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6 Appendix

6.1 Split-neighborly proofs

Theorem 3.2. If a problem is 1/α-split-neighborly and
has a coherence parameter of c, for

β = min(c,
1

1/α + 2
)

GBS has a worst case query cost of at most logn
− log(1−β)

and GBS has an average query cost of at most logn
H(β)

where H(p) is the entropy of a Bernoulli(p) random
variable

Proof. This theorem will follow from the next three
lemmas.

Lemma 3.1. If a problem is 1/α-split-neighborly and
has a coherence parameter of c, then for any V ⊆ H,
|V | ≤ 1 or there exists a test x ∈ X such that

Eh∈V [h(x)] ∈ [β, 1− β]

where β is defined as above.

Proof. Fix a subset V ⊆ H. Assume |V | > 1, other-
wise we are done.

From the assumption, we have a coherence parameter
of

c ≥ β

From the definition, this means that there exists a
probability distribution on the tests P such that for
any hypothesis h,

∑
x∈X

P (x)h(x) ∈ [β, 1− β]

Since this is true for all h ∈ H, this is also true for all
convex combinations. Thus,

Eh∈V [
∑
x∈X

P (x)h(x)] ∈ [β, 1− β]

∑
x∈X

P (x)Eh∈V [h(x)] ∈ [β, 1− β]

For simplicity, define the split constant S(x) =
Eh∈V [h(x)]. Thus,

∑
x∈X

P (x)S(x) ∈ [β, 1− β]

There are two possibilities, either there exists a test x
such that

S(x) = Eh∈V [h(x)] ∈ [β, 1− β]

in which case, this is the exact conclusion statement
and we are done, or that there exists no test with a
split constant in [β, 1− β]. If there exists no test with
a split constant in [β, 1 − β] but the weighted combi-
nation is in [β, 1− β], then there exists tests x and x′

such that S(x) < β and S(x′) > 1− β

Since the problem is 1/α-split neighborly, there exists a
graph over the tests that is strongly connected. Thus,
there is a path from x to x′. Since S(x) < β and
S(x′) > 1− β and since ∀x′′ ∈ X : S(x′′) 6∈ [β, 1− β],
there must be an edge (x0, x1) along the path where
S(x0) < β and S(x1) > 1− β. Thus,

Pr
h∈V

[h(x0) = 1] = Eh∈V [h(x0)] < β

Pr
h∈V

[h(x1) = 1] = Eh∈V [h(x1)] > 1− β

Combining these two yields,

Pr
h∈V

[h(x0) = 0 ∧ h(x1) = 1] > 1− 2β

Recall ∆(x0, x1) = {h ∈ H : h(x0) = 0, h(x1) = 1}

Pr
h∈V

[h ∈ ∆(x0, x1)] > 1− 2β

|V ∩∆(x0, x1)|
|V |

> 1− 2β

Recall from the definition of β that 1
1/α+2 ≥ β. Thus

1− 2β ≥ 1− 2
1

1/α + 2
=

1/α
1/α + 2

≥ β

α

Thus,

|V ∩∆(x0, x1)|
|V |

>
β

α

For brevity, define ∆ = ∆(x0, x1). Since there is an
edge (x0, x1) in the 1/α-neighborly graph, for any sub-
set including V ∩∆ ⊆ ∆, either |V ∩∆| ≤ 1 or there
exists a test x̂ such that,



Stephen Mussmann, Percy Liang

Eh∈V ∩∆[h(x̂)] ∈ [α, 1− α]

First, |V ∩∆| 6= 0, since |V | > 1 and |V ∩∆(x0,x1)|
|V | > β

α .

If |V ∩ ∆| = 1, then, |V ∩∆(x0,x1)|
|V | > β

α and |V | >
1 so 1

2 ≥
1
|V | >

β
α ≥ β. Since the hypotheses are

identifiable, any pair of hypotheses yield a different
result on some test, so we can always find a test with
a split constant of at least 1

|V | , and this implies the

result of the theorem.

In the other case, where |V ∩∆| > 1, we have all the
necessary pieces and it’s just a matter of crunching the
algebra.

Eh∈V [h(x̂)] =

∑
h∈V h(x̂)

|V |

≥
∑
h∈V ∩∆ h(x̂)

|V |

≥ β

α

∑
h∈V ∩∆ h(x̂)

|V ∩∆|

≥ β

α
Eh∈V ∩∆[h(x̂)]

≥ β

α
α = β

Additionally,

Eh∈V [h(x̂)] =

∑
h∈V h(x̂)

|V |

=

∑
h∈V ∩∆ h(x̂) +

∑
h∈V \∆ h(x̂)

|V |

≤
(1− α)|V ∩∆|+

∑
h∈V \∆ h(x̂)

|V |

≤ (1− α)|V ∩∆|+ |V | − |V ∩∆|
|V |

≤ 1− α |V ∩∆|
|V |

≤ 1− αβ
α

= 1− β

Thus, we have that

Eh∈V [h(x̂)] ∈ [β, 1− β]

which is the conclusion of the lemma.

