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Abstract

We introduce a dynamic mechanism for the
solution of analytically-tractable substructure
in probabilistic programs, using conjugate pri-
ors and affine transformations to reduce vari-
ance in Monte Carlo estimators. For inference
with Sequential Monte Carlo, this automat-
ically yields improvements such as locally-
optimal proposals and Rao–Blackwellization.
The mechanism maintains a directed graph
alongside the running program that evolves
dynamically as operations are triggered upon
it. Nodes of the graph represent random vari-
ables, edges the analytically-tractable rela-
tionships between them. Random variables
remain in the graph for as long as possible,
to be sampled only when they are used by
the program in a way that cannot be resolved
analytically. In the meantime, they are con-
ditioned on as many observations as possi-
ble. We demonstrate the mechanism with a
few pedagogical examples, as well as a linear-
nonlinear state-space model with simulated
data, and an epidemiological model with real
data of a dengue outbreak in Micronesia. In
all cases one or more variables are automati-
cally marginalized out to significantly reduce
variance in estimates of the marginal likeli-
hood, in the final case facilitating a random-
weight or pseudo-marginal-type importance
sampler for parameter estimation. We have
implemented the approach in Anglican and
a new probabilistic programming language
called Birch.
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1 INTRODUCTION

Probabilistic programs extend graphical models with
support for stochastic branches, in the form of condi-
tionals, loops, and recursion. Because they are highly
expressive, they pose a challenge in the design of ap-
propriate inference algorithms. This work focuses on
Sequential Monte Carlo (SMC) inference algorithms [4],
extending an arc of research that includes probabilistic
programming languages (PPLs) such as Venture [14],
Anglican [26], Probabilistic C [18], WebPPL [8], Fi-
garo [20], and Turing [7], as well as similarly-motivated
software such as LibBi [16] and BiiPS [25].

The simplest SMC method, the bootstrap particle fil-
ter [9], requires only simulation—not pointwise evalu-
ation—of the prior distribution. While widely appli-
cable, it may be suboptimal with respect to Monte
Carlo variance in situations where, in fact, pointwise
evaluation is possible, so that other options are viable.
One way of reducing Monte Carlo variance is to ex-
ploit analytical relationships between random variables,
such as conjugate priors and affine transformations.
Within SMC, this translates to improvements such as
the locally-optimal proposal, variable elimination, and
Rao–Blackwellization (see [5] for an overview). The
present work seeks to automate such improvements for
the user of a PPL.

Typically, a probabilistic program must be run in order
to discover the relationships between random variables.
Because of stochastic branches, different runs may dis-
cover different relationships, or even different random
variables. While an equivalent graphical model might
be constructed for any single run, it would constitute
only partial observation. It may take many runs to
observe the full model, if this is possible in finite time
at all. We therefore seek a runtime mechanism for the
solution of analytically-tractable substructure, rather
than a compile-time mechanism of static analysis.
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A general-purpose programming language can be aug-
mented with some additional constructs, called check-
points, to produce a PPL (see e.g. [26]). Two check-
points are usual, denoted sample and observe. The
first suggests that a value for a random variable needs
to be sampled, the second that a value for a random
variable is given and needs to be conditioned upon. At
these checkpoints, random behavior may occur in the
otherwise-deterministic execution of the program, and
intervention may be required by an inference algorithm
to produce a correct result.

The simplest inference algorithm instantiates a random
variable when first encountered at a sample checkpoint,
and updates a weight with the likelihood of a given
value at an observe checkpoint. This produces samples
from the prior distribution, weighted by their likeli-
hood under the observations. It corresponds to impor-
tance sampling with the posterior as the target and
the prior as the proposal. A more sophisticated infer-
ence algorithm runs multiple instances of the program
simultaneously, pausing after each observe checkpoint
to resample amongst executions. This corresponds to
the bootstrap particle filter (see e.g. [26]).

