 Proof of Lemma 1

Use the definition $\mathbf{d}_{t}:=\left(1-\rho_{t}\right) \mathbf{d}_{t-1}+\rho_{t} \nabla \tilde{F}\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right)$ to write $\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}$ as

$$
\begin{equation*}
\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}=\left\|\nabla F\left(\mathbf{x}_{t}\right)-\left(1-\rho_{t}\right) \mathbf{d}_{t-1}-\rho_{t} \nabla \tilde{F}\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right)\right\|^{2} \tag{36}
\end{equation*}
$$

Add and subtract the term $\left(1-\rho_{t}\right) \nabla F\left(\mathbf{x}_{t-1}\right)$ to the right hand side of (36), regroup the terms to obtain

$$
\begin{equation*}
\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}=\left\|\rho_{t}\left(\nabla F\left(\mathbf{x}_{t}\right)-\nabla \tilde{F}\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right)\right)+\left(1-\rho_{t}\right)\left(\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)\right)+\left(1-\rho_{t}\right)\left(\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right)\right\|^{2} \tag{37}
\end{equation*}
$$

Define \mathcal{F}_{t} as a sigma algebra that measures the history of the system up until time t. Expanding the square and computing the conditional expectation $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$ of the resulted expression yield

$$
\begin{align*}
& \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2} \mid \mathcal{F}_{t}\right]=\rho_{t}^{2} \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla \tilde{F}\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right)\right\|^{2} \mid \mathcal{F}_{t}\right]+\left(1-\rho_{t}\right)^{2}\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right\|^{2} \\
& \quad+\left(1-\rho_{t}\right)^{2}\left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)\right\|^{2}+2\left(1-\rho_{t}\right)^{2}\left\langle\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right), \nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right\rangle \tag{38}
\end{align*}
$$

The term $\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla \tilde{F}\left(\mathbf{x}_{t}, \mathbf{z}_{t}\right)\right\|^{2} \mid \mathcal{F}_{t}\right]$ can be bounded above by σ^{2} according to Assumption 3. Based on Assumptions 1 and 2, we can also show that the squared norm $\left\|\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right)\right\|^{2}$ is upper bounded by $L^{2} D^{2} / T^{2}$. Moreover, the inner product $2\left\langle\nabla F\left(\mathbf{x}_{t}\right)-\nabla F\left(\mathbf{x}_{t-1}\right), \nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right\rangle$ can be upper bounded by $\beta_{t}\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right\|^{2}+\left(1 / \beta_{t}\right) L^{2} D^{2} / T^{2}$ using Young's inequality (i.e., $2\langle\mathbf{a}, \mathbf{b}\rangle \leq \beta\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2} / \beta$ for any $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ and $\beta>0$) and the conditions in Assumptions 1 and 2, where $\beta_{t}>0$ is a free scalar. Applying these substitutions into (38) leads to

$$
\begin{equation*}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2} \mid \mathcal{F}_{t}\right] \leq \rho_{t}^{2} \sigma^{2}+\left(1-\rho_{t}\right)^{2}\left(1+\frac{1}{\beta_{t}}\right) \frac{L^{2} D^{2}}{T^{2}}+\left(1-\rho_{t}\right)^{2}\left(1+\beta_{t}\right)\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right\|^{2} \tag{39}
\end{equation*}
$$

Replace $\left(1-\rho_{t}\right)^{2}$ by $\left(1-\rho_{t}\right)$, set $\beta:=\rho_{t} / 2$, and compute the expectation with respect to \mathcal{F}_{0} to obtain

$$
\begin{equation*}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}\right] \leq \rho_{t}^{2} \sigma^{2}+\frac{L^{2} D^{2}}{T^{2}}+\frac{2 L^{2} D^{2}}{\rho_{t} T^{2}}+\left(1-\frac{\rho_{t}}{2}\right) \mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t-1}\right)-\mathbf{d}_{t-1}\right\|^{2}\right] \tag{40}
\end{equation*}
$$

and the claim in (14) follows.

