6 Appendix

6.1 Split-neighborly proofs

Theorem 3.2. If a problem is $\frac{1}{\alpha}$-split-neighborly and has a coherence parameter of c, for

$$\beta = \min(c, \frac{1}{\frac{1}{\alpha} + 2})$$

GBS has a worst case query cost of at most $\frac{\log n}{\log(1 - \beta)}$ and GBS has an average query cost of at most $\frac{\log n}{H(\beta)}$ where $H(p)$ is the entropy of a Bernoulli(p) random variable.

Proof. This theorem will follow from the next three lemmas.

Lemma 3.1. If a problem is $\frac{1}{\alpha}$-split-neighborly and has a coherence parameter of c, then for any $V \subseteq \mathcal{H}$, $|V| \leq 1$ or there exists a test $x \in \mathcal{X}$ such that

$$\mathbb{E}_{h \in V}[h(x)] \in [\beta, 1 - \beta]$$

where β is defined as above.

Proof. Fix a subset $V \subseteq \mathcal{H}$. Assume $|V| > 1$, otherwise we are done.

From the assumption, we have a coherence parameter of

$$c \geq \beta$$

From the definition, this means that there exists a probability distribution on the tests P such that for any hypothesis h,

$$\sum_{x \in \mathcal{X}} P(x)h(x) \in [\beta, 1 - \beta]$$

Since this is true for all $h \in \mathcal{H}$, this is also true for all convex combinations. Thus,

$$\mathbb{E}_{h \in V}[\sum_{x \in \mathcal{X}} P(x)h(x)] \in [\beta, 1 - \beta]$$

$$\sum_{x \in \mathcal{X}} P(x)\mathbb{E}_{h \in V}[h(x)] \in [\beta, 1 - \beta]$$

For simplicity, define the split constant $S(x) = \mathbb{E}_{h \in V}[h(x)]$. Thus,

$$\sum_{x \in \mathcal{X}} P(x)S(x) \in [\beta, 1 - \beta]$$

There are two possibilities, either there exists a test x such that

$$S(x) = \mathbb{E}_{h \in V}[h(x)] \in [\beta, 1 - \beta]$$

in which case, this is the exact conclusion statement and we are done, or that there exists no test with a split constant in $[\beta, 1 - \beta]$. If there exists no test with a split constant in $[\beta, 1 - \beta]$ but the weighted combination is in $[\beta, 1 - \beta]$, then there exists tests x and x' such that $S(x) < \beta$ and $S(x') > 1 - \beta$.

Since the problem is $\frac{1}{\alpha}$-split neighborly, there exists a graph over the tests that is strongly connected. Thus, there is a path from x to x'. Since $S(x) < \beta$ and $S(x') > 1 - \beta$ and since $\forall x'' \in \mathcal{X}: S(x'') \not\in [\beta, 1 - \beta]$, there must be an edge (x_0, x_1) along the path where $S(x_0) < \beta$ and $S(x_1) > 1 - \beta$. Thus,

$$\Pr_{h \in V}[h(x_0) = 1] = \mathbb{E}_{h \in V}[h(x_0)] < \beta$$

$$\Pr_{h \in V}[h(x_1) = 1] = \mathbb{E}_{h \in V}[h(x_1)] > 1 - \beta$$

Combining these two yields,

$$\Pr_{h \in V}[h(x_0) = 0 \land h(x_1) = 1] > 1 - 2\beta$$

Recall $\Delta(x_0, x_1) = \{h \in \mathcal{H}: h(x_0) = 0, h(x_1) = 1\}$

$$\Pr_{h \in V}[h \in \Delta(x_0, x_1)] > 1 - 2\beta$$

Recall from the definition of β that $\frac{1}{\frac{1}{\alpha} + 2} \geq \beta$. Thus

$$1 - 2\beta \geq 1 - 2 \cdot \frac{1}{\frac{1}{\alpha} + 2} = \frac{1}{\frac{1}{\alpha} + 2} \geq \frac{\beta}{\alpha}$$

Thus,

$$\frac{|V \cap \Delta(x_0, x_1)|}{|V|} > \frac{\beta}{\alpha}$$

For brevity, define $\Delta = \Delta(x_0, x_1)$. Since there is an edge (x_0, x_1) in the $\frac{1}{\alpha}$-neighborly graph, for any subset including $V \cap \Delta \subseteq \Delta$, either $|V \cap \Delta| \leq 1$ or there exists a test \hat{x} such that,
First, $|V \cap \Delta| \neq 0$, since $|V| > 1$ and $\frac{|V \cap \Delta(x_0 x_1)|}{|V|} > \frac{\beta}{\alpha}$.