These are forward methods, in the sense that check-
points are executed in the order encountered, and sam-
pling is myopic of future observations. The present
work introduces a mechanism to change the order in
which checkpoints are executed so that sampling can be
informed by future observations, exploiting analytical
relationships between random variables. This facili-
tates more sophisticated forward-backward methods,
in the sense that information from future observations
can be propagated backward through the program.

We refer to this new mechanism as delayed sampling.
When a sample checkpoint is reached, its execution is
delayed. Instead, a new node representing the random
variable is inserted into a graph that is maintained
alongside the running program. This graph resembles
a directed graphical model of those random variables
encountered so far that are involved in analytically-
tractable relationships. Each node of the graph is
marginalized and conditioned by analytical means for
as long as possible until, eventually, it must be instanti-
ated for the program to continue execution. This occurs
when the random variable is passed as an argument
to a function for which no analytical overload is pro-
vided. It is at this last possible moment that sampling
is executed and the random variable instantiated.

Operations on the graph are forward-backward. The
forward pass is a filter, marginalizing each latent vari-
able over its parents and conditioning on observations,
in all cases analytically. The backward pass produces
a joint sample. This has some similarity to belief prop-

agation [19], but the backward passes differ: belief
propagation typically obtains the marginal posterior
distribution of each variable, not a joint sample. Fur-
thermore, in delayed sampling the graph evolves dy-
namically as the program executes, and at any time
represents only a fraction of the full model. This means
that some heuristic decisions must be made without
complete knowledge of the model structure.

For SMC, delayed sampling yields locally-optimal pro-
posals, variable elimination, and Rao–Blackwellization,
with some limitations, to be detailed later. At worst,
it provides no benefit. There is little intrusion of the
inference algorithm into modeling code, and possibly
no intrusion with appropriate language support. This
is important, as we consider the user experience and
ergonomics of a PPL to be of primary importance.

Related work has considered analytical solutions to
probabilistic programs. Where a full analytical solution
is possible, it can be achieved via symbolic manipula-
tions in Hakaru [23]. Where not, partial solutions using
compile-time program transformations are considered
in [17] to improve the acceptance rate of Metropo-
lis–Hastings algorithms. This compile-time approach
requires careful treatment of stochastic branches, and
even then it may not be possible to propagate analyti-
cal solutions through them. Delayed sampling instead
operates dynamically, at runtime. It handles stochastic
branches without problems, but may introduce some
additional execution overhead.

The paper is organized as follows. Section 2 introduces
the delayed sampling mechanism. Section 3 provides
a set of pedagogical examples and two empirical case
studies. Section 4 discusses some limitations and future
work. Supplementary material includes further details
of the case studies and implementations.

2 METHODS

As a probabilistic program runs, its memory state
evolves dynamically and stochastically over time, and
can be considered a stochastic process. Let t = 1, 2, . . .

index a sequence of checkpoints. These checkpoints
may differ across program runs (this is one of the
challenges of inference for probabilistic programs, see
e.g. [27]). In contrast to the two-checkpoint sample-
observe formulation, we define three checkpoint types:

• assume(X, p(·)) to initialize a random variable X

with prior distribution p(·),
• observe(x, p(·)) to condition on a random variable
X with likelihood p(·) having some value x,

• value(X) to realize a value for a random variable
X previously encountered at an assume checkpoint.
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We use the statistics convention that an uppercase
character (e.g. X) denotes a random variable, while
the corresponding lowercase character (e.g. x) denotes
an instantiation of it.

An assume checkpoint does not result in a random
variable being sampled: its sampling is delayed until
later. A value checkpoint occurs the first time that a
random variable, previously encountered by an assume,
is used in such a way that its value is required. At this
point it cannot be delayed any longer, and is sampled.

Denote the state of the running program at checkpoint
t by X

t

2 X
t

. This can be interpreted as the current
memory state of the program. Randomness is exoge-
nous and represented by the random process U

t

2 U
t

.
This may be, for example, random entropy, a pseu-
dorandom number sequence, or uniformly distributed
quasirandom numbers.