9.2 Proof of Lemma 2

Define $a_{t}:=\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}\right]$. Also, assume $\rho_{t}=\frac{4}{(t+s)^{2 / 3}}$ where s is a fixed scalar and satisfies the condition $8 \leq s \leq T$ (so the proof is slightly more general). Apply these substitutions into(14) to obtain

$$
\begin{equation*}
a_{t} \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) a_{t-1}+\frac{16 \sigma^{2}}{(t+s)^{4 / 3}}+\frac{L^{2} D^{2}}{T^{2}}+\frac{L^{2} D^{2}(t+s)^{2 / 3}}{2 T^{2}} \tag{41}
\end{equation*}
$$

Now use the conditions $s \leq T$ and $t \leq T$ to replace $1 / T$ in (41) by its upper bound $2 /(t+s)$. Applying this substitution leads to

$$
\begin{equation*}
a_{t} \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) a_{t-1}+\frac{16 \sigma^{2}}{(t+s)^{4 / 3}}+\frac{4 L^{2} D^{2}}{(t+s)^{2}}+\frac{2 L^{2} D^{2}}{(t+s)^{4 / 3}} \tag{42}
\end{equation*}
$$

Since $t+s \geq 8$ we can write $(t+s)^{2}=(t+s)^{4 / 3}(t+s)^{2 / 3} \geq(t+s)^{4 / 3} 8^{2 / 3} \geq 4(t+s)^{4 / 3}$. Replacing the term $(t+s)^{2}$ in (42) by $4(t+s)^{4 / 3}$ and regrouping the terms lead to

$$
\begin{equation*}
a_{t} \leq\left(1-\frac{2}{(t+s)^{2 / 3}}\right) a_{t-1}+\frac{16 \sigma^{2}+3 L^{2} D^{2}}{(t+s)^{4 / 3}} \tag{43}
\end{equation*}
$$

Now we prove by induction that for $t=0, \ldots, T$ we can write

$$
\begin{equation*}
a_{t} \leq \frac{Q}{(t+s+1)^{2 / 3}} \tag{44}
\end{equation*}
$$

where $Q:=\max \left\{a_{0}(s+1)^{2 / 3}, 16 \sigma^{2}+3 L^{2} D^{2}\right\}$. First, note that $Q \geq a_{0}(s+1)^{2 / 3}$ and therefore $a_{0} \leq Q /(s+1)^{2 / 3}$ and the base step of the induction holds true. Now assume that the condition in (44) holds for $t=k-1$, i.e.,

$$
\begin{equation*}
a_{k-1} \leq \frac{Q}{(k+s)^{2 / 3}} \tag{45}
\end{equation*}
$$

The goal is to show that (44) also holds for $t=k$. To do so, first set $t=k$ in the expression in (43) to obtain

$$
\begin{equation*}
a_{k} \leq\left(1-\frac{2}{(k+s)^{2 / 3}}\right) a_{k-1}+\frac{16 \sigma^{2}+3 L^{2} D^{2}}{(k+s)^{4 / 3}} \tag{46}
\end{equation*}
$$

According to the definition of Q, we know that $Q \geq 16 \sigma^{2}+3 L^{2} D^{2}$. Moreover, based on the induction hypothesis it holds that $a_{k-1} \leq \frac{Q}{(k+s)^{2 / 3}}$. Using these inequalities and the expression in (46) we can write

$$
\begin{equation*}
a_{k} \leq\left(1-\frac{2}{(k+s)^{2 / 3}}\right) \frac{Q}{(k+s)^{2 / 3}}+\frac{Q}{(k+s)^{4 / 3}} \tag{47}
\end{equation*}
$$

