6 Appendix

6.1 Split-neighborly proofs

Theorem 3.2. If a problem is $1 / \alpha$-split-neighborly and has a coherence parameter of c, for

$$
\beta=\min \left(c, \frac{1}{1 / \alpha+2}\right)
$$

GBS has a worst case query cost of at most $\frac{\log n}{-\log (1-\beta)}$ and GBS has an average query cost of at most $\frac{\log n}{H(\beta)}$ where $H(p)$ is the entropy of a Bernoulli(p) random variable

Proof. This theorem will follow from the next three lemmas.

Lemma 3.1. If a problem is $1 / \alpha$-split-neighborly and has a coherence parameter of c, then for any $V \subseteq \mathcal{H}$, $|V| \leq 1$ or there exists a test $x \in \mathcal{X}$ such that

$$
\mathbb{E}_{h \in V}[h(x)] \in[\beta, 1-\beta]
$$

where β is defined as above.

Proof. Fix a subset $V \subseteq \mathcal{H}$. Assume $|V|>1$, otherwise we are done.

From the assumption, we have a coherence parameter of

$$
c \geq \beta
$$

From the definition, this means that there exists a probability distribution on the tests P such that for any hypothesis h,

$$
\sum_{x \in X} P(x) h(x) \in[\beta, 1-\beta]
$$

Since this is true for all $h \in \mathcal{H}$, this is also true for all convex combinations. Thus,

$$
\begin{aligned}
& \mathbb{E}_{h \in V}\left[\sum_{x \in X} P(x) h(x)\right] \in[\beta, 1-\beta] \\
& \sum_{x \in X} P(x) \mathbb{E}_{h \in V}[h(x)] \in[\beta, 1-\beta]
\end{aligned}
$$

For simplicity, define the split constant $S(x)=$ $\mathbb{E}_{h \in V}[h(x)]$. Thus,

$$
\sum_{x \in X} P(x) S(x) \in[\beta, 1-\beta]
$$

There are two possibilities, either there exists a test x such that

$$
S(x)=\mathbb{E}_{h \in V}[h(x)] \in[\beta, 1-\beta]
$$

in which case, this is the exact conclusion statement and we are done, or that there exists no test with a split constant in $[\beta, 1-\beta]$. If there exists no test with a split constant in $[\beta, 1-\beta]$ but the weighted combination is in $[\beta, 1-\beta]$, then there exists tests x and x^{\prime} such that $S(x)<\beta$ and $S\left(x^{\prime}\right)>1-\beta$
Since the problem is $1 / \alpha$-split neighborly, there exists a graph over the tests that is strongly connected. Thus, there is a path from x to x^{\prime}. Since $S(x)<\beta$ and $S\left(x^{\prime}\right)>1-\beta$ and since $\forall x^{\prime \prime} \in \mathcal{X}: S\left(x^{\prime \prime}\right) \notin[\beta, 1-\beta]$, there must be an edge $\left(x_{0}, x_{1}\right)$ along the path where $S\left(x_{0}\right)<\beta$ and $S\left(x_{1}\right)>1-\beta$. Thus,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[h\left(x_{0}\right)=1\right]=\mathbb{E}_{h \in V}\left[h\left(x_{0}\right)\right]<\beta \\
\operatorname{Pr}_{h \in V}\left[h\left(x_{1}\right)=1\right]=\mathbb{E}_{h \in V}\left[h\left(x_{1}\right)\right]>1-\beta
\end{gathered}
$$

Combining these two yields,

$$
\operatorname{Pr}_{h \in V}\left[h\left(x_{0}\right)=0 \wedge h\left(x_{1}\right)=1\right]>1-2 \beta
$$

Recall $\Delta\left(x_{0}, x_{1}\right)=\left\{h \in \mathcal{H}: h\left(x_{0}\right)=0, h\left(x_{1}\right)=1\right\}$

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[h \in \Delta\left(x_{0}, x_{1}\right)\right]>1-2 \beta \\
\frac{\left|V \cap \Delta\left(x_{0}, x_{1}\right)\right|}{|V|}>1-2 \beta
\end{gathered}
$$

Recall from the definition of β that $\frac{1}{1 / \alpha+2} \geq \beta$. Thus

$$
1-2 \beta \geq 1-2 \frac{1}{1 / \alpha+2}=\frac{1 / \alpha}{1 / \alpha+2} \geq \frac{\beta}{\alpha}
$$

Thus,

$$
\frac{\left|V \cap \Delta\left(x_{0}, x_{1}\right)\right|}{|V|}>\frac{\beta}{\alpha}
$$

For brevity, define $\Delta=\Delta\left(x_{0}, x_{1}\right)$. Since there is an edge $\left(x_{0}, x_{1}\right)$ in the $1 / \alpha$-neighborly graph, for any subset including $V \cap \Delta \subseteq \Delta$, either $|V \cap \Delta| \leq 1$ or there exists a test \hat{x} such that,

$$
\mathbb{E}_{h \in V \cap \Delta}[h(\hat{x})] \in[\alpha, 1-\alpha]
$$

First, $|V \cap \Delta| \neq 0$, since $|V|>1$ and $\frac{\left|V \cap \Delta\left(x_{0}, x_{1}\right)\right|}{|V|}>\frac{\beta}{\alpha}$. If $|V \cap \Delta|=1$, then, $\frac{\left|V \cap \Delta\left(x_{0}, x_{1}\right)\right|}{|V|}>\frac{\beta}{\alpha}$ and $|V|>$ 1 so $\frac{1}{2} \geq \frac{1}{|V|}>\frac{\beta}{\alpha} \geq \beta$. Since the hypotheses are identifiable, any pair of hypotheses yield a different result on some test, so we can always find a test with a split constant of at least $\frac{1}{|V|}$, and this implies the result of the theorem.

In the other case, where $|V \cap \Delta|>1$, we have all the necessary pieces and it's just a matter of crunching the algebra.

$$
\begin{gathered}
\mathbb{E}_{h \in V}[h(\hat{x})]=\frac{\sum_{h \in V} h(\hat{x})}{|V|} \\
\geq \frac{\sum_{h \in V \cap \Delta} h(\hat{x})}{|V|} \\
\geq \frac{\beta}{\alpha} \frac{\sum_{h \in V \cap \Delta} h(\hat{x})}{|V \cap \Delta|} \\
\geq \frac{\beta}{\alpha} \mathbb{E}_{h \in V \cap \Delta}[h(\hat{x})] \\
\geq \frac{\beta}{\alpha} \alpha=\beta
\end{gathered}
$$

Additionally,

$$
\begin{gathered}
\mathbb{E}_{h \in V}[h(\hat{x})]=\frac{\sum_{h \in V} h(\hat{x})}{|V|} \\
=\frac{\sum_{h \in V \cap \Delta} h(\hat{x})+\sum_{h \in V \backslash \Delta} h(\hat{x})}{|V|} \\
\leq \frac{(1-\alpha)|V \cap \Delta|+\sum_{h \in V \backslash \Delta} h(\hat{x})}{|V|} \\
\leq \frac{(1-\alpha)|V \cap \Delta|+|V|-|V \cap \Delta|}{|V|} \\
\leq 1-\alpha \frac{|V \cap \Delta|}{|V|} \\
\leq 1-\alpha \frac{\beta}{\alpha}=1-\beta
\end{gathered}
$$

Thus, we have that

$$
\mathbb{E}_{h \in V}[h(\hat{x})] \in[\beta, 1-\beta]
$$

which is the conclusion of the lemma.