Lemma 6.1. If, for any V ⊆ H, |V | ≤ 1 or there
exists a test x ∈ X such that

Eh∈V [h(x)] ∈ [β, 1− β]

then GBS has a worst case query cost of at most
logn

log( 1
1−β )

Proof. After m queries, there are at most max(1, (1−
β)mn) remaining hypotheses since greedy will choose
a test with a split constant of at least β (a split with
respect to the hypotheses without a prior) and will ter-
minate when there is a single hypothesis. Thus, when
(1 − β)mn ≤ 1, the algorithm must have terminated.
Rearranging, we see that when m ≥ logn

log( 1
1−β )

the al-

gorithm must have terminated. This means that the
worst case query cost must be at most logn

log( 1
1−β )

.

Lemma 6.2. If, for any V ⊆ H, |V | ≤ 1 or there
exists a test x ∈ X such that

Eh∈V [h(x)] ∈ [β, 1− β]

then GBS has an average query cost of at most logn
H(β)

where H(p) is the entropy of a Bernoulli(p) random
variable

Proof. Define H(p) as the entropy of a Bernoulli ran-
dom variable with probability p.

f(V ) = E[average queries remaining while at subset V ]
(1)

We will prove by induction on increasing subsets that

f(V ) ≤ log(|V |)
H(β)

(2)

Note that the base case is that f({h}) = 0 because
we are done when there is just one hypothesis left.
Note that this suffices to show that the total runtime
is log(n)/H(β) because |V | = n at the beginning of
the algorithm.

Let A, B be a partition of V based on a test split.
Without loss of generality, let |A| ≤ |B|, so |A| ≤
1/2|V |. Based on the recursive definition of cost and
there is a test with a split constant of at least β (so
GBS will choose a test with a split constant of at least
β),

f(V ) ≤ max
A,B,|A|/|V |∈[β,1/2]

|A|
|V |

f(A) +
|B|
|V |

f(B) + 1
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From the induction hypothesis,

≤ max
...

|A|
|V |

log |A|
H(β)

+
|B|
|V |

log |B|
H(β)

+ 1

≤
max...

|A|
|V | log |A|+ |B|

|V | log |B|+H(β)

H(β)

≤
max...

|A|
|V | log |A||V | + |B|

|V | log |B||V | +H(β) + log |V |
H(β)

≤
max...−H( |A||V | ) +H(β) + log |V |

H(β)

Note that since |A|/|V | ∈ [β, 1/2] (the condition of the

max), H( |A||V | ) ≥ H(β). Thus, the max is non-positive,

and thus,

f(V ) ≤ log(|V |)
H(β)

Thus, we have proved the statement by induction and
this suffices to show that the total runtime is at most
log(n)/H(β).

Proposition 3.1. If a problem is k-neighborly and has
a uniform prior, then the problem is k-split-neighborly.

Proof. In the case that k = 1, |∆(x, x′)| = 1 so |V | ≤ 1
so the problem is 1-split-neighborly. Assume k > 1.
Note that any set of hypotheses must have a test that
distinguishes at least one of the hypotheses (otherwise
the hypotheses are the same). If two points x and
x′ in the k-neighborly graph have an edge between
them, then |∆(x, x′) ∪ ∆(x′, x)| ≤ k, which implies
|∆(x, x′)| ≤ k, and thus either |∆(x, x′)| ≤ 1 or there
is a test with a 1/k split constant and thus there is
an edge from x to x′ in the k-split-neighborly graph.
By a similar argument, there is also an edge from x′

to x. Since the k-neighborly graph is connected and
each edge corresponds to a bidirectional edge in the
k-split-neighborly graph, the k-split-neighborly graph
is strongly connected and thus the problem is k-split-
neighborly.

6.2 Value of k

6.2.1 Disjunctions

For the disjunctions problem, for m ≥ 2, d ≥ 2m,

n =

m∑
i=1

(
d

i

)

k ≥
m∑
i=1

(
d− 1

i− 1

)

k ≥ 1 +

m−1∑
i=1

(
d− 1

i

)

k2 − n ≥ 1 + 2

m−1∑
i=1

(
d− 1

i

)
+ (

m−1∑
i=1

(
d− 1

i

)
)2

−
m−1∑
i=1

(
d

i

)
−
(
d

m

)

Note that 2
(
d−1
i

)
≥
(
d
i

)
since i ≤ m− 1 ≤ d/2.

k2 − n ≥ 1 + (

m−1∑
i=1

(
d− 1

i

)
)2 −

(
d

m

)

≥
(
d− 1

m− 1

)2

−
(
d

m

)
≥
(
d− 1

m− 1

)
(

(
d− 1

m− 1

)
− d/m)

Since m ≥ 2,

≥
(
d− 1

1

)
− d/2

≥ d/2− 1

≥ m− 1

≥ 0

Thus, k2 − n ≥ 0 and so k ≥
√
n.

6.2.2 Monotonic CNF

Note that n = |H| = 1
l!

(
d

m,m,...,m,d−lm
)
. All of the

bit strings with strictly less than l ones will be triv-
ially connected in the k-neighborly graph, because
they yield 0 on all hypotheses. However, the clos-
est test to connect them to the rest of the graph
is the bit string 1l0d−l ∈ X , which disagrees on(

d−l
m−1,m−1,...,m−1,d−lm

)
≤ k hypotheses. We examine

the case where d ≥ 2ml and m ≥ 2.