Pulling out $\frac{Q}{(k+s)^{2 / 3}}$ as a common factor and simplifying and reordering terms it follows that (47) is equivalent to

$$
\begin{equation*}
a_{k} \leq Q\left(\frac{(k+s)^{2 / 3}-1}{(k+s)^{4 / 3}}\right) \tag{48}
\end{equation*}
$$

Based on the inequality

$$
\begin{equation*}
\left((k+s)^{2 / 3}-1\right)\left((k+s)^{2 / 3}+1\right)<(k+s)^{4 / 3} \tag{49}
\end{equation*}
$$

the result in (48) implies that

$$
\begin{equation*}
a_{k} \leq\left(\frac{Q}{(k+s)^{2 / 3}+1}\right) \tag{50}
\end{equation*}
$$

Since $(k+s)^{2 / 3}+1 \geq(k+s+1)^{2 / 3}$, the result in (50) implies that

$$
\begin{equation*}
a_{k} \leq\left(\frac{Q}{(k+s+1)^{2 / 3}}\right) \tag{51}
\end{equation*}
$$

and the induction step is complete. Therefore, the result in (44) holds for all $t=0, \ldots, T$. Indeed, by setting $s=8$, the claim in (15) follows.

9.3 How to Construct an Unbiased Estimator of the Gradient in Multilinear Extensions

Recall that $f(S)=\mathbb{E}_{\mathbf{z} \sim P}[\tilde{f}(S, \mathbf{z})]$. In terms of the multilinear extensions, we obtain $F(\mathbf{x})=\mathbb{E}_{\mathbf{z} \sim P}[\tilde{F}(\mathbf{x}, \mathbf{z})]$, where F and \tilde{F} denote the multilinear extension for f and \tilde{f}, respectively. So $\nabla \tilde{F}(\mathbf{x}, \mathbf{z})$ is an unbiased estimator of $\nabla F(\mathbf{x})$ when $\mathbf{z} \sim P$. Note that $\tilde{F}(\mathbf{x}, \mathbf{z})$ is a multilinear extension.
It remains to provide an unbiased estimator for the gradient of a multilinear extension. We thus consider an arbitrary submodular set function g with multilinear G. Our goal is to provide an unbiased estimator for $\nabla G(\mathbf{x})$. We have $G(\mathbf{x})=\sum_{S \subseteq V} \prod_{i \in S} x_{i} \prod_{j \notin S}\left(1-x_{j}\right) g(S)$. Now, it can easily be shown that

$$
\begin{equation*}
\frac{\partial G}{\partial x_{i}}=G\left(\mathbf{x} ; x_{i} \leftarrow 1\right)-G\left(\mathbf{x} ; x_{i} \leftarrow 0\right) \tag{52}
\end{equation*}
$$

where for example by $\left(\mathbf{x} ; x_{i} \leftarrow 1\right)$ we mean a vector which has value 1 on its i-th coordinate and is equal to \mathbf{x} elsewhere. To create an unbiased estimator for $\frac{\partial G}{\partial x_{i}}$ at a point \mathbf{x} we can simply sample a set S by including each element in it independently with probability x_{i} and use $g(S \cup\{i\})-g(S \backslash\{i\})$ as an unbiased estimator for the i-th partial derivative. We can sample one single set S and use the above trick for all the coordinates. This involves n function computations for g. Having a mini-batch size B we can repeat this procedure B times and then average.

9.4 Proof of Lemma 3

Based on the mean value theorem, we can write

$$
\begin{equation*}
\nabla F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)-\nabla F\left(\mathbf{x}_{T}\right)=\frac{1}{T} \mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right) \mathbf{v}_{t} \tag{53}
\end{equation*}
$$

where $\tilde{\mathbf{x}}_{t}$ is a convex combination of \mathbf{x}_{t} and $\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}$ and $\mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right):=\nabla^{2} F\left(\tilde{\mathbf{x}}_{t}\right)$. This expression shows that the difference between the coordinates of the vectors $\nabla F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)$ and $\nabla F\left(\mathbf{x}_{t}\right)$ can be written as