Lemma 6.1. If, for any $V \subseteq \mathcal{H},|V| \leq 1$ or there exists a test $x \in \mathcal{X}$ such that

$$
\mathbb{E}_{h \in V}[h(x)] \in[\beta, 1-\beta]
$$

then GBS has a worst case query cost of at most $\frac{\log n}{\log \left(\frac{1}{1-\beta}\right)}$

Proof. After m queries, there are at $\operatorname{most} \max (1,(1-$ $\beta)^{m} n$) remaining hypotheses since greedy will choose a test with a split constant of at least β (a split with respect to the hypotheses without a prior) and will terminate when there is a single hypothesis. Thus, when $(1-\beta)^{m} n \leq 1$, the algorithm must have terminated. Rearranging, we see that when $m \geq \frac{\log n}{\log \left(\frac{1}{1-\beta}\right)}$ the algorithm must have terminated. This means that the worst case query cost must be at most $\frac{\log n}{\log \left(\frac{1}{1-\beta}\right)}$.

Lemma 6.2. If, for any $V \subseteq \mathcal{H},|V| \leq 1$ or there exists a test $x \in \mathcal{X}$ such that

$$
\mathbb{E}_{h \in V}[h(x)] \in[\beta, 1-\beta]
$$

then $G B S$ has an average query cost of at most $\frac{\log n}{H(\beta)}$ where $H(p)$ is the entropy of a $\operatorname{Bernoulli(p)~random~}$ variable

Proof. Define $H(p)$ as the entropy of a Bernoulli random variable with probability p.
$f(V)=\mathbb{E}[$ average queries remaining while at subset $V]$

We will prove by induction on increasing subsets that

$$
\begin{equation*}
f(V) \leq \frac{\log (|V|)}{H(\beta)} \tag{2}
\end{equation*}
$$

Note that the base case is that $f(\{h\})=0$ because we are done when there is just one hypothesis left. Note that this suffices to show that the total runtime is $\log (n) / H(\beta)$ because $|V|=n$ at the beginning of the algorithm.

Let A, B be a partition of V based on a test split. Without loss of generality, let $|A| \leq|B|$, so $|A| \leq$ $1 / 2|V|$. Based on the recursive definition of cost and there is a test with a split constant of at least β (so GBS will choose a test with a split constant of at least β),

$$
f(V) \leq \max _{A, B,|A||V| \in[\beta, 1 / 2]} \frac{|A|}{|V|} f(A)+\frac{|B|}{|V|} f(B)+1
$$

From the induction hypothesis,

$$
\begin{gathered}
\leq \max _{\ldots} \frac{|A|}{|V|} \frac{\log |A|}{H(\beta)}+\frac{|B|}{|V|} \frac{\log |B|}{H(\beta)}+1 \\
\leq \frac{\max _{\ldots} \frac{|A|}{|V|} \log |A|+\frac{|B|}{|V|} \log |B|+H(\beta)}{H(\beta)} \\
\leq \frac{\max _{\ldots} \frac{|A|}{|V|} \log \frac{|A|}{|V|}+\frac{|B|}{|V|} \log \frac{|B|}{|V|}+H(\beta)+\log |V|}{H(\beta)} \\
\leq \frac{\max _{\ldots}-H\left(\frac{|A|}{|V|}\right)+H(\beta)+\log |V|}{H(\beta)}
\end{gathered}
$$

Note that since $|A| /|V| \in[\beta, 1 / 2]$ (the condition of the $\max), H\left(\frac{|A|}{|V|}\right) \geq H(\beta)$. Thus, the max is non-positive, and thus,

$$
f(V) \leq \frac{\log (|V|)}{H(\beta)}
$$

Thus, we have proved the statement by induction and this suffices to show that the total runtime is at most $\log (n) / H(\beta)$.

Proposition 3.1. If a problem is k-neighborly and has a uniform prior, then the problem is k-split-neighborly.

Proof. In the case that $k=1,\left|\Delta\left(x, x^{\prime}\right)\right|=1$ so $|V| \leq 1$ so the problem is 1 -split-neighborly. Assume $k>1$. Note that any set of hypotheses must have a test that distinguishes at least one of the hypotheses (otherwise the hypotheses are the same). If two points x and x^{\prime} in the k-neighborly graph have an edge between them, then $\left|\Delta\left(x, x^{\prime}\right) \cup \Delta\left(x^{\prime}, x\right)\right| \leq k$, which implies $\left|\Delta\left(x, x^{\prime}\right)\right| \leq k$, and thus either $\left|\Delta\left(x, x^{\prime}\right)\right| \leq 1$ or there is a test with a $1 / k$ split constant and thus there is an edge from x to x^{\prime} in the k-split-neighborly graph. By a similar argument, there is also an edge from x^{\prime} to x. Since the k-neighborly graph is connected and each edge corresponds to a bidirectional edge in the k-split-neighborly graph, the k-split-neighborly graph is strongly connected and thus the problem is k-splitneighborly.

6.2 Value of k

6.2.1 Disjunctions

For the disjunctions problem, for $m \geq 2, d \geq 2 m$,

$$
\begin{gathered}
n=\sum_{i=1}^{m}\binom{d}{i} \\
k \geq \sum_{i=1}^{m}\binom{d-1}{i-1} \\
k \geq 1+\sum_{i=1}^{m-1}\binom{d-1}{i} \\
k^{2}-n \geq 1+2 \sum_{i=1}^{m-1}\binom{d-1}{i}+\left(\sum_{i=1}^{m-1}\binom{d-1}{i}\right)^{2} \\
-\sum_{i=1}^{m-1}\binom{d}{i}-\binom{d}{m}
\end{gathered}
$$

Note that $2\binom{d-1}{i} \geq\binom{ d}{i}$ since $i \leq m-1 \leq d / 2$.

$$
\begin{aligned}
& k^{2}-n \geq 1+\left(\sum_{i=1}^{m-1}\binom{d-1}{i}\right)^{2}-\binom{d}{m} \\
& \geq\binom{ d-1}{m-1}^{2}-\binom{d}{m} \\
& \geq\binom{ d-1}{m-1}\left(\binom{d-1}{m-1}-d / m\right)
\end{aligned}
$$

Since $m \geq 2$,

$$
\begin{gathered}
\geq\binom{ d-1}{1}-d / 2 \\
\geq d / 2-1 \\
\geq m-1 \\
\geq 0
\end{gathered}
$$

Thus, $k^{2}-n \geq 0$ and so $k \geq \sqrt{n}$.

6.2.2 Monotonic CNF

Note that $n=|\mathcal{H}|=\frac{1}{l!}\binom{d}{m, m, \ldots, m, d-l m}$. All of the bit strings with strictly less than l ones will be trivially connected in the k-neighborly graph, because they yield 0 on all hypotheses. However, the closest test to connect them to the rest of the graph is the bit string $1^{l} 0^{d-l} \in \mathcal{X}$, which disagrees on $\binom{d-l}{m-1, m-1, \ldots, m-1, d-l m} \leq k$ hypotheses. We examine the case where $d \geq 2 m l$ and $m \geq 2$.

