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9 Supplementary Material

9.1 Proof of Lemma 1
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Add and subtract the term (1� ⇢
t

)rF (x
t�1

) to the right hand side of (36), regroup the terms to obtain

krF (x
t

)� d
t

k2 = k⇢
t

(rF (x
t

)�rF̃ (x
t

, z
t

)) + (1� ⇢
t

)(rF (x
t

)�rF (x
t�1

)) + (1� ⇢
t

)(rF (x
t�1

)� d
t�1

)k2.
(37)

Define F
t

as a sigma algebra that measures the history of the system up until time t. Expanding the square and
computing the conditional expectation E [· | F
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] of the resulted expression yield
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substitutions into (38) leads to

E
⇥
krF (x

t

)� d
t

k2 | F
t

⇤
 ⇢2

t

�2 + (1� ⇢
t

)2(1 +
1

�
t

)
L2D2

T 2

+ (1� ⇢
t

)2(1 + �
t

)krF (x
t�1

)� d
t�1

k2. (39)

Replace (1� ⇢
t

)2 by (1� ⇢
t

), set � := ⇢
t

/2, and compute the expectation with respect to F
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and the claim in (14) follows.

9.2 Proof of Lemma 2
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Now use the conditions s  T and t  T to replace 1/T in (41) by its upper bound 2/(t + s). Applying this
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Since t + s � 8 we can write (t + s)2 = (t + s)4/3(t + s)2/3 � (t + s)4/382/3 � 4(t + s)4/3. Replacing the term
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where Q := max{a
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The goal is to show that (44) also holds for t = k. To do so, first set t = k in the expression in (43) to obtain
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and the induction step is complete. Therefore, the result in (44) holds for all t = 0, . . . , T . Indeed, by setting
s = 8, the claim in (15) follows.

9.3 How to Construct an Unbiased Estimator of the Gradient in Multilinear Extensions

Recall that f(S) = E
z⇠P

[f̃(S, z)]. In terms of the multilinear extensions, we obtain F (x) = E
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[F̃ (x, z)], where
F and F̃ denote the multilinear extension for f and f̃ , respectively. So rF̃ (x, z) is an unbiased estimator of
rF (x) when z ⇠ P . Note that F̃ (x, z) is a multilinear extension.

It remains to provide an unbiased estimator for the gradient of a multilinear extension. We thus consider an
arbitrary submodular set function g with multilinear G. Our goal is to provide an unbiased estimator for rG(x).
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where for example by (x;x
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 1) we mean a vector which has value 1 on its i-th coordinate and is equal to x
elsewhere. To create an unbiased estimator for @G

@xi
at a point x we can simply sample a set S by including each

element in it independently with probability x
i

and use g(S [ {i})� g(S \ {i}) as an unbiased estimator for the
i-th partial derivative. We can sample one single set S and use the above trick for all the coordinates. This
involves n function computations for g. Having a mini-batch size B we can repeat this procedure B times and
then average.
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9.4 Proof of Lemma 3

Based on the mean value theorem, we can write
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Note that at each round t of the algorithm, we have to pick a vector v
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which yields the claim in (28).

9.5 Proof of Theorem 2
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where the last inequality is because v
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is a vector with r ones and n� r zeros (see the explanation in the proof
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In the following lemma we derive a variant of the result in Lemma 2 for the multilinear extension setting.
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Lemma 4. Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 1, and recall the definitions
of the function F in (27), the rank r, and m
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Proof. The proof is similar to the proof of Lemma 1. The main di↵erence is to write the analysis for the j-th
coordinate and replace and L by m
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claim in Lemma 4 follows. ⌅

The rest of the proof is identical to the proof of Theorem 1, by following the steps from (17) to (25) and
considering the bound in (61) we obtain
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