For the monotonic CNF formulas, recall that

n = |H| = 1

l!

(
d

m,m, ...,m, d− lm

)
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k ≥
(

d− l
m− 1,m− 1, ...,m− 1, d− lm

)
For d ≥ 2ml and m ≥ 2, k ≥

√
n.

(
d− l

m− 1,m− 1, ...,m− 1, d− lm

)
≤ k

and

n =
1

l!

(
d

m,m, ...,m, d− lm

)
=

1

l!

d!

(m!)l(d− lm)!

=
(d− l)!

(m− 1)!l(d− lm)!

1

ml

d!(d− 2l)!

(d− l)!2
(d− l)!
l!(d− 2l)!

≤ k 1

ml

d!(d− 2l)!

(d− l)!2

(
d− l
l

)
Since d ≥ 2ml ≥ 4l,

n ≤ k 2l

ml

(
d− l
l

)
Since d− l ≥ 2l(m− 1) and m ≥ 2

n ≤ k
(

d− l
l(m− 1)

)
n ≤ k

(
d− l

m− 1,m− 1, ...,m− 1, d− lm

)
n ≤ k2

k ≥
√
n

6.2.3 Discrete Linear Classifier

Recall that we are in the special case where d is divis-
ible by 4, b = d/4 − 1 and there are an equal number
of 1 and 0 weights (d/2).

All tests with fewer than d/4 1’s will yield a result of
0 for all hypotheses. The test with the next fewest
hypotheses that yield 1 will be a test with exactly d/4
1’s. Thus, k is at least the number of such hypotheses
that yield 1.

n =

(
d

d/2

)
k ≥

(
3d/4

d/4

)
For simplicity, define c = d/4.

n

k2
≤
(

4c
2c

)(
3c
c

)2
=

(4c)!c!c!

(3c)!(3c)!

Note that we have the common Stirling’s approxima-
tion,

√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n

Thus,

n

k2
≤ e3(4c)4c+1/2cc+1/2cc+1/2e−6c

2π(3c)3c+1/2(3c)3c+1/2e−6c

=
2e3
√
c(4c)4ccccc

6π(3c)3c(3c)3c

=
e3
√
c44c

3π33c33c

=
e3

3π

√
c(

256

729
)c

≤ 1

for c ≥ 1.

Thus, for d ≥ 4,

n

k2
≤ 1

k ≥
√
n

6.3 Necessity of Dependencies

6.3.1 Linear classifiers on convex polygon
data pool

For arbitrary data points where the points are not
the vertices of a convex polygon, the linear classifier
problem is not 1/α-split-neighborly for constant α. A
counter-example is shown in Figure 8.

6.3.2 Disjunctions

The linear dependence on m for the disjunctions is
necessary because of the case where d = m + 1, and
|H| = d (each h ∈ H lacking one variable). In this
case, there are no tests with split constants of 1

m , so the
problem cannot be better than (m−2)-split-neighborly
(recall coherence c = 1/2).
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Figure 8: A counterexample that shows a non-convex
data pool need not be split-neighborly. Note that we
can at most split off 1 of the n hypotheses by querying
one of the points from the lower half. However, the
problem has coherence close to 1/2 and thus it cannot
be 1/α-split-neighborly for constant α.

6.3.3 Monotonic CNF

For the monotonic CNF problem, the linear depen-
dence on m is necessary because of the case where
l = 1, d = m + 1, and |H| = d (each h ∈ H lacking
one variable). In this case, there are no tests with split
constants of 1

m , so the problem cannot be better than
(m − 2)-split-neighborly (recall coherence c = 1/2).
Furthermore, the linear dependence on l is necessary
because of the problem where m = 1, d = l + 1, and
|H| = d (each h ∈ H lacking one variable). For this
problem, there are no tests with split constants of 1

l ,
so the problem cannot be better than (l − 2)-split-
neighborly. Thus, although the linear dependence on
m and l is necessary, it may be possible to improve the
constants.

6.3.4 Object Localization

For object localization with the axis-symmetric, axis-
convex set S, the dependence on d is necessary because
if we use the set S = {jei : |j| ≤ l, 1 ≤ i ≤ d} and
consider the set of hypotheses, {±lei : 1 ≤ i ≤ d}, the
problem has no test with split constant of 1

2d−1 but
has coherence c = 1/2, so it can’t be (2d − 3)-split-
neighborly.

6.4 Monotonic CNF

Theorem 4.2. The Conjunction of Disjunctions prob-
lem is (m+ 1 + 3(l − 1))-split-neighborly.

Proof. We prove this theorem by induction on l. First,
for the base case l = 1.

The test graph has an edge from x to x′ if ||x−x′||1 = 1
(the bit strings differ in one location).

Let x+ be the value of x or x′ with more 1’s (and let

x− be the other one). Note that |∆(x+, x−)| = 0 so
there is a directed edge (x+, x−).

For the other direction, fix a subset V ⊆ ∆(x−, x+).
Without loss of generality, let x+ and x− differ in the
first coordinate so x+

1 = 1 and x−1 = 0 and ∀i > 1 :
x+
i = x−i .