The program is a sequence of functions f

t

that each
maps a starting state X

t�1

= x

t�1

and random in-
put U

t

= u

t

to an end state X

t

= x

t

, so that
x

t

= f

t

(x

t�1

, u

t

). Note that f

t

is a deterministic func-
tion given its arguments. It is not permitted that f

t

has any intrinsic randomness, only the extrinsic ran-
domness provided by U

t

.

The target distribution over X

t

is ⇡

t

(dx

t

), typically
a Bayesian posterior. In general, the program can-
not sample from this directly. Instead, it samples x

t

from some proposal distribution q

t

(dx

t

), which in many
cases is just the prior distribution p

t

(dx

t

). Then, as-
suming that both ⇡

t

and q

t

admit densities, it computes
an associated importance weight w

t

/ ⇡

t

(x

t

)/q

t

(x

t

).
Assuming U

t

is distributed according to ⇠

t

(du

t

), we
have

q

t

(dx

t

) =

Z

Xt�1

Z

Ut

�

ft(xt�1,ut)
(dx

t

)⇠

t

(du

t

)q

t�1

(dx

t�1

),

where � is the Dirac measure. For brevity, we omit the
subscript t henceforth, and simply update the state for
the next time, as though it is mutable.

2.1 Motivation

We are motivated by variance reduction in Monte Carlo
estimators. Consider some functional '(X) of interest.
We wish to compute expectations of the form:

E
⇡

['(X)] =

Z

X
'(x)⇡(dx) =

Z

X
'(x)

⇡(x)

q(x)

q(dx).

Self-normalized importance sampling estimates can be
formed by running the program N times and computing
(where superscript n indicates the nth program run):

'̂ :=

NX

n=1

w̄

n

'(x

n

), w̄

n

= w

n

�
NX

n=1

w

n

.

A classic aim is to reduce mean squared error:

MSE('̂) = E
q

h
('̂� E

⇡

['(X)])

2

i
.

One technique to do so is Rao–Blackwellization (see e.g.
[21, §4.2]). Assume that, amongst the state X, there is
some variable X

v

which has been observed to have value
x

v

, some set of variables X
M

which can be marginalized
out analytically, and some other set of variables X

R

which have been instantiated previously. The functional
of interest is the incremental likelihood of x

v

. An
estimator would usually require instantiation of Xn

M

⇠
p(dx

n

M

| xn

R

) for n = 1, . . . , N , and computation of:

ˆ

Z :=

NX

n=1

w̄

n

p(x

v

| xn

M

, x

n

R

).

The Rao–Blackwellized estimator does not instantiate
X

M

, but rather marginalizes it out:

ˆ

Z

RB

:=

NX

n=1

w̄

n

Z
p(x

v

| xn

M

, x

n

R

)p(dx

n

M

| xn

R

).

By the law of total variance, var( ˆZ
RB

)  var(

ˆ

Z), and
as ˆ

Z and ˆ

Z

RB

are unbiased [3], MSE(

ˆ

Z

RB

)  MSE(

ˆ

Z).

This form of Rao–Blackwellization is local to each check-
point. While X

M

is marginalized out, it may require
instantiation at future checkpoints, and so it must also
be possible to simulate p(dx

M

| x
v

, x

R

).

2.2 Delayed sampling

Delayed sampling uses analytical relationships to re-
order the execution of checkpoints and reduce variance.
Each observe is executed as early as possible, and the
sampling associated with assume is delayed for as long
as possible, to be informed by observations in between.