For the monotonic CNF formulas, recall that

$$
n=|\mathcal{H}|=\frac{1}{l!}\binom{d}{m, m, \ldots, m, d-l m}
$$

$$
k \geq\binom{ d-l}{m-1, m-1, \ldots, m-1, d-l m}
$$

For $d \geq 2 m l$ and $m \geq 2, k \geq \sqrt{n}$.

$$
\binom{d-l}{m-1, m-1, \ldots, m-1, d-l m} \leq k
$$

and

$$
\begin{gathered}
n=\frac{1}{l!}\binom{d}{m, m, \ldots, m, d-l m} \\
=\frac{1}{l!} \frac{d!}{(m!)^{l}(d-l m)!} \\
=\frac{(d-l)!}{(m-1)!^{l}(d-l m)!} \frac{1}{m^{l}} \frac{d!(d-2 l)!}{(d-l)!^{2}} \frac{(d-l)!}{l!(d-2 l)!} \\
\leq k \frac{1}{m^{l}} \frac{d!(d-2 l)!}{(d-l)!^{2}}\binom{d-l}{l}
\end{gathered}
$$

Since $d \geq 2 m l \geq 4 l$,

$$
n \leq k \frac{2^{l}}{m^{l}}\binom{d-l}{l}
$$

Since $d-l \geq 2 l(m-1)$ and $m \geq 2$

$$
\begin{gathered}
n \leq k\binom{d-l}{l(m-1)} \\
n \leq k\binom{d-l}{m-1, m-1, \ldots, m-1, d-l m} \\
n \leq k^{2} \\
k \geq \sqrt{n}
\end{gathered}
$$

6.2.3 Discrete Linear Classifier

Recall that we are in the special case where d is divisible by $4, b=d / 4-1$ and there are an equal number of 1 and 0 weights $(d / 2)$.

All tests with fewer than $d / 4$ 1's will yield a result of 0 for all hypotheses. The test with the next fewest hypotheses that yield 1 will be a test with exactly $d / 4$ 1 's. Thus, k is at least the number of such hypotheses that yield 1 .

$$
\begin{aligned}
n & =\binom{d}{d / 2} \\
k & \geq\binom{ 3 d / 4}{d / 4}
\end{aligned}
$$

For simplicity, define $c=d / 4$.

$$
\begin{gathered}
\frac{n}{k^{2}} \leq \frac{\binom{4 c}{2 c}}{\binom{3 c}{c}^{2}} \\
=\frac{(4 c)!c!c!}{(3 c)!(3 c)!}
\end{gathered}
$$

Note that we have the common Stirling's approximation,

$$
\sqrt{2 \pi} n^{n+1 / 2} e^{-n} \leq n!\leq e n^{n+1 / 2} e^{-n}
$$

Thus,

$$
\begin{gathered}
\frac{n}{k^{2}} \leq \frac{e^{3}(4 c)^{4 c+1 / 2} c^{c+1 / 2} c^{c+1 / 2} e^{-6 c}}{2 \pi(3 c)^{3 c+1 / 2}(3 c)^{3 c+1 / 2} e^{-6 c}} \\
=\frac{2 e^{3} \sqrt{c}(4 c)^{4 c} c^{c} c^{c}}{6 \pi(3 c)^{3 c}(3 c)^{3 c}} \\
=\frac{e^{3} \sqrt{c} 4^{4 c}}{3 \pi 3^{3 c} 3^{3 c}} \\
=\frac{e^{3}}{3 \pi} \sqrt{c}\left(\frac{256}{729}\right)^{c} \\
\leq 1
\end{gathered}
$$

for $c \geq 1$.
Thus, for $d \geq 4$,

$$
\begin{aligned}
& \frac{n}{k^{2}} \leq 1 \\
& k \geq \sqrt{n}
\end{aligned}
$$

6.3 Necessity of Dependencies

6.3.1 Linear classifiers on convex polygon data pool

For arbitrary data points where the points are not the vertices of a convex polygon, the linear classifier problem is not $1 / \alpha$-split-neighborly for constant α. A counter-example is shown in Figure 8.

6.3.2 Disjunctions

The linear dependence on m for the disjunctions is necessary because of the case where $d=m+1$, and $|\mathcal{H}|=d$ (each $h \in \mathcal{H}$ lacking one variable). In this case, there are no tests with split constants of $\frac{1}{m}$, so the problem cannot be better than ($m-2$)-split-neighborly (recall coherence $c=1 / 2$).

Figure 8: A counterexample that shows a non-convex data pool need not be split-neighborly. Note that we can at most split off 1 of the n hypotheses by querying one of the points from the lower half. However, the problem has coherence close to $1 / 2$ and thus it cannot be $1 / \alpha$-split-neighborly for constant α.

6.3.3 Monotonic CNF

For the monotonic CNF problem, the linear dependence on m is necessary because of the case where $l=1, d=m+1$, and $|\mathcal{H}|=d$ (each $h \in \mathcal{H}$ lacking one variable). In this case, there are no tests with split constants of $\frac{1}{m}$, so the problem cannot be better than ($m-2$)-split-neighborly (recall coherence $c=1 / 2$). Furthermore, the linear dependence on l is necessary because of the problem where $m=1, d=l+1$, and $|\mathcal{H}|=d$ (each $h \in \mathcal{H}$ lacking one variable). For this problem, there are no tests with split constants of $\frac{1}{l}$, so the problem cannot be better than $(l-2)$-splitneighborly. Thus, although the linear dependence on m and l is necessary, it may be possible to improve the constants.

6.3.4 Object Localization

For object localization with the axis-symmetric, axisconvex set S, the dependence on d is necessary because if we use the set $S=\left\{j e_{i}:|j| \leq l, 1 \leq i \leq d\right\}$ and consider the set of hypotheses, $\left\{ \pm l e_{i}: 1 \leq i \leq d\right\}$, the problem has no test with split constant of $\frac{1}{2 d-1}$ but has coherence $c=1 / 2$, so it can't be $(2 d-3)$-splitneighborly.

6.4 Monotonic CNF

Theorem 4.2. The Conjunction of Disjunctions problem is $(m+1+3(l-1))$-split-neighborly.

Proof. We prove this theorem by induction on l. First, for the base case $l=1$.

The test graph has an edge from x to x^{\prime} if $\left\|x-x^{\prime}\right\|_{1}=1$ (the bit strings differ in one location).

Let x^{+}be the value of x or x^{\prime} with more 1's (and let
x^{-}be the other one). Note that $\left|\Delta\left(x^{+}, x^{-}\right)\right|=0$ so there is a directed edge $\left(x^{+}, x^{-}\right)$.
For the other direction, fix a subset $V \subseteq \Delta\left(x^{-}, x^{+}\right)$. Without loss of generality, let x^{+}and x^{-}differ in the first coordinate so $x_{1}^{+}=1$ and $x_{1}^{-}=0$ and $\forall i>1$: $x_{i}^{+}=x_{i}^{-}$.
For a proof by contradiction, the problem is not $(m+$ 1)-split-neighborly so that $|V|>1$ and there is no test x such that $\mathbb{E}_{h \in V}[h(x)] \in[q, 1-q]$, where $q=$ $1 /(m+1)$.

Let

$$
\begin{gathered}
\mathcal{X}^{+}=\left\{x \in \mathcal{X}: \operatorname{Pr}_{h \in V}[h(x)=1]>1-q\right\}, \\
\mathcal{X}^{-}=\left\{x \in \mathcal{X}: \operatorname{Pr}_{h \in V}[h(x)=1]<q\right\}=\mathcal{X}-\mathcal{X}^{+} .
\end{gathered}
$$

Let x^{\prime} be the the element of \mathcal{X}^{-}with the fewest 0 's and let the 0 's be at indices Z (note $1 \in Z$). If $|Z|<m$, then $h\left(x^{\prime}\right)=1$ for all h since the disjunctions have m variables. But since $x^{\prime} \in \mathcal{X}^{-}$, which is a contradiction.