For a proof by contradiction, the problem is not (m+
1)-split-neighborly so that |V | > 1 and there is no
test x such that Eh∈V [h(x)] ∈ [q, 1 − q], where q =
1/(m+ 1).

Let

X+ = {x ∈ X : Pr
h∈V

[h(x) = 1] > 1− q},

X− = {x ∈ X : Pr
h∈V

[h(x) = 1] < q} = X − X+.

Let x′ be the the element of X− with the fewest 0’s and
let the 0’s be at indices Z (note 1 ∈ Z). If |Z| < m,
then h(x′) = 1 for all h since the disjunctions have m
variables. But since x′ ∈ X−, which is a contradiction.

Define {x(j)}j∈Z to be the test resulting changing the
jth bit of x′ to a 1. By the minimal definition of x′,
∀j ∈ Z : x(j) ∈ X+.

Suppose |Z| > m. Take a subset Z ′ ⊆ Z such
that |Z ′| = m + 1. Then, from the definition
of X+ and X−, Prh∈V [h(x′) = 0 ∧ ∀j ∈ Z ′ :
h(x(j)) = 1] > 1 − (m + 1)q ≥ 0, which means
Prh∈V [h includes variables Z ′] > 0. Therefore, there
is a disjunction with at least m+ 1 variables, which is
a contradiction.

Thus, |Z| = m, so there is only one hypothesis such
that h(x′) = 0, the hypothesis with variables at Z.
So 1/|V | > 1− q (by definition of X−), which implies
|V | = 1 since q ≤ 1/2, which is a contradiction. Thus,
by contradiction, the problem with l = 1 is (m + 1)-
split-neighborly. For l > 1, we proceed by induction.
We can define the graph as above, define X− and X+

as above, and x′ and Z as above. The same argument
goes through that |Z| = m. Thus, (1 − q) proportion
of the hypotheses have a disjunction with variables at
the indices Z. These hypotheses are simply another
copy of the problem with l−1 conjunctions and d−m
variables. Since that problem has 1/2 coherence and
is m + 1 + 3(l − 2)-splittable (by induction hypoth-
esis), there exists some test with a split constant of

1
m+1+3(l−2)+2 for a total split constant on the original

problem of

(1− q) 1

m+ 1 + 3(l − 2) + 2
=

1

m+ 1 + 3(l − 1)
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Thus, the problem is m+ 1 + 3(l− 1)-split-neighborly
by induction.

6.5 Box Object Localization

Theorem 4.3. The object localization problem where
S is a box is 4-split-neighborly.

Notationally, refer to zh as the integer vector for the
hypothesis h and zh,i to be its ith component.

We begin by fixing two tests x and x′ such that ||x−
x′||1 = 1. Without loss of generality, let x′ − x = e1

where e1 is the 1st elementary vector. Since the box
is axis symmetric, there exists radii ri ≥ 0 such that
x − zh ∈ S ↔ ∀i : |xi − zh,i| ≤ ri. Without loss of
generality, assume x = (r1, 0, 0, ..., 0) and x′ = (r1 +
1, 0, 0, ..., 0). Recall ∆(x, x′) = {h : h(x) = 0∧ h(x′) =
1}, this implies that ∆(x, x′) = {h : zh,1 = 0 ∧ ∀i >
1 : |zh,i| ≤ ri}. We will begin by fixing a subset V ⊆
∆(x, x′). As in all the application proofs, we will start
by assuming by contradiction that there is no test with
a split constant in the range [q, 1 − q] where q = 1/4.
We will use this contradiction to show that the size of
V is small, so that there is in fact a test with a split
constant q which is a contradiction.

6.5.1 Majority Element

Fix a dimension i. Examine the tests Xi = {jei :
j = 0, .., 2ri + 1} and note that for h ∈ V ⊆ ∆(x, x′),
h(jei) = 1[zh,i ≥ j − ri].

By the contradiction assumption,

Eh∈V [h(jei)] 6∈ [q, 1− q]

Pr
h∈V

[zh,i ≥ j − ri] 6∈ [q, 1− q]

Since Prh∈V [zh,i ≥ −ri] = 1 and Prh∈V [zh,i ≥ ri+1] =
0, there must be some integer mi such that

Pr
h∈V

[zh,i ≥ mi] > 1− q

Pr
h∈V

[zh,i ≥ mi + 1] < q

which implies that

Pr
h∈V

[zh,i = mi] > 1− 2q

Define thus, there exists a vector m such that there is
a 1−2q probability that an hypothesis’ ith component
matches m.

6.5.2 Side Splits

Intuitively, we will create a sequence of tests that each
remove at least half of the elements with the ith com-
ponent not equal to m. For each test in the sequence,
the probability that the test yields 1 over the hypothe-
ses in V must be greater that 1 − q so we can prove
that there aren’t many elements that disagree with m
at any component.

Here we recursively define sets Si, Bi, and Ai. Si will
be defined in terms of Bi and Bi will be defined in
terms of Si−1.