$$
\begin{equation*}
\nabla_{j} F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)-\nabla_{j} F\left(\mathbf{x}_{t}\right)=\frac{1}{T} \sum_{i=1}^{n} H_{j, i}\left(\tilde{\mathbf{x}}_{t}\right) v_{i, t} \tag{54}
\end{equation*}
$$

where $v_{i, t}$ is the i-th element of the vector \mathbf{v}_{t} and $H_{j, i}$ denotes the component in the j-th row and i-th column of the matrix \mathbf{H}. Hence, the norm of the difference $\left|\nabla_{j} F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)-\nabla_{j} F\left(\mathbf{x}_{t}\right)\right|$ is bounded above by

$$
\begin{equation*}
\left|\nabla_{j} F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)-\nabla_{j} F\left(\mathbf{x}_{t}\right)\right| \leq \frac{1}{T}\left|\sum_{i=1}^{n} H_{j, i}\left(\tilde{\mathbf{x}}_{t}\right) v_{i, t}\right| \tag{55}
\end{equation*}
$$

Note here that the elements of the matrix $\mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right)$ are less than the maximum marginal value (i.e. $\left.\max _{i, j}\left|H_{i, j}\left(\tilde{\mathbf{x}}_{t}\right)\right| \leq \max _{i \in\{1, \cdots, n\}} f(i) \triangleq m_{f}\right)$. We thus get

$$
\begin{equation*}
\left|\nabla_{j} F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)-\nabla_{j} F\left(\mathbf{x}_{t}\right)\right| \leq \frac{m_{f}}{T} \sum_{i=1}^{n}\left|v_{i, t}\right| \tag{56}
\end{equation*}
$$

Note that at each round t of the algorithm, we have to pick a vector $\mathbf{v}_{t} \in \mathcal{C}$ s.t. the inner product $\left\langle\mathbf{v}_{t}, \mathbf{d}_{t}\right\rangle$ is maximized. Hence, without loss of generality we can assume that the vector \mathbf{v}_{t} is one of the extreme points of \mathcal{C}, i.e. it is of the form 1_{I} for some $I \in \mathcal{I}$ (note that we can easily force integer vectors). Therefore by noticing that \mathbf{v}_{t} is an integer vector with at most r ones, we have

$$
\begin{equation*}
\left|\nabla_{j} F\left(\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}\right)-\nabla_{j} F\left(\mathbf{x}_{t}\right)\right| \leq \frac{m_{f} \sqrt{r}}{T} \sqrt{\sum_{i=1}^{n}\left|v_{i, t}\right|^{2}} \tag{57}
\end{equation*}
$$

which yields the claim in (28).

9.5 Proof of Theorem 2

According to the Taylor's expansion of the function F near the point \mathbf{x}_{t} we can write

$$
\begin{align*}
F\left(\mathbf{x}_{t+1}\right) & =F\left(\mathbf{x}_{t}\right)+\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbf{x}_{t+1}-\mathbf{x}_{t}\right\rangle+\frac{1}{2}\left\langle\mathbf{x}_{t+1}-\mathbf{x}_{t}, \mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right)\left(\mathbf{x}_{t+1}-\mathbf{x}_{t}\right)\right\rangle \\
& =F\left(\mathbf{x}_{t}\right)+\frac{1}{T}\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}\right\rangle+\frac{1}{2 T^{2}}\left\langle\mathbf{v}_{t}, \mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right) \mathbf{v}_{t}\right\rangle \tag{58}
\end{align*}
$$