Define $\left\{x^{(j)}\right\}_{j \in Z}$ to be the test resulting changing the $j^{t h}$ bit of x^{\prime} to a 1 . By the minimal definition of x^{\prime}, $\forall j \in Z: x^{(j)} \in \mathcal{X}^{+}$.

Suppose $|Z|>m$. Take a subset $Z^{\prime} \subseteq Z$ such that $\left|Z^{\prime}\right|=m+1$. Then, from the definition of \mathcal{X}^{+}and $\mathcal{X}^{-}, \operatorname{Pr}_{h \in V}\left[h\left(x^{\prime}\right)=0 \wedge \forall j \in Z^{\prime}\right.$: $\left.h\left(x^{(j)}\right)=1\right]>1-(m+1) q \geq 0$, which means $\operatorname{Pr}_{h \in V}\left[h\right.$ includes variables $\left.Z^{\prime}\right]>0$. Therefore, there is a disjunction with at least $m+1$ variables, which is a contradiction.

Thus, $|Z|=m$, so there is only one hypothesis such that $h\left(x^{\prime}\right)=0$, the hypothesis with variables at Z. So $1 /|V|>1-q$ (by definition of \mathcal{X}^{-}), which implies $|V|=1$ since $q \leq 1 / 2$, which is a contradiction. Thus, by contradiction, the problem with $l=1$ is $(m+1)$ -split-neighborly. For $l>1$, we proceed by induction. We can define the graph as above, define \mathcal{X}^{-}and \mathcal{X}^{+} as above, and x^{\prime} and Z as above. The same argument goes through that $|Z|=m$. Thus, $(1-q)$ proportion of the hypotheses have a disjunction with variables at the indices Z. These hypotheses are simply another copy of the problem with $l-1$ conjunctions and $d-m$ variables. Since that problem has $1 / 2$ coherence and is $m+1+3(l-2)$-splittable (by induction hypothesis), there exists some test with a split constant of $\frac{1}{m+1+3(l-2)+2}$ for a total split constant on the original problem of

$$
(1-q) \frac{1}{m+1+3(l-2)+2}=\frac{1}{m+1+3(l-1)}
$$

Thus, the problem is $m+1+3(l-1)$-split-neighborly by induction.

6.5 Box Object Localization

Theorem 4.3. The object localization problem where S is a box is 4-split-neighborly.

Notationally, refer to z_{h} as the integer vector for the hypothesis h and $z_{h, i}$ to be its $i^{t h}$ component.
We begin by fixing two tests x and x^{\prime} such that $\| x-$ $x^{\prime} \|_{1}=1$. Without loss of generality, let $x^{\prime}-x=e_{1}$ where e_{1} is the $1^{\text {st }}$ elementary vector. Since the box is axis symmetric, there exists radii $r_{i} \geq 0$ such that $x-z_{h} \in S \leftrightarrow \forall i:\left|x_{i}-z_{h, i}\right| \leq r_{i}$. Without loss of generality, assume $x=\left(r_{1}, 0,0, \ldots, 0\right)$ and $x^{\prime}=\left(r_{1}+\right.$ $1,0,0, \ldots, 0)$. Recall $\Delta\left(x, x^{\prime}\right)=\left\{h: h(x)=0 \wedge h\left(x^{\prime}\right)=\right.$ $1\}$, this implies that $\Delta\left(x, x^{\prime}\right)=\left\{h: z_{h, 1}=0 \wedge \forall i>\right.$ $\left.1:\left|z_{h, i}\right| \leq r_{i}\right\}$. We will begin by fixing a subset $V \subseteq$ $\Delta\left(x, x^{\prime}\right)$. As in all the application proofs, we will start by assuming by contradiction that there is no test with a split constant in the range $[q, 1-q]$ where $q=1 / 4$. We will use this contradiction to show that the size of V is small, so that there is in fact a test with a split constant q which is a contradiction.

6.5.1 Majority Element

Fix a dimension i. Examine the tests $X_{i}=\left\{j e_{i}\right.$: $\left.j=0, . ., 2 r_{i}+1\right\}$ and note that for $h \in V \subseteq \Delta\left(x, x^{\prime}\right)$, $h\left(j e_{i}\right)=\mathbb{1}\left[z_{h, i} \geq j-r_{i}\right]$.
By the contradiction assumption,

$$
\begin{gathered}
\mathbb{E}_{h \in V}\left[h\left(j e_{i}\right)\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[z_{h, i} \geq j-r_{i}\right] \notin[q, 1-q]
\end{gathered}
$$

Since $\operatorname{Pr}_{h \in V}\left[z_{h, i} \geq-r_{i}\right]=1$ and $\operatorname{Pr}_{h \in V}\left[z_{h, i} \geq r_{i}+1\right]=$ 0 , there must be some integer m_{i} such that

$$
\begin{aligned}
& \operatorname{Pr}_{h \in V}\left[z_{h, i} \geq m_{i}\right]>1-q \\
& \operatorname{Pr}_{h \in V}\left[z_{h, i} \geq m_{i}+1\right]<q
\end{aligned}
$$

which implies that

$$
\operatorname{Pr}_{h \in V}\left[z_{h, i}=m_{i}\right]>1-2 q
$$

Define thus, there exists a vector m such that there is a $1-2 q$ probability that an hypothesis' $i^{t h}$ component matches m.

6.5.2 Side Splits

Intuitively, we will create a sequence of tests that each remove at least half of the elements with the $i^{\text {th }}$ component not equal to m. For each test in the sequence, the probability that the test yields 1 over the hypotheses in V must be greater that $1-q$ so we can prove that there aren't many elements that disagree with m at any component.
Here we recursively define sets S_{i}, B_{i}, and A_{i}. S_{i} will be defined in terms of B_{i} and B_{i} will be defined in terms of S_{i-1}.

Define $S_{0}=V$ and for $i>1, S_{i}=S_{i-1}-B_{i}$. Noting that we could reflect the $i^{\text {th }}$ component about m_{i}, without loss of generality, suppose that

$$
\operatorname{Pr}_{h \in S_{i}}\left[z_{h, i}>m_{i}\right] \geq \operatorname{Pr}_{h \in S_{i}}\left[z_{h, i}<m_{i}\right]
$$

Define $B_{i}=\left\{h \in S_{i-1}: z_{h, i}>m_{i}\right\}$ and $A_{i}=\{h \in$ $\left.S_{i-1}: z_{h, i}<m_{i}\right\}$

Note that $\left|B_{i}\right| \geq\left|A_{i}\right|$.
Further, there is a test $x^{(i)}=\left(-r_{1}, \ldots,-r_{i}, 0, \ldots 0\right)$ such that $h\left(x^{(i)}\right)=1 \leftrightarrow h \in S_{i}$ and thus by the contradiction assumption,

$$
\frac{\left|S_{i}\right|}{|S|} \notin[q, 1-q]
$$

However, since $\operatorname{Pr}_{h \in V}\left[z_{h, i}=m_{i}\right]>1-2 q,\left|B_{i}\right| /|V|<$ $2 q$. We now prove by induction that $\left|S_{i}\right| /|V|>1-q$. The base case is that $\left|S_{1}\right| /|V|=1>1-q$. As long as $q \leq 1 / 4$, since $\left|S_{i-1}\right| /|V|>1-q$ and $\left|B_{i}\right| /|V|<2 q$, $\left|S_{i}\right| /|S|>1-3 q \geq q$ (since $q=1 / 4$) and thus by the contradiction assumption $\left|S_{i}\right| /|S|>1-q$.