Alongside the state X, we maintain a graph G = (V,E).
This is a directed graph consisting of a set of nodes V

and set of edges E ⇢ V ⇥V , where (u, v) 2 E indicates
a directed edge from a parent node u to a child node v.
For v 2 V , let Pa(v) = {u 2 V | (u, v) 2 E} denote its
set of parents, and Ch(v) = {u 2 V | (v, u) 2 E} its set
of children. Associated with each v 2 V is a random
variable X

v

(part of the state, X) and prior probability
distribution p

v

(dx

v

| x
Pa(v)

), now using the subscript
of X to select that part of the state associated with a
single node, or set of nodes. We partition V into three
disjoint sets according to three states. Let

• I ✓ V be the set of nodes in an initialized state,

• M ✓ V be the set of nodes in a marginalized state,

• R ✓ V be the set of nodes in a realized state.
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At some checkpoint, the program would usually have
instantiated all variables in V with a simulated or
observed value, whereas under delayed sampling only
those in R are instantiated, while those in I [M are
delayed.

We will restrict the graph G to be a forest of zero or
more disjoint trees, such that each node has at most one
parent. This condition is easily ensured by construction:
the implementation makes anything else impossible, i.e.
only relationships between pairs of random variables
are coded. There are some interesting relationships
that cannot be represented as trees, such as a normal
distribution with conjugate prior over both mean and
variance, or multivariate normal distributions. We deal
with these as special cases, collecting multiple nodes
into single supernodes and implementing relationships
between pairs of supernodes, much like the structure
achieved by the junction tree algorithm [11].

The following invariants are preserved at all times:

1. If a node is in M then its parent is in M. (1)
2. A node has at most one child in M. (2)

These imply that the nodes of M form marginalized
paths: one in each of the disjoint trees of G, from the
root node to a node (possibly itself) in the same tree.
We will refer to the unique such path in each tree as
its M -path. The node at the start of the M -path is a
root node, while the node at the end is referred to as a
terminal node. Terminal nodes have a special place in
the algorithms below, and are denoted by the set T .

By the invariants, each v 2M \ T has a child u 2M ;
let Fo(v) denote the entire subtree with this child u as
its root (the forward set). Otherwise let Fo(v) be the
empty set. The graph G then encodes the distribution
 
Y

v2I

q

v

(dx

v

| x
Pa(v)

)

!0

@
Y

v2M\T

q

v

(dx

v

| x
R\Fo(v))

1

A⇥
 
Y

v2T

q

v

(dx

v

| x
R

)

!
, (3)

where q

v

equals the prior for nodes in I, some updated
distribution for nodes in M , and all nodes in R are
instantiated. The distribution suggests why terminals
(in the set T ) are important: they are the nodes in-
formed by all instantiated random variables up to the
current point in the program, and can be immediately
instantiated themselves. Other nodes in M await infor-
mation to be propagated backward from their forward
set before they, too, can be instantiated.

When the program reaches a checkpoint, it triggers
operations on the graph (details follow):

• For assume(X

v

, p(·)), call Initialize(v, p(·)), which
inserts a new node v into the graph.

• For observe(x

v

, p(·)), call Initialize(v, p(·)), then
Graft(v), which turns v into a terminal node, then
Observe(v), which assigns the observed value to v

and updates its parent by conditioning.

• For value(X

v

), call Graft(v), then Sample(v),
which samples a value for v.

Figure 1 provides pseudocode for all operations; Fig-
ure 2 illustrates their combination. Operations are of
two types: local and recursive. Local operations modify
a single node and possibly its parent:

• Initialize(v, p(·)) inserts a new node v into the
graph. If v requires a parent, u (implied by p(·)
having a conditional form, i.e. p(dx

v

| x

u

) not
p(dx

v

)), then v is put in I and the edge (u, v) in-
serted. Otherwise, it is a root node and is put in
M , with no edges inserted.

• Marginalize(v), where v is the child of a termi-
nal node, moves v from I to M and updates its
distribution by marginalizing over its parent.