Define S0 = V and for i > 1, Si = Si−1 − Bi. Not-
ing that we could reflect the ith component about mi,
without loss of generality, suppose that

Pr
h∈Si

[zh,i > mi] ≥ Pr
h∈Si

[zh,i < mi]

Define Bi = {h ∈ Si−1 : zh,i > mi} and Ai = {h ∈
Si−1 : zh,i < mi}

Note that |Bi| ≥ |Ai|.

Further, there is a test x(i) = (−r1, ...,−ri, 0, ...0) such
that h(x(i)) = 1 ↔ h ∈ Si and thus by the contradic-
tion assumption,

|Si|
|S|
6∈ [q, 1− q]

However, since Prh∈V [zh,i = mi] > 1− 2q, |Bi|/|V | <
2q. We now prove by induction that |Si|/|V | > 1− q.
The base case is that |S1|/|V | = 1 > 1− q. As long as
q ≤ 1/4, since |Si−1|/|V | > 1 − q and |Bi|/|V | < 2q,
|Si|/|S| > 1 − 3q ≥ q (since q = 1/4)and thus by the
contradiction assumption |Si|/|S| > 1− q.

Note that the Bi are disjoint because

Bi ⊆ Si = V −B1 −B2 − ...−Bi−1

|Sd| > (1− q)|V |

|V −
d⊔
i=1

Bi| > (1− q)|V |

|V | −
d∑
i=1

|Bi| > (1− q)|V |

q|V | >
d∑
i=1

|Bi|
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Define the set of elements M ′ ⊆ V as the points with
a component not equal to m. This is the union of all
Ai and Bi,

|M ′| = |
d⋃
i=1

Ai ∪
d⋃
i=1

Bi|

≤
d∑
i=1

|Ai|+
d∑
i=1

|Bi|

≤ 2

d∑
i=1

|Bi|

< 2q|V |

Also note that |M ′| ≥ |V | − 1 since there can only be
one element that doesn’t disagree with any element of
m. Thus,

|V | − 1 < 2q|V |

|V | < 1

1− 2q

Since q ≤ 1/3, then this implies |V | < 3 so there is
a test with a split of 1/3, which is a contradiction.
So in a proof by contradiction, the problem is 4-split-
neighborly.

6.6 Convex, axis-symmetric Shape Object
Localization

Theorem 4.4. If S is a bounded, axis-symmetric,
axis-convex shape, the object localization problem is
(4d+ 1)-split-neighborly.

Proof. Let the test graph has an edge from x to x′ if
||x− x′||1 = 1.

Fix a subset V ⊆ ∆(x, x′). Without loss of generality,
let x′ = 0d. V ⊆ ∆(x, x′) ⊆ {h : h(x′) = 1} = {h :
zh − x′ ∈ S} = {h : zh ∈ S}

For a proof by contradiction, the problem is not 4d+1-
split-neighborly so that |V | > 1 and there is no test x
such that Eh∈V [h(x)] ∈ [q, 1−q], where q = 1/(4d+1).

Let

X+ = {x ∈ X : Pr
h∈V

[h(x) = 1] > 1− q}

X− = {x ∈ X : Pr
h∈V

[h(x) = 1] < q} = X − X+

Note that x′ = 0d ∈ X+ since V ⊆ {h : h(x′) = 1}.

Fix a dimension i. Examine the set of tests {jei : j ∈
Z}. From above, 0ei ∈ X+. Further, since V ⊆ {h :

zh ∈ S} and since S is bounded, there exists some
B ∈ Z such that ±Bei ∈ X−. Thus there exists some
c1 ≤ 0, c2 ≥ 0 such that (c1 − 1)ei ∈ X−, c1ei ∈ X+,
c2ei ∈ X+, (c2 + 1)ei ∈ X−. From the definition of
X+ and X−,

Pr
h∈V

[h((c1 − 1)ei) = 0, h(c1ei) = 1, ...

h(c2ei) = 1, h((c2 + 1)ei) = 0] > 1− 4q

Define Sl = {s−i : si = l, s ∈ S} to be the slices of
S along axis i at location l. Therefore, h(jei) = 1 ↔
zh,−i ∈ Szh,i−j .

Note that S−l = Sl since the shape S is axis symmet-
ric. Combining these three facts,

Pr
h∈V

[zh,−i ∈ S|zh,i−c1| ∩ S|zh,i−c2| \ ...

\(S|zh,i−(c1−1)| ∪ S|zh,i−(c2+1)|)] > 1− 4q

Note that for l′ > l ≥ 0, Si,l′ ⊆ Si,l because of axis-
convexity. To see this, suppose there was t ∈ Si,l′ \
Si,l, then there would be three elements s(−1), s(0), s(1)

such that s
(j)
−i = t and s

(−1)
i = −l′, s(0)

i = l, s
(1)
i = l′,

which would imply s(−1) ∈ S, s(0) 6∈ S, s(1) ∈ S which
contradicts axis-convexity.

Thus, in order for the set composed of slices of S in
the equation above to be non-empty,

|zh,i − c1|, |zh,i − c2| < |zh,i − c1 + 1|, |zh,i − c2 − 1|

it must be the case that zh,i = c1+c2
2 ∈ Z which we

define to be mi. So,

Pr
h∈V

[zh,i = mi] > 1− 4q

Repeating this argument for all dimensions and com-
bining,

Pr
h∈V

[∀i : zh,i = mi] > 1− 4dq

There is only one such element zh = m so

1

|V |
> 1− 4dq = 1− 4d

1

4d+ 1
=

1

4d+ 1

So |V | < 4d + 1 so there must be a split of at least q
which is a contradiction.