Note that the B_{i} are disjoint because

$$
B_{i} \subseteq S_{i}=V-B_{1}-B_{2}-\ldots-B_{i-1}
$$

$$
\begin{gathered}
\left|S_{d}\right|>(1-q)|V| \\
\left|V-\bigsqcup_{i=1}^{d} B_{i}\right|>(1-q)|V| \\
|V|-\sum_{i=1}^{d}\left|B_{i}\right|>(1-q)|V| \\
q|V|>\sum_{i=1}^{d}\left|B_{i}\right|
\end{gathered}
$$

Define the set of elements $M^{\prime} \subseteq V$ as the points with a component not equal to m. This is the union of all A_{i} and B_{i},

$$
\begin{gathered}
\left|M^{\prime}\right|=\left|\bigcup_{i=1}^{d} A_{i} \cup \bigcup_{i=1}^{d} B_{i}\right| \\
\leq \sum_{i=1}^{d}\left|A_{i}\right|+\sum_{i=1}^{d}\left|B_{i}\right| \\
\leq 2 \sum_{i=1}^{d}\left|B_{i}\right| \\
<2 q|V|
\end{gathered}
$$

Also note that $\left|M^{\prime}\right| \geq|V|-1$ since there can only be one element that doesn't disagree with any element of m. Thus,

$$
\begin{gathered}
|V|-1<2 q|V| \\
|V|<\frac{1}{1-2 q}
\end{gathered}
$$

Since $q \leq 1 / 3$, then this implies $|V|<3$ so there is a test with a split of $1 / 3$, which is a contradiction. So in a proof by contradiction, the problem is 4 -splitneighborly.

6.6 Convex, axis-symmetric Shape Object Localization

Theorem 4.4. If S is a bounded, axis-symmetric, axis-convex shape, the object localization problem is $(4 d+1)$-split-neighborly.

Proof. Let the test graph has an edge from x to x^{\prime} if $\left\|x-x^{\prime}\right\|_{1}=1$.

Fix a subset $V \subseteq \Delta\left(x, x^{\prime}\right)$. Without loss of generality, let $x^{\prime}=0^{d} . V \subseteq \Delta\left(x, x^{\prime}\right) \subseteq\left\{h: h\left(x^{\prime}\right)=1\right\}=\{h$: $\left.z_{h}-x^{\prime} \in S\right\}=\left\{h: z_{h} \in S\right\}$
For a proof by contradiction, the problem is not $4 d+1$ -split-neighborly so that $|V|>1$ and there is no test x such that $\mathbb{E}_{h \in V}[h(x)] \in[q, 1-q]$, where $q=1 /(4 d+1)$.

Let

$$
\begin{gathered}
\mathcal{X}^{+}=\left\{x \in \mathcal{X}: \operatorname{Pr}_{h \in V}[h(x)=1]>1-q\right\} \\
\mathcal{X}^{-}=\left\{x \in \mathcal{X}: \operatorname{Pr}_{h \in V}[h(x)=1]<q\right\}=\mathcal{X}-\mathcal{X}^{+}
\end{gathered}
$$

Note that $x^{\prime}=0^{d} \in \mathcal{X}^{+}$since $V \subseteq\left\{h: h\left(x^{\prime}\right)=1\right\}$.
Fix a dimension i. Examine the set of tests $\left\{j e_{i}: j \in\right.$ $\mathbb{Z}\}$. From above, $0 e_{i} \in \mathcal{X}^{+}$. Further, since $V \subseteq\{h:$
$\left.z_{h} \in S\right\}$ and since S is bounded, there exists some $B \in \mathbb{Z}$ such that $\pm B e_{i} \in \mathcal{X}^{-}$. Thus there exists some $c_{1} \leq 0, c_{2} \geq 0$ such that $\left(c_{1}-1\right) e_{i} \in \mathcal{X}^{-}, c_{1} e_{i} \in \mathcal{X}^{+}$, $c_{2} e_{i} \in \mathcal{X}^{+},\left(c_{2}+1\right) e_{i} \in \mathcal{X}^{-}$. From the definition of \mathcal{X}^{+}and \mathcal{X}^{-},

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[h\left(\left(c_{1}-1\right) e_{i}\right)=0, h\left(c_{1} e_{i}\right)=1, \ldots\right. \\
\left.h\left(c_{2} e_{i}\right)=1, h\left(\left(c_{2}+1\right) e_{i}\right)=0\right]>1-4 q
\end{gathered}
$$

Define $S_{l}=\left\{s_{-i}: s_{i}=l, s \in S\right\}$ to be the slices of S along axis i at location l. Therefore, $h\left(j e_{i}\right)=1 \leftrightarrow$ $z_{h,-i} \in S_{z_{h, i}-j}$.
Note that $S_{-l}=S_{l}$ since the shape S is axis symmetric. Combining these three facts,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[z_{h,-i} \in S_{\left|z_{h, i}-c_{1}\right|} \cap S_{\left|z_{h, i}-c_{2}\right|} \backslash \ldots\right. \\
\left.\backslash\left(S_{\left|z_{h, i}-\left(c_{1}-1\right)\right|} \cup S_{\left|z_{h, i}-\left(c_{2}+1\right)\right|}\right)\right]>1-4 q
\end{gathered}
$$

Note that for $l^{\prime}>l \geq 0, S_{i, l^{\prime}} \subseteq S_{i, l}$ because of axisconvexity. To see this, suppose there was $t \in S_{i, l^{\prime}} \backslash$ $S_{i, l}$, then there would be three elements $s^{(-1)}, s^{(0)}, s^{(1)}$ such that $s_{-i}^{(j)}=t$ and $s_{i}^{(-1)}=-l^{\prime}, s_{i}^{(0)}=l, s_{i}^{(1)}=l^{\prime}$, which would imply $s^{(-1)} \in S, s^{(0)} \notin S, s^{(1)} \in S$ which contradicts axis-convexity.
Thus, in order for the set composed of slices of S in the equation above to be non-empty,

$$
\left|z_{h, i}-c_{1}\right|,\left|z_{h, i}-c_{2}\right|<\left|z_{h, i}-c_{1}+1\right|,\left|z_{h, i}-c_{2}-1\right|
$$

it must be the case that $z_{h, i}=\frac{c_{1}+c_{2}}{2} \in \mathbb{Z}$ which we define to be m_{i}. So,

$$
\operatorname{Pr}_{h \in V}\left[z_{h, i}=m_{i}\right]>1-4 q
$$

Repeating this argument for all dimensions and combining,

$$
\operatorname{Pr}_{h \in V}\left[\forall i: z_{h, i}=m_{i}\right]>1-4 d q
$$

There is only one such element $z_{h}=m$ so

$$
\frac{1}{|V|}>1-4 d q=1-4 d \frac{1}{4 d+1}=\frac{1}{4 d+1}
$$

So $|V|<4 d+1$ so there must be a split of at least q which is a contradiction.