• Sample(v) or Observe(v), where v is a terminal
node, assigns a value to the associated random
variable by either sampling or observing, moves v

from M to R, and updates the distribution of its
parent node by conditioning. Both Sample(v) and
Observe(v) use an auxiliary function Realize(v)
for their common operations.

As shown in the pseudocode, these local operations have
strict preconditions that limit their use to only a subset
of the nodes of the graph, e.g. only terminal nodes may
be sampled or observed. As long as these preconditions
are satisfied, the invariants (1) and (2) are maintained,
and the graph G encodes the representation (3). This
is straightforward to check.

The recursive operations realign the M -path to estab-
lish the preconditions for any given node, so that local
operations may be applied to it. These have side effects,
in that other nodes may be modified to achieve the
realignment. The key recursive operation is Graft,
which combines local operations to extend the M -path
to a given node, making it a terminal node. Internally,
Graft may call another recursive operation, Prune,
to shorten the existing M -path by realizing one or more
variables.

3 EXAMPLES

We have implemented delayed sampling in Anglican
(see also [13]) and a new PPL called Birch. Details are
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Program Checkpoint Local operations Commentary

x

�

N(0,1); assume(X) Initialize(X)

Named delay_triplet in supplementary material.

y

�

N(x,1); assume(Y ) Initialize(Y )

z

�

N(y,1); observe(z) Initialize(Z)

Marginalize(Y )

No Marginalize(X) is necessary: X, as a root node,

is initialized in the marginalized state.

Marginalize(Z)

Observe(z)

print(x); value(X) Sample(Y ) Samples Y ⇠ p(dy | z).
Sample(X) Samples X ⇠ p(dx | y, z).

print(y); A value Y = y is already known.

x

�

N(0,1); assume(X) Initialize(X)

Named delay_iid in supplementary material. It

encodes multiple i.i.d. observations with a conjugate

prior distribution over their mean.

for (t in 1..T) {

y[t]

�

N(x,1); observe(yt) Initialize(yt)

Marginalize(yt)

Observe(yt)

}

print(x); value(X) Sample(X) Samples X ⇠ p(dx | y1, . . . , yT ).
x

�

Bernoulli(p); assume(X) Initialize(X) Named delay_spike_and_slab in supplementary

material. It encodes a spike-and-slab prior [15] often

used in Bayesian linear regression.

if (x) { value(X) Sample(X)

y

�

N(0,1); assume(Y ) Initialize(Y )

} else {

y <- 0; Used as a regular variable, no graph operations are

triggered.

} Y is marginalized or realized as some Y = y by the

end, according to the stochastic branch.

x[1]

�

N(0,1); assume(X1) Initialize(X1) Named delay_kalman in supplementary material. It

encodes a linear-Gaussian state-space model, for

which delayed sampling yields a forward Kalman filter

and backward simulation.

y[1]

�

N(x[1],1); observe(y1) Initialize(y1)

Marginalize(y1)

Observe(y1)

for (t in 2..T) {

After each tth iteration of this loop, the distribution

p(dxt | y1, . . . , yt) is obtained; the behavior

corresponds to a Kalman filter.

x[t]

�

N(a*x[t-1],1); assume(Xt) Initialize(Xt)

y[t]

�

N(x[t],1); observe(yt) Initialize(yt)

Marginalize(Xt)

Marginalize(yt)

Observe(yt)

}

print(x[1]); value(X1) Sample(XT ) Samples XT ⇠ p(dxT | y1, . . . , yT ).
. . . Recursively samples Xt ⇠ p(dxt | xt+1, y1, . . . , yt)

and computes p(dxt�1 | xt, y1, . . . , yt�1).

Sample(X1) Samples X1 ⇠ p(dx1 | x2, y1).

Table 1: Pedagogical examples of delayed sampling applied to four probabilistic programs, showing the programs
themselves (first column), the checkpoints reached as they execute linearly from top to bottom (second column),
the sequence of local operations that these trigger on the graph (third column), and commentary (fourth column).
The programs use a Birch-like syntax. Random variables with given values (from earlier assignment) are annotated
by underlining. The function print is assumed to accept real-valued arguments only, so may trigger a value

checkpoint when used.