Stephen Mussmann, Percy Liang

6.7 Discrete Binary Linear Classifiers

Theorem 4.5. The discrete binary linear classifier
problem is max(16, 8r)-split-neighborly.

Define q = min( 1
16 ,

1
8r )

Recall that for the Discrete Binary Linear Classifier
case, we have hypotheses as a pair of vectors and
threshold h = (wh, bh) ∈ {−1, 0, 1}d × Z and tests
as vectors {0, 1}d. Recall h(x) = 1[wh · x > bh].

From the problem setting of Discrete Binary Linear
Classifiers, we know that,

w
(+)
h − b ≤ r(w(−)

h + b)− d

8

w
(−)
h + b ≤ r(w(+)

h − b− 1)− d

8

Recall w(+) is the number of positive elements of w and
w(−) is the number of negative elements. Notationally
wh,i refers to the ith component of wh.

6.7.1 Key Lemma and its Sufficiency

We will first state a lemma and then prove that it
implies the problem stated stated.

Lemma 6.3. Define

x(0) = (0, 0, ..., 0)

x(1) = (1, 0, ..., 0)

H ′ = {h ∈ H : h(x(0) = 0 ∧ h(x(1)) = 1 ∧ ...

∧w(+)
h ≤ rw(−)

h − d

8
∧ ...

... ∧ w(−)
h ≤ r(w(+)

h − 1)− d

8
}

For any subset V ⊂ H ′, there exists a test x such that
Eh∈V [h(x)] ∈ [q, 1− q]

6.7.2 Proof of Theorem 4.5 from Lemma 6.3

We will prove Theorem 4.5 by a reduction to Lemma
6.3. To show that the problem is 1/α-split-neighborly,
we need to show that for two tests with x and x′ with
||x− x′||1 = 1 that for any subset V ⊆ ∆(x, x′) = {h :
h(x) = 0 ∧ h(x′) = 1}, that |V | ≤ 1 or there exists a
test x̂ such that

Pr
h∈V

[h(x̂) = 1] ∈ [q, 1− q]

Note that by permuting the indices of x and x′, we can
make the first index the one that is different between x
and x′. Additionally, for the remaining indices we can

flip the 0’s and 1’s of the test so long as we flip the non-
zero entries of wh at that same position, and change
bh accordingly. We flip the bits so that x becomes x(0)

and x′ becomes x(1).

Note that h(x(0)) = 0 implies that 0 ≤ bh. Further
note that, h(x(1)) = 1 implies that wh,1 > bh. Thus,
the only possibility is that wh,1 = 1 and bh = 0.

Let T+− denote the number of flips from positive to
negative weights and let T−+ denote the number of
flips from negative to positive. Then, the weights for
the new (reduction) problem will be

w(+)
new = w(+) + T−+ − T+−

w(−)
new = w(−) + T+− − T−+

0 = bnew = b− T+− + T−+

From the last equation, b = T+− − T−+. Thus,

w(+)
new = w(+) − b

w(−)
new = w(−) + b

Since,

w(+) − b ≤ r(w(−) + b)− d

8

w(−) + b ≤ r(w(+) − b− 1)− d

8

then,

w(+)
new ≤ rw(−)

new −
1

8
d

w(−)
new ≤ r(w(+)

new − 1)− 1

8
d

We can see that the hypothesis conditions for the orig-
inal theorem imply that ∆(x(0), x(1)) is a subset of the

hypotheses that satisfy the conditions based on w
(−)
new

and w
(+)
new so Lemma 6.3 implies the binary linear clas-

sifier is 1/q-split-neighborly which means max(16, 8r)-
split-neighborly.

6.7.3 Proof of Lemma 6.3

The remainder of this is devoted to proving Lemma
6.3

We begin by fixing a subset V ⊆ H ′. As in all the
application proofs, we will start by assuming by con-
tradiction that there is no test with a split constant in
the range [q, 1 − q]. We will use this contradiction to
show that the size of V is small.
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Recall that bh = 0 for all hypotheses in the reduced
problem and wh,1 = 1. This follows from the fact that
h(x(0)) = 0 and h(x(1)) = 1.

6.7.4 Majority Vector

Let ei be an elementary vector with all entries 0 except
for the ith entry which is 1.