6.7 Discrete Binary Linear Classifiers

Theorem 4.5. The discrete binary linear classifier problem is $\max (16,8 r)$-split-neighborly.

Define $q=\min \left(\frac{1}{16}, \frac{1}{8 r}\right)$
Recall that for the Discrete Binary Linear Classifier case, we have hypotheses as a pair of vectors and threshold $h=\left(w_{h}, b_{h}\right) \in\{-1,0,1\}^{d} \times \mathbb{Z}$ and tests as vectors $\{0,1\}^{d}$. Recall $h(x)=\mathbb{1}\left[w_{h} \cdot x>b_{h}\right]$.

From the problem setting of Discrete Binary Linear Classifiers, we know that,

$$
\begin{gathered}
w_{h}^{(+)}-b \leq r\left(w_{h}^{(-)}+b\right)-\frac{d}{8} \\
w_{h}^{(-)}+b \leq r\left(w_{h}^{(+)}-b-1\right)-\frac{d}{8}
\end{gathered}
$$

Recall $w^{(+)}$is the number of positive elements of w and $w^{(-)}$is the number of negative elements. Notationally $w_{h, i}$ refers to the $i^{t h}$ component of w_{h}.

6.7.1 Key Lemma and its Sufficiency

We will first state a lemma and then prove that it implies the problem stated stated.
Lemma 6.3. Define

$$
\begin{gathered}
x^{(0)}=(0,0, \ldots, 0) \\
x^{(1)}=(1,0, \ldots, 0) \\
H^{\prime}=\left\{h \in H: h\left(x^{(0)}=0 \wedge h\left(x^{(1)}\right)=1 \wedge \ldots\right.\right. \\
\wedge w_{h}^{(+)} \leq r w_{h}^{(-)}-\frac{d}{8} \wedge \ldots \\
\left.\ldots \wedge w_{h}^{(-)} \leq r\left(w_{h}^{(+)}-1\right)-\frac{d}{8}\right\}
\end{gathered}
$$

For any subset $V \subset H^{\prime}$, there exists a test x such that $\mathbb{E}_{h \in V}[h(x)] \in[q, 1-q]$

6.7.2 Proof of Theorem 4.5 from Lemma 6.3

We will prove Theorem 4.5 by a reduction to Lemma 6.3. To show that the problem is $1 / \alpha$-split-neighborly, we need to show that for two tests with x and x^{\prime} with $\left\|x-x^{\prime}\right\|_{1}=1$ that for any subset $V \subseteq \Delta\left(x, x^{\prime}\right)=\{h:$ $\left.h(x)=0 \wedge h\left(x^{\prime}\right)=1\right\}$, that $|V| \leq 1$ or there exists a test \hat{x} such that

$$
\operatorname{Pr}_{h \in V}[h(\hat{x})=1] \in[q, 1-q]
$$

Note that by permuting the indices of x and x^{\prime}, we can make the first index the one that is different between x and x^{\prime}. Additionally, for the remaining indices we can
flip the 0's and 1's of the test so long as we flip the nonzero entries of w_{h} at that same position, and change b_{h} accordingly. We flip the bits so that x becomes $x^{(0)}$ and x^{\prime} becomes $x^{(1)}$.
Note that $h\left(x^{(0)}\right)=0$ implies that $0 \leq b_{h}$. Further note that, $h\left(x^{(1)}\right)=1$ implies that $w_{h, 1}>b_{h}$. Thus, the only possibility is that $w_{h, 1}=1$ and $b_{h}=0$.

Let T_{+-}denote the number of flips from positive to negative weights and let T_{-+}denote the number of flips from negative to positive. Then, the weights for the new (reduction) problem will be

$$
\begin{aligned}
& w_{n e w}^{(+)}=w^{(+)}+T_{-+}-T_{+-} \\
& w_{n e w}^{(-)}=w^{(-)}+T_{+-}-T_{-+} \\
& 0=b_{n e w}=b-T_{+-}+T_{-+}
\end{aligned}
$$

From the last equation, $b=T_{+-}-T_{-+}$. Thus,

$$
\begin{aligned}
& w_{\text {new }}^{(+)}=w^{(+)}-b \\
& w_{\text {new }}^{(-)}=w^{(-)}+b
\end{aligned}
$$

Since,

$$
\begin{gathered}
w^{(+)}-b \leq r\left(w^{(-)}+b\right)-\frac{d}{8} \\
w^{(-)}+b \leq r\left(w^{(+)}-b-1\right)-\frac{d}{8}
\end{gathered}
$$

then,

$$
\begin{gathered}
w_{\text {new }}^{(+)} \leq r w_{\text {new }}^{(-)}-\frac{1}{8} d \\
w_{\text {new }}^{(-)} \leq r\left(w_{\text {new }}^{(+)}-1\right)-\frac{1}{8} d
\end{gathered}
$$

We can see that the hypothesis conditions for the original theorem imply that $\Delta\left(x^{(0)}, x^{(1)}\right)$ is a subset of the hypotheses that satisfy the conditions based on $w_{n e w}^{(-)}$ and $w_{\text {new }}^{(+)}$so Lemma 6.3 implies the binary linear classifier is $1 / q$-split-neighborly which means $\max (16,8 r)$ -split-neighborly.

6.7.3 Proof of Lemma 6.3

The remainder of this is devoted to proving Lemma 6.3

We begin by fixing a subset $V \subseteq H^{\prime}$. As in all the application proofs, we will start by assuming by contradiction that there is no test with a split constant in the range $[q, 1-q]$. We will use this contradiction to show that the size of V is small.

Recall that $b_{h}=0$ for all hypotheses in the reduced problem and $w_{h, 1}=1$. This follows from the fact that $h\left(x^{(0)}\right)=0$ and $h\left(x^{(1)}\right)=1$.

6.7.4 Majority Vector

Let e_{i} be an elementary vector with all entries 0 except for the $i^{\text {th }}$ entry which is 1 .
Lemma 6.4. There exists a vector $m \in\{-1,0,1\}^{d}$ such that $\forall i: m_{i}=0: \operatorname{Pr}_{h \in V}\left[w_{h, i}=m_{i}\right] \geq 1-2 q$ and $\forall i: m_{i} \neq 0: \operatorname{Pr}_{h \in V}\left[w_{h, i}=m_{i}\right] \geq 1-q$

Proof. By the contradiction assumption, there isn't a test with a split constant greater than q,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot e_{i}>b_{h}\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[w_{h, i}>0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[w_{s, i}=1\right] \notin[q, 1-q]
\end{gathered}
$$

Also, by the contradiction assumption,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot\left(e_{0}+e_{i}\right)>b_{h}\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[1+w_{h, i}>0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[w_{h, i} \neq-1\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[w_{h, i}=-1\right] \notin[q, 1-q]
\end{gathered}
$$

Since $\operatorname{Pr}_{h \in V}\left[w_{h, i}=1\right]+\operatorname{Pr}_{h}\left[w_{h, i}=0\right]+\operatorname{Pr}_{h}\left[w_{h, i}=\right.$ $1]=1$,

$$
\operatorname{Pr}_{h \in V}\left[w_{h, i}=0\right] \notin[q, 1-2 q]
$$

Thus, each index is either mostly 1 , mostly 0 , or mostly -1 for elements in S (since $q<1 / 3$). Define $m \in$ $\{-1,01\}^{d}$ such that

$$
m_{i}=\underset{c}{\operatorname{argmax}} \operatorname{Pr}_{h \in V}\left[w_{h, i}=c\right]
$$

Note that $m_{1}=1$.