Delayed Sampling and Automatic Rao–Blackwellization of Probabilistic Programs

Initialize(v, p(·))
1 if p includes a parent node, u
2 I  I [ {v}
3 E  E [ {(u, v)}
4 q

v

(dx

v

) p(dx

v

| x
u

)

5 else
6 M  M [ {v}
7 q

v

(dx

v

) p(dx

v

)

Marginalize(v)
1 assert v 2 I and v has a parent u 2 T

2 q

v

(dx

v

) R
Xu

p(dx

v

| x
u

)q

u

(dx

u

)

3 I  I \ {v}
4 M  M [ {v}
Sample(v)
1 assert v 2 T

2 draw x

v

⇠ q

v

(dx

v

)

3 Realize(v)

Observe(v)
1 assert v 2 T

2 w  q

v

(x

v

)w

3 Realize(v)

Realize(v)
1 assert v 2 T

2 M  M \ {v}
3 R R [ {v}
4 if v has a parent u // condition parent
5 q

u

(dx

u

) p(xv|xu)qu(dxu)R
Xu p(xv|x0

u)qu(dx
0
u)

6 E  E \ {(u, v)}
7 foru 2 Ch(v) // new roots from children
8 Marginalize(u)
9 E  E \ {(v, u)}
Graft(v)
1 if v 2M

2 if v has a child u 2M

3 Prune(u)
4 else
5 Graft(u) where u is the parent of v
6 Marginalize(v)
7 assert v 2 T

Prune(v)
1 assert v 2M

2 if v has a child u 2M

3 Prune(u)
4 Sample(v)

Figure 1: Operations on the graph. The left arrow
( ) denotes assignment. Assigning to a distribution is
interpreted as updating its hyperparameters.

given in Appendices C and D.

Table 1 provides pedagogical examples using a Birch-
like syntax, showing the sequence of checkpoints and
graph operations triggered as some simple programs
execute. They show how delayed sampling behaves
through programming structures such as conditionals
and loops, including stochastic branches.

In addition, we provide two case studies where delayed
sampling improves inference, firstly a linear-nonlinear
state-space model with simulated data, secondly a
vector-borne disease model with real data from an out-
break of dengue virus in Micronesia. We use a simple
random-weight or pseudo-marginal-type importance
sampling algorithm for both of these examples:

1. Run SMC on the probabilistic program with delayed
sampling enabled, producing N number of samples
x

1

, . . . , x

N with associated weights w1

, . . . , w

N and
a marginal likelihood estimate ˆ

Z.

2. Draw a 2 {1, . . . , N} from the categorical distribu-
tion defined by P (a) = w

a

/

P
N

n=1

w

n.

3. Output x

a with weight ˆ

Z.

This produces one sample with associated weight, but
may be repeated as many times as necessary—in par-
allel, even—to produce an importance sample as large
as desired. The success of the approach depends on
the variance of ˆ

Z. This variance can be reduced by
marginalizing out one or more variables (recall Section
2.1). This is what delayed sampling achieves, and so we
compare the variance of ˆ

Z with delayed sampling en-
abled and disabled. When disabled, the SMC algorithm
is simply a bootstrap particle filter. When enabled,
it yields a Rao–Blackwellized particle filter. Where
parameters are involved (as in the second case study),
the diversity of parameter values depletes through the
resampling step of SMC. This has motivated more so-
phisticated methods for parameter estimation such as
particle Markov chain Monte Carlo methods [1], also
applied to probabilistic programs [28]. Particle Gibbs is
an obvious candidate here. We find, however, that the
reduction in variance afforded by marginalizing out one
or more variables with delayed sampling is sufficient to
enable the above importance sampling algorithm for
the two case studies here.