Lemma 6.4. There exists a vector m ∈ {−1, 0, 1}d
such that ∀i : mi = 0 : Prh∈V [wh,i = mi] ≥ 1− 2q and
∀i : mi 6= 0 : Prh∈V [wh,i = mi] ≥ 1− q

Proof. By the contradiction assumption, there isn’t a
test with a split constant greater than q,

Pr
h∈V

[wh · ei > bh] 6∈ [q, 1− q]

Pr
h∈V

[wh,i > 0] 6∈ [q, 1− q]

Pr
h∈V

[ws,i = 1] 6∈ [q, 1− q]

Also, by the contradiction assumption,

Pr
h∈V

[wh · (e0 + ei) > bh] 6∈ [q, 1− q]

Pr
h∈V

[1 + wh,i > 0] 6∈ [q, 1− q]

Pr
h∈V

[wh,i 6= −1] 6∈ [q, 1− q]

Pr
h∈V

[wh,i = −1] 6∈ [q, 1− q]

Since Prh∈V [wh,i = 1] + Prh[wh,i = 0] + Prh[wh,i =
1] = 1,

Pr
h∈V

[wh,i = 0] 6∈ [q, 1− 2q]

Thus, each index is either mostly 1, mostly 0, or mostly
−1 for elements in S (since q < 1/3). Define m ∈
{−1, 01}d such that

mi = argmax
c

Pr
h∈V

[wh,i = c]

Note that m1 = 1.

6.7.5 Ratio between m(−) and m(+)

Note,

Eh∈V [w
(+)
h ] =

d∑
i=1

Pr[wh,i = 1]

≤ (q)(d−m(+)) + (1)m(+) = qd+ (1− q)m(+)

m(+) ≥ 1

1− q
(Eh∈V [w

(+)
h ]− qd)

Further note,

Eh∈V [w
(+)
h ] =

d∑
i=1

Pr[wh,i = 1]

≥ (0)(d−m(+)) + (1− q)m(+) = (1− q)m(+)

m(+) ≤ 1

1− q
Eh∈V [w

(+)
h ]

We have similar equations for m(−) and Eh∈V [w
(−)
h ]

Let m̄ be the vector of m without the first component.

Recall that we have

∀h ∈ V : w
(+)
h ≤ rw(−)

h − 1

8
d

Eh∈V [w
(+)
h ] ≤ rEh∈V [w

(−)
h ]− qrd

1

1− q
Eh∈V [w

(+)
h ] ≤ r 1

1− q
(Eh∈V [w

(−)
h ]− qd)

m(+) ≤ rm(−)

m̄(+) ≤ rm̄(−)

Also, recall,

∀h ∈ V : w
(−)
h ≤ r(w(+)

h − 1)− 1

8
d

Eh∈V [w
(−)
h ] ≤ rEh∈V [w

(+)
h ]− qrd− r

1

1− q
Eh∈V [w

(−)
h ] ≤ r 1

1− q
(Eh∈V [w

(+)
h ]− qd)− r

1− q

m(−) ≤ rm(+) − r

1− q

m(−) ≤ r(m(+) − 1)

m̄(−) ≤ rm̄(+)
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6.7.6 Partition

Let w̄ be the vector of w without the first component.

Definition 6.1. Let

• X+ = {x : Prh∈V [w̄h · x ≥ 1] > 1− q}

• X 0 = {x : Prh∈V [w̄h · x = 0] > 1− 2q}

• X− = {x : Prh∈V [w̄h · x ≤ −1] > 1− q}

Lemma 6.5. X+,X 0,X− is a partition of {0, 1}d−1

Proof. Since q ≤ 1/4 and the three defining events
are mutually exclusive. It is clear that A+, A0, A− are
disjoint. Next we show that every point is in at least
one of the sets. Suppose a point x is in neither A+ or
A−.

Using the contradiction assumption on the test (0, x),

Pr
h∈V

[wh · (0, x) > 0] 6∈ [q, 1− q]

Pr
h∈V

[w̄h · x > 0] 6∈ [q, 1− q]

Pr
h∈V

[w̄h · x > 0] < q

Using the contradiction assumption on the test (1, x),

Pr
h∈V

[wh · (1, x) > 0] 6∈ [q, 1− q]

Pr
h∈V

[1 + w̄h · x > 0] 6∈ [q, 1− q]

Pr
h∈V

[w̄h · x ≥ 0] 6∈ [q, 1− q]

Pr
h∈V

[w̄h · x < 0] < q

Combining these,

Pr
h∈V

[w̄h · x = 0] = 1− Pr
h∈V

[w̄h · x > 0]− Pr
h∈V

[w̄h · x < 0]

> 1− 2q

Thus, x 6∈ X+ and x 6∈ X− imply x ∈ X 0 so the three
sets are a partition.

Definition 6.2. Define X ∗ to be every x ∈ {0, 1}d
that (m̄ = 1) · x = (m̄ = −1) · x, where (m̄ = 1) is the
element-wise boolean function.

Intuitively, this means that there are as many ones of
x in positions where m̄ = 1 as there are places where
m̄ = −1.

Lemma 6.6. X ∗ ⊆ X 0

Proof. We prove this by induction on the number of
1’s in x for x ∈ X ∗.

The base case is x = 0d which is trivially in X 0.

For other x, suppose xi = 1 at a location where
mi = 0. Then we know x − ei ∈ X 0 by the induc-
tion hypothesis.

Prh∈V [wh · (x− ei) = 0] > 1− 2q

Prh∈V [wh,i = 0] > 1− 2q

From these,

Prh∈V [wh · x = 0] > 1− 4q ≥ q

for q ≤ 1/5. So x 6∈ X+ ∪ X− and thus x ∈ X 0.

The only other case is where xi = xj = 1 at locations
where mi = 1 and mj = −1. Then we know x − ei −
ej ∈ X 0 from the induction hypothesis.