6.7.5 Ratio between $m^{(-)}$and $m^{(+)}$

Note,

$$
\begin{gathered}
\mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right]=\sum_{i=1}^{d} \operatorname{Pr}\left[w_{h, i}=1\right] \\
\leq(q)\left(d-m^{(+)}\right)+(1) m^{(+)}=q d+(1-q) m^{(+)} \\
m^{(+)} \geq \frac{1}{1-q}\left(\mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right]-q d\right)
\end{gathered}
$$

Further note,

$$
\begin{gathered}
\mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right]=\sum_{i=1}^{d} \operatorname{Pr}\left[w_{h, i}=1\right] \\
\geq(0)\left(d-m^{(+)}\right)+(1-q) m^{(+)}=(1-q) m^{(+)} \\
m^{(+)} \leq \frac{1}{1-q} \mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right]
\end{gathered}
$$

We have similar equations for $m^{(-)}$and $\mathbb{E}_{h \in V}\left[w_{h}^{(-)}\right]$
Let \bar{m} be the vector of m without the first component. Recall that we have

$$
\begin{gathered}
\forall h \in V: w_{h}^{(+)} \leq r w_{h}^{(-)}-\frac{1}{8} d \\
\mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right] \leq r \mathbb{E}_{h \in V}\left[w_{h}^{(-)}\right]-q r d \\
\frac{1}{1-q} \mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right] \leq r \frac{1}{1-q}\left(\mathbb{E}_{h \in V}\left[w_{h}^{(-)}\right]-q d\right) \\
m^{(+)} \leq r m^{(-)} \\
\bar{m}^{(+)} \leq r \bar{m}^{(-)}
\end{gathered}
$$

Also, recall,

$$
\begin{gathered}
\forall h \in V: w_{h}^{(-)} \leq r\left(w_{h}^{(+)}-1\right)-\frac{1}{8} d \\
\mathbb{E}_{h \in V}\left[w_{h}^{(-)}\right] \leq r \mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right]-q r d-r \\
\frac{1}{1-q} \mathbb{E}_{h \in V}\left[w_{h}^{(-)}\right] \leq r \frac{1}{1-q}\left(\mathbb{E}_{h \in V}\left[w_{h}^{(+)}\right]-q d\right)-\frac{r}{1-q} \\
m^{(-)} \leq r m^{(+)}-\frac{r}{1-q} \\
m^{(-)} \leq r\left(m^{(+)}-1\right) \\
\bar{m}^{(-)} \leq r \bar{m}^{(+)}
\end{gathered}
$$

6.7.6 Partition

Let \bar{w} be the vector of w without the first component.
Definition 6.1. Let

- $\mathcal{X}^{+}=\left\{x: \operatorname{Pr}_{h \in V}\left[\overline{w_{h}} \cdot x \geq 1\right]>1-q\right\}$
- $\mathcal{X}^{0}=\left\{x: \operatorname{Pr}_{h \in V}\left[\bar{w}_{h} \cdot x=0\right]>1-2 q\right\}$
- $\mathcal{X}^{-}=\left\{x: \operatorname{Pr}_{h \in V}\left[\overline{w_{h}} \cdot x \leq-1\right]>1-q\right\}$

Lemma 6.5. $\mathcal{X}^{+}, \mathcal{X}^{0}, \mathcal{X}^{-}$is a partition of $\{0,1\}^{d-1}$
Proof. Since $q \leq 1 / 4$ and the three defining events are mutually exclusive. It is clear that A^{+}, A^{0}, A^{-}are disjoint. Next we show that every point is in at least one of the sets. Suppose a point x is in neither A^{+}or A^{-}.

Using the contradiction assumption on the test $(0, x)$,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot(0, x)>0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[\overline{w_{h}} \cdot x>0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[\overline{w_{h}} \cdot x>0\right]<q
\end{gathered}
$$

Using the contradiction assumption on the test $(1, x)$,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot(1, x)>0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[1+\bar{w}_{h} \cdot x>0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[\bar{w}_{h} \cdot x \geq 0\right] \notin[q, 1-q] \\
\operatorname{Pr}_{h \in V}\left[\bar{w}_{h} \cdot x<0\right]<q
\end{gathered}
$$

Combining these,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[\bar{w}_{h} \cdot x=0\right]=1-\operatorname{Pr}_{h \in V}\left[\bar{w}_{h} \cdot x>0\right]-\operatorname{Pr}_{h \in V}\left[\bar{w}_{h} \cdot x<0\right] \\
>1-2 q
\end{gathered}
$$

Thus, $x \notin \mathcal{X}^{+}$and $x \notin \mathcal{X}^{-}$imply $x \in \mathcal{X}^{0}$ so the three sets are a partition.

Definition 6.2. Define \mathcal{X}^{*} to be every $x \in\{0,1\}^{d}$ that $(\bar{m}=1) \cdot x=(\bar{m}=-1) \cdot x$, where $(\bar{m}=1)$ is the element-wise boolean function.

Intuitively, this means that there are as many ones of x in positions where $\bar{m}=1$ as there are places where $\bar{m}=-1$.

Lemma 6.6. $\mathcal{X}^{*} \subseteq \mathcal{X}^{0}$

Proof. We prove this by induction on the number of 1's in x for $x \in \mathcal{X}^{*}$.
The base case is $x=0^{d}$ which is trivially in \mathcal{X}^{0}.
For other x, suppose $x_{i}=1$ at a location where $m_{i}=0$. Then we know $x-e_{i} \in \mathcal{X}^{0}$ by the induction hypothesis.

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot\left(x-e_{i}\right)=0\right]>1-2 q \\
\operatorname{Pr}_{h \in V}\left[w_{h, i}=0\right]>1-2 q
\end{gathered}
$$

From these,

$$
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot x=0\right]>1-4 q \geq q
$$

for $q \leq 1 / 5$. So $x \notin \mathcal{X}^{+} \cup \mathcal{X}^{-}$and thus $x \in \mathcal{X}^{0}$.
The only other case is where $x_{i}=x_{j}=1$ at locations where $m_{i}=1$ and $m_{j}=-1$. Then we know $x-e_{i}-$ $e_{j} \in \mathcal{X}^{0}$ from the induction hypothesis.

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot\left(x-e_{i}-e_{j}\right)=0\right]>1-2 q \\
\operatorname{Pr}_{h \in V}\left[w_{h, i}=1\right]>1-q \\
\operatorname{Pr} r_{h \in V}\left[w_{h, j}=-1\right]>1-q
\end{gathered}
$$

From these,

$$
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot x=0\right]>1-4 q \geq q
$$

and similarly, $x \in \mathcal{X}^{0}$.

6.7.7 Probability Distribution

We now define a probability distribution over $x \in \mathcal{X}^{*}$.
Without loss of generality, suppose $\bar{m}^{(+)} \geq \bar{m}^{(-)}$.

- Randomly draw an injection $f:\left\{i: \bar{m}_{i}=-1\right\} \rightarrow$ $\left\{i: \bar{m}_{i}=1\right\}$.
- Initialize $x=0^{d-1}$
- For indices $\left\{i: \bar{m}_{i} \leq 0\right\}$, draw $x_{i} \sim$ bernoulli(1/2).
- For $\left\{i: \bar{m}_{i}=-1\right\}$, set $x_{f(i)}=x_{i}$

Note that the result $x \in \mathcal{X}^{*}$ because of the pairing f, there will be a 1 where $\bar{m}_{i}=1$ for each 1 where $\bar{m}_{i}=-1$.