3.1 Linear-nonlinear state-space model

The first example is that of a mixed linear-nonlinear
state-space model. For this model, delayed sampling
yields a particle filter with locally-optimal proposal and
Rao–Blackwellization.
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a

M

b

M

c

M,T

d

I

e

I
f

I

a ⇠ N (0, 1)

q

a

= N (0, 1)

b ⇠ N (a, 1)

q

b

= N (0, 2)

c ⇠ N (b, 1)

q

c

= N (0, 3)

d ⇠ N (b, 1)

e ⇠ N (c, 1) f ⇠ N (c, 1)

a

M

b

M

c

R

d

M,T

e

M
f

M

a ⇠ N (0, 1)

q

a

= N (0, 1)

b ⇠ N (a, 1)

q

b

= N (

4

3

,

2

3

)

c ⇠ N (b, 1)

c = 2

(sampled)

d ⇠ N (b, 1)

q

d

= N (

4

3

,

5

3

)

e ⇠ N (c, 1)

q

e

= N (2, 1)

f ⇠ N (c, 1)

q

f

= N (2, 1)

Graft(d)
Graft(b)
Prune(c)
Sample(c)
Realize(c)
Marginalize(e)
Marginalize(f)

Marginalize(d)

Figure 2: Demonstration of the M -path and operations on the graph. On the left, the M -path reaches from the
root node, a, to the terminal node, c, marked in bold lines. The Graft operation is called for d. This requires a
realignment of the M -path around b, pruning the previous M -path at c, then extending it through to d. The
stack trace of operations is in the center, and the final state on the right. Descendants of c that were not on the
M -path are now the roots of separate, disjoint trees.

The model is given by [12] and repeated in Appendix
A. It consists of both nonlinear and linear-Gaussian
state variables, as well as nonlinear and linear-Gaussian
observations. Parameters are fixed. Ideally, the linear-
Gaussian substructure is solved analytically (e.g. us-
ing a Kalman filter), leaving only the nonlinear sub-
structure to sample (e.g. using a particle filter). The
Rao–Blackwellized particle filter, also known as the
marginalized particle filter, was designed to achieve
precisely this [2, 22].

Delayed sampling automatically yields this method
for this model, as long as analytical relationships be-
tween multivariate Gaussian distributions are encoded.
In Birch these are implemented as supernodes: sin-
gle nodes in the graph that contain multiple random
variables. While the relationships between individual
variables in a multivariate Gaussian have, in general,
directed acyclic graph structure, their implementation
as supernodes maintains the required tree structure.

The model is run for 100 time steps to simulate data. It
is run again with SMC, conditioning on this data. For
various numbers of particles, it is run 100 times to es-
timate ˆ

Z, with delayed sampling enabled and disabled.
Figure 3 (left) plots the distribution of these estimates.
Clearly, with delayed sampling enabled, fewer parti-
cles are needed to achieve comparable variance in the
log-likelihood estimate.

3.2 Vector-borne disease model

The second example is an epidemiological case study of
an outbreak of dengue virus: a mosquito-borne tropical
disease with an estimated 50-100 million cases and

10000 deaths worldwide each year [24]. It is based on
the study in [6], which jointly models two outbreaks
of dengue virus and one of Zika virus in two separate
locations (and populations) in Micronesia. Presented
here is a simpler study limited to one of those outbreaks,
specifically that of dengue on the Yap Main Islands
in 2011. The data used consists of 172 observations
of reported cases, on a daily basis during the main
outbreak, and on a weekly basis before and after.

The model consists of two components, representing the
human and mosquito populations, coupled via cross-
infection. Each population is further divided into sub-
populations of susceptible, exposed, infectious and re-
covered individuals. At each time step a binomial
transfer occurs between subpopulations, parameterized
with conjugate beta priors. Details are in Appendix B.