Prh∈V [wh · (x− ei − ej) = 0] > 1− 2q

Prh∈V [wh,i = 1] > 1− q

Prh∈V [wh,j = −1] > 1− q

From these,

Prh∈V [wh · x = 0] > 1− 4q ≥ q

and similarly, x ∈ X 0.

6.7.7 Probability Distribution

We now define a probability distribution over x ∈ X ∗.

Without loss of generality, suppose m̄(+) ≥ m̄(−).

• Randomly draw an injection f : {i : m̄i = −1} →
{i : m̄i = 1}.

• Initialize x = 0d−1

• For indices {i : m̄i ≤ 0}, draw xi ∼
bernoulli(1/2).

• For {i : m̄i = −1}, set xf(i) = xi

Note that the result x ∈ X ∗ because of the pairing
f , there will be a 1 where m̄i = 1 for each 1 where
m̄i = −1.
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6.7.8 Set T

Definition 6.3. For the probability distribution,

Q(h) = Pr
x∈X∗

[wh · x = 0]

Lemma 6.7. Let T = {h ∈ V : Q(h) > 1− 4q}, then
|V | > 5|T |.

Proof. For x ∈ X ∗, since X ∗ ⊆ X 0,

Pr
h∈V

[wh · x = 0] > 1− 2q∑
h∈V 1[wh · x = 0]

|V |
> 1− 2q

∑
x∈X 0

P (x)

∑
h∈V 1[wh · x = 0]

|V |
> 1− 2q

∑
h∈V

∑
x∈X 0 P (x)1[wh · x = 0]

|V |
> 1− 2q∑

h∈V Q(h)

|V |
> 1− 2q

|T |
|V |

(1) +
|V | − |T |
|V |

(1− 4q) > 1− 2q

2|T | > |V |

Lemma 6.8. |T | ≤ 3

Proof. Recall that m̄(+) ≤ rm̄(−) and m̄(−) ≤ rm̄(+)

as well

Also 1− 4q ≥ 1−min( 1
4 ,

1
2r ) since q ≤ min( 1

16 ,
1
8r )

For any t ∈ T , Q(t) > 1− 4q ≥ 1−min( 1
4 ,

1
2r ). Define

Ber(1/2) to be a Bernoulli random variable.

Pr
x∈X∗

[wt · x = 0] > 1−min(
1

4
,

1

2r
)

Ef [Pr[
∑

i:mi=0

wt,iBer(1/2) + ...

∑
i:mi=−1

(wt,i +wt,f(i))Ber(1/2) = 0]] > 1−min(
1

4
,

1

2r
)

Note that

Pr[
∑

i:m̄i=0

wt,iBer(1/2) + ...

∑
i:m̄i=−1

(wt,i + wt,f(i))Ber(1/2) = 0] ≤ 1

2

unless ∀i : m̄i = 0 : wt,i = 0 and ∀i : m̄i = −1 :
wt,i + wt,f(i) = 0, call this condition(t, f).

Ef [1[condition(t, f)] + ...

1

2
(1− 1[condition(t, f)])] > 1−min(

1

4
,

1

2r
)

Pr
f

[condition(t, f)] > 1−min(
1

2
,

1

r
)

If m̄(−) = 0, then m̄(+) = 0, and thus ∀i : m̄i = 0 :
wt,i = 0 so t = 0d and |T | = 1 ≤ 3.

Note that Prf [condition(t, f)] > 1/2 implies that ∀i :
mi = 0 : wt,i = 0.

Lemma 6.9. If there exists i, j such that m̄i = m̄j =
−1, then wt,i = wt,j.

Proof. Prf [condition(t, f)] > 1
2 means that

Pr
f

[wt,i = −wt,f(i)] >
1

2

Pr
f

[wt,j = −wt,f(j)] >
1

2

so

{l : m̄l = 1 ∧ wt,l = −wt,i}
{l : m̄l = −1}

> 1/2

{l : m̄l = 1 ∧ wt,l = −wt,j}
{l : m̄l = −1}

> 1/2

which is only possible if wt,i = wt,j .

Thus, there is some c ∈ {−1, 0, 1} such that ∀i : m̄i =
1 : wt,i = c.

Pr
f

[condition(t, f)] >
1

r

Pr
f

[∀i : m̄i = −1 : wt,f(i) = −c] > 1− 1

r

1− Pr
f

[∃i : m̄i = −1 : wt,f(i) 6= −c] > 1− 1

r

Pr
f

[∃i : m̄i = −1 : wt,f(i) 6= −c] <
1

r

Suppose ∃j : m̄j = 1 : wt,j 6= −c,

Pr
f

[∃i : m̄i = −1 : f(i) = j] =
1

r

which is a contradiction. So ∀j : m̄j = 1 : wt,j = −c.
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Thus, c completely determines t. Since there are three
options for c, there are three options for t, and |T | ≤
3.

Since |T | ≤ 3 and 2|T | ≥ |V |, |V | ≤ 6. Thus, there
is a split of 1/6 which is a contradiction since q ≤ 1

8 .
Thus, the lemma is proved. And thus the binary linear
classifier problem is split-neighborly.