6.7.8 Set T

Definition 6.3. For the probability distribution,

$$
Q(h)=\operatorname{Pr}_{x \in \mathcal{X}^{*}}\left[w_{h} \cdot x=0\right]
$$

Lemma 6.7. Let $T=\{h \in V: Q(h)>1-4 q\}$, then $|V|>5|T|$.

Proof. For $x \in \mathcal{X}^{*}$, since $\mathcal{X}^{*} \subseteq \mathcal{X}^{0}$,

$$
\begin{gathered}
\operatorname{Pr}_{h \in V}\left[w_{h} \cdot x=0\right]>1-2 q \\
\frac{\sum_{h \in V} \mathbb{1}\left[w_{h} \cdot x=0\right]}{|V|}>1-2 q \\
\left.\frac{\sum_{x \in \mathcal{X}^{0}} P(x) \frac{\sum_{h \in V} \mathbb{1}\left[w_{h} \cdot x=0\right]}{|V|}>1-2 q}{\frac{\sum_{h \in V}}{\sum_{x \in \mathcal{X}^{0}} P(x) \mathbb{1}\left[w_{h} \cdot x=0\right]}} \right\rvert\, \frac{|V|}{\sum_{h \in V} Q(h)} \\
\frac{\sum_{h \mid}}{|V|}>1-2 q \\
\frac{|T|}{|V|}(1)+\frac{|V|-|T|}{|V|}(1-4 q)>1-2 q \\
2|T|>|V|
\end{gathered}
$$

Lemma 6.8. $|T| \leq 3$
Proof. Recall that $\bar{m}^{(+)} \leq r \bar{m}^{(-)}$and $\bar{m}^{(-)} \leq r \bar{m}^{(+)}$ as well
Also $1-4 q \geq 1-\min \left(\frac{1}{4}, \frac{1}{2 r}\right)$ since $q \leq \min \left(\frac{1}{16}, \frac{1}{8 r}\right)$
For any $t \in T, Q(t)>1-4 q \geq 1-\min \left(\frac{1}{4}, \frac{1}{2 r}\right)$. Define $\operatorname{Ber}(1 / 2)$ to be a Bernoulli random variable.

$$
\begin{gathered}
\operatorname{Pr}_{x \in \mathcal{X}^{*}}\left[w_{t} \cdot x=0\right]>1-\min \left(\frac{1}{4}, \frac{1}{2 r}\right) \\
\mathbb{E}_{f}\left[\operatorname { P r } \left[\sum_{i: m_{i}=0} w_{t, i} \operatorname{Ber}(1 / 2)+\ldots\right.\right. \\
\left.\left.\sum_{i: m_{i}=-1}\left(w_{t, i}+w_{t, f(i)}\right) \operatorname{Ber}(1 / 2)=0\right]\right]>1-\min \left(\frac{1}{4}, \frac{1}{2 r}\right)
\end{gathered}
$$

Note that

$$
\begin{gathered}
\operatorname{Pr}\left[\sum_{i: \bar{m}_{i}=0} w_{t, i} \operatorname{Ber}(1 / 2)+\ldots\right. \\
\left.\sum_{i: \bar{m}_{i}=-1}\left(w_{t, i}+w_{t, f(i)}\right) \operatorname{Ber}(1 / 2)=0\right] \leq \frac{1}{2}
\end{gathered}
$$

unless $\forall i: \bar{m}_{i}=0: w_{t, i}=0$ and $\forall i: \bar{m}_{i}=-1:$ $w_{t, i}+w_{t, f(i)}=0$, call this condition (t, f).

$$
\begin{gathered}
\mathbb{E}_{f}[\mathbb{1}[\operatorname{condition}(t, f)]+\ldots \\
\left.\frac{1}{2}(1-\mathbb{1}[\operatorname{condition}(t, f)])\right]>1-\min \left(\frac{1}{4}, \frac{1}{2 r}\right)
\end{gathered}
$$

$$
\mathrm{Pr}_{f}[\operatorname{condition}(t, f)]>1-\min \left(\frac{1}{2}, \frac{1}{r}\right)
$$

If $\bar{m}^{(-)}=0$, then $\bar{m}^{(+)}=0$, and thus $\forall i: \bar{m}_{i}=0$: $w_{t, i}=0$ so $t=0^{d}$ and $|T|=1 \leq 3$.
Note that $\operatorname{Pr}_{f}[$ condition $(t, f)]>1 / 2$ implies that $\forall i$: $m_{i}=0: w_{t, i}=0$.

Lemma 6.9. If there exists i, j such that $\bar{m}_{i}=\bar{m}_{j}=$ -1 , then $w_{t, i}=w_{t, j}$.

Proof. $\operatorname{Pr}_{f}[\operatorname{condition}(t, f)]>\frac{1}{2}$ means that

$$
\begin{aligned}
& \operatorname{Pr}_{f}\left[w_{t, i}=-w_{t, f(i)}\right]>\frac{1}{2} \\
& \operatorname{Pr}_{f}\left[w_{t, j}=-w_{t, f(j)}\right]>\frac{1}{2}
\end{aligned}
$$

so

$$
\begin{aligned}
& \frac{\left\{l: \bar{m}_{l}=1 \wedge w_{t, l}=-w_{t, i}\right\}}{\left\{l: \bar{m}_{l}=-1\right\}}>1 / 2 \\
& \frac{\left\{l: \bar{m}_{l}=1 \wedge w_{t, l}=-w_{t, j}\right\}}{\left\{l: \bar{m}_{l}=-1\right\}}>1 / 2
\end{aligned}
$$

which is only possible if $w_{t, i}=w_{t, j}$.
Thus, there is some $c \in\{-1,0,1\}$ such that $\forall i: \bar{m}_{i}=$ $1: w_{t, i}=c$.

$$
\begin{gathered}
\operatorname{Pr}_{f}[\text { condition }(t, f)]>\frac{1}{r} \\
\operatorname{Pr}_{f}\left[\forall i: \bar{m}_{i}=-1: w_{t, f(i)}=-c\right]>1-\frac{1}{r} \\
1-\operatorname{Pr}_{f}\left[\exists i: \bar{m}_{i}=-1: w_{t, f(i)} \neq-c\right]>1-\frac{1}{r} \\
\operatorname{Pr}_{f}\left[\exists i: \bar{m}_{i}=-1: w_{t, f(i)} \neq-c\right]<\frac{1}{r}
\end{gathered}
$$

Suppose $\exists j: \bar{m}_{j}=1: w_{t, j} \neq-c$,

$$
\operatorname{Pr}_{f}\left[\exists i: \bar{m}_{i}=-1: f(i)=j\right]=\frac{1}{r}
$$

which is a contradiction. So $\forall j: \bar{m}_{j}=1: w_{t, j}=-c$.

Thus, c completely determines t. Since there are three options for c, there are three options for t, and $|T| \leq$ 3.

Since $|T| \leq 3$ and $2|T| \geq|V|,|V| \leq 6$. Thus, there is a split of $1 / 6$ which is a contradiction since $q \leq \frac{1}{8}$. Thus, the lemma is proved. And thus the binary linear classifier problem is split-neighborly.