The task is both parameter and state estima-
tion. For this model, delayed sampling produces a
Rao–Blackwellized particle filter where parameters,
rather than state variables, are marginalized out. While
the state variables are sampled immediately, the pa-
rameters are maintained in a marginalized state, condi-
tioned on the samples of these state variables. This is
a consequence of conjugacy between the beta priors on
parameters and the binomial likelihoods of the state
variables (as pseudo-observations).

For various numbers of particles, SMC is run 100 times
to estimate ˆ

Z, with delayed sampling enabled and dis-
abled. Figure 3 (right) plots the distribution of these
estimates. Clearly, with delayed sampling enabled,
fewer particles are needed to achieve comparable vari-
ance in the log-likelihood estimate. Some posterior
results are given in Appendix B.
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Figure 3: Distribution of the marginal log-likelihood estimate (log ˆ

Z) for different numbers of particles (N) over
100 runs for (left) the linear-nonlinear state-space model, and (right) the vector-borne disease model, with (light
gray) delayed sampling disabled, corresponding to a bootstrap particle filter, and (dark gray) delayed sampling
enabled, corresponding to a Rao–Blackwellized particle filter. All runs use systematic resampling [10] when
effective sample size falls below 0.7N . Boxes indicate the interquartile range, midline the median. In both cases,
significantly fewer particles are required to achieve comparable variance when delayed sampling is enabled.

4 DISCUSSION AND CONCLUSION

Table 1 demonstrates how delayed sampling operates
through typical program structures such as conditionals
and loops, including stochastic branches as encountered
in probabilistic programs. Figure 3 demonstrates the
potential gains. These are particularly encouraging
given that the mechanism is mostly automatic.

Some limitations are worth noting. The graph of
analytically-tractable relationships must be a forest
of disjoint trees. It is unclear whether this is a sig-
nificant limitation in practice, but support for more
general structures may be desirable. It is worth empha-
sizing that this relates to the structure of analytically-
tractable relationships and the ability of the mechanism
to utilize them, not to the structure of the model as a
whole. At present, for more general structures, some
opportunities for variance reduction are missed. One
remedy is to encode supernodes, as for the multivariate
Gaussian distributions in Section 3.1.

Delayed sampling potentially reorders the sampling
associated with assume checkpoints, and the interleav-
ing of this amongst observe checkpoints, but does not
reorder the execution of observe checkpoints. There
is an opportunity cost to this. Consider the final ex-
ample in Table 1: move the observations y

1

, . . . , y

T

into a second loop that traverses time backward from
T to 1. Delayed sampling now draws each x

t

from
p(dx

t

| x

t+1

, y

t

), not p(dx

t

| x

t+1

, y

1

, . . . , y

t

). This
is suboptimal but not incorrect: whatever the distri-
bution, importance weights correct for its discrepancy
from the target. It is again unclear whether this is a sig-
nificant limitation in practice; examples seem contrived
and easily fixed by reordering code.

While delayed sampling may reduce the number of sam-
ples required for comparable variance, it does require
additional computation per sample. For univariate re-
lationships (e.g. beta-binomial, gamma-Poisson), this
overhead is constant and—we conjecture—likely worth-
while for any fixed computational budget. For multi-
variate relationships the overhead is more complex and
may not be worthwhile (e.g. multivariate Gaussian
conjugacies require matrix inversions that are O(N

3

)

in the number of dimensions). A thorough empirical
comparison is beyond the scope of this article.

Finally, while the focus of this work is SMC, delayed
sampling may be useful in other contexts. With undi-
rected graphical models, for example, delayed sampling
may produce a collapsed Gibbs sampler. This is left to
future work.
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Supplementary material

Appendix A details the linear-nonlinear state-space
model, and Appendix B the vector-borne disease model.
Appendix C details the Anglican implementation, and
Appendix D the Birch implementation. Code is in-
cluded for the pedagogical examples in both Anglican
and Birch, and for the empirical case studies, along
with data sets, in Birch only.
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