where $\tilde{\mathbf{x}}_{t}$ is a convex combination of \mathbf{x}_{t} and $\mathbf{x}_{t}+\frac{1}{T} \mathbf{v}_{t}$ and $\mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right):=\nabla^{2} F\left(\tilde{\mathbf{x}}_{t}\right)$. Note that based on the inequality $\max _{i, j}\left|H_{i, j}\left(\tilde{\mathbf{x}}_{t}\right)\right| \leq \max _{i \in\{1, \cdots, n\}} f(i) \triangleq m_{f}$, we can lower bound $H_{i j}$ by $-m_{f}$. Therefore,

$$
\begin{equation*}
\left\langle\mathbf{v}_{t}, \mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right) \mathbf{v}_{t}\right\rangle=\sum_{j=1}^{n} \sum_{i=1}^{n} v_{i, t} v_{j, t} H_{i j}\left(\tilde{\mathbf{x}}_{t}\right) \geq-m_{f} \sum_{j=1}^{n} \sum_{i=1}^{n} v_{i, t} v_{j, t}=-m_{f}\left(\sum_{i=1}^{n} v_{i, t}\right)^{2}=-m_{f} r\left\|\mathbf{v}_{t}\right\|^{2}, \tag{59}
\end{equation*}
$$

where the last inequality is because \mathbf{v}_{t} is a vector with r ones and $n-r$ zeros (see the explanation in the proof of Lemma 3). Replace the expression $\left\langle\mathbf{v}_{t}, \mathbf{H}\left(\tilde{\mathbf{x}}_{t}\right) \mathbf{v}_{t}\right\rangle$ in (58) by its lower bound in (59) to obtain

$$
\begin{equation*}
F\left(\mathbf{x}_{t+1}\right) \geq F\left(\mathbf{x}_{t}\right)+\frac{1}{T}\left\langle\nabla F\left(\mathbf{x}_{t}\right), \mathbf{v}_{t}\right\rangle-\frac{m_{f} r}{2 T^{2}}\left\|\mathbf{v}_{t}\right\|^{2} \tag{60}
\end{equation*}
$$

In the following lemma we derive a variant of the result in Lemma 2 for the multilinear extension setting.

Lemma 4. Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 1, and recall the definitions of the function F in (27), the rank r, and $m_{f} \triangleq \max _{i \in\{1, \cdots, n\}} f(i)$. If we set $\rho_{t}=\frac{4}{(t+8)^{2 / 3}}$, then for $t=0, \ldots, T$ and for $j=1, \ldots, n$ it holds

$$
\begin{equation*}
\mathbb{E}\left[\left\|\nabla F\left(\mathbf{x}_{t}\right)-\mathbf{d}_{t}\right\|^{2}\right] \leq \frac{Q}{(t+9)^{2 / 3}} \tag{61}
\end{equation*}
$$

where $Q:=\max \left\{9^{2 / 3}\left\|\nabla F\left(\mathbf{x}_{0}\right)-\mathbf{d}_{0}\right\|^{2}, 16 \sigma^{2}+3 m_{f}^{2} r D^{2}\right\}$.
Proof. The proof is similar to the proof of Lemma 1. The main difference is to write the analysis for the j-th coordinate and replace and L by $m_{f} \sqrt{r}$ as shown in Lemma 3. Then using the proof techniques in Lemma 2 the claim in Lemma 4 follows.

The rest of the proof is identical to the proof of Theorem 1, by following the steps from (17) to (25) and considering the bound in (61) we obtain

$$
\begin{equation*}
\mathbb{E}\left[F\left(\mathbf{x}_{T}\right)\right] \geq(1-1 / e) F\left(\mathbf{x}^{*}\right)-\frac{2 D Q^{1 / 2}}{T^{1 / 3}}-\frac{m_{f} r D^{2}}{2 T} \tag{62}
\end{equation*}
$$

where $Q:=\max \left\{\left\|\nabla F\left(\mathbf{x}_{0}\right)-\mathbf{d}_{0}\right\|^{2} 9^{2 / 3}, 16 \sigma^{2}+3 r m_{f}^{2} D^{2}\right\}$. Therefore, the claim in Theorem 2 follows.