If $|V \cap \Delta| = 1$, then, $\frac{|V \cap \Delta(x_0 x_1)|}{|V|} > \frac{\beta}{\alpha}$ and $|V| > 1$ so \(\frac{1}{2} \geq \frac{1}{|V|} > \frac{\beta}{\alpha} \geq \beta \). Since the hypotheses are identifiable, any pair of hypotheses yield a different result on some test, so we can always find a test with a split constant of at least $\frac{1}{|V|}$, and this implies the result of the theorem.

In the other case, where $|V \cap \Delta| > 1$, we have all the necessary pieces and it’s just a matter of crunching the algebra.

\[
\mathbb{E}_{h \in V}[h(\hat{x})] = \frac{\sum_{h \in V} h(\hat{x})}{|V|} \\
\geq \frac{\sum_{h \in V \cap \Delta} h(\hat{x})}{|V|} \\
\geq \frac{\beta}{\alpha} \frac{\sum_{h \in V \cap \Delta} h(\hat{x})}{|V \cap \Delta|} \\
\geq \frac{\beta}{\alpha} \mathbb{E}_{h \in V \cap \Delta}[h(\hat{x})] \\
\geq \frac{\beta}{\alpha} \frac{1}{|V \cap \Delta|} = \beta
\]

Additionally,

\[
\mathbb{E}_{h \in V}[h(\hat{x})] = \frac{\sum_{h \in V} h(\hat{x})}{|V|} \\
= \frac{\sum_{h \in V \cap \Delta} h(\hat{x}) + \sum_{h \in V \setminus \Delta} h(\hat{x})}{|V|} \\
\leq \frac{(1 - \alpha)|V \cap \Delta| + \sum_{h \in V \setminus \Delta} h(\hat{x})}{|V|} \\
\leq \frac{(1 - \alpha)|V \cap \Delta| + |V| - |V \cap \Delta|}{|V|} \\
\leq 1 - \alpha \frac{|V \cap \Delta|}{|V|} \\
\leq 1 - \alpha \frac{\beta}{\alpha} = 1 - \beta
\]

Thus, we have that

\[
\mathbb{E}_{h \in V}[h(\hat{x})] \in [\beta, 1 - \beta]
\]

which is the conclusion of the lemma.

Lemma 6.1. If, for any $V \subseteq H$, $|V| \leq 1$ or there exists a test $x \in X$ such that

\[
\mathbb{E}_{h \in V}[h(x)] \in [\beta, 1 - \beta]
\]

then GBS has a worst case query cost of at most $\frac{\log n}{\log(1/\beta)}$.

Proof. After m queries, there are at most $\max(1, (1 - \beta)^mn)$ remaining hypotheses since greedy will choose a test with a split constant of at least β (a split with respect to the hypotheses without a prior) and will terminate when there is a single hypothesis. Thus, when $(1 - \beta)^mn \leq 1$, the algorithm must have terminated. Rearranging, we see that when $m \geq \frac{\log n}{\log(1/\beta)}$, the algorithm must have terminated. This means that the worst case query cost must be at most $\frac{\log n}{\log(1/\beta)}$.

Lemma 6.2. If, for any $V \subseteq H$, $|V| \leq 1$ or there exists a test $x \in X$ such that

\[
\mathbb{E}_{h \in V}[h(x)] \in [\beta, 1 - \beta]
\]

then GBS has an average query cost of at most $\frac{\log n}{H(\beta)}$ where $H(p)$ is the entropy of a Bernoulli(p) random variable.

Proof. Define $H(p)$ as the entropy of a Bernoulli random variable with probability p.

\[
f(V) = \mathbb{E}[\text{average queries remaining while at subset } V]
\]

We will prove by induction on increasing subsets that

\[
f(V) \leq \frac{\log(|V|)}{H(\beta)}
\]

Note that the base case is that $f(\{h\}) = 0$ because we are done when there is just one hypothesis left. Note that this suffices to show that the total runtime is $\log(n)/H(\beta)$ because $|V| = n$ at the beginning of the algorithm.

Let A, B be a partition of V based on a test split. Without loss of generality, let $|A| \leq |B|$, so $|A| \leq \frac{1}{2} |V|$. Based on the recursive definition of cost and there is a test with a split constant of at least β (so GBS will choose a test with a split constant of at least β),

\[
f(V) \leq \max_{A,B, |A|/|V| \in [\beta, 1/2]} |A| f(A) + \frac{|B|}{|V|} f(B) + 1
\]
From the induction hypothesis,

\[
\leq \max_{A} \frac{|A| \log |A|}{|V|} + \frac{|B| \log |B|}{|V|} + H(\beta) + 1
\]

\[
\frac{\log |V|}{H(\beta)} \leq \frac{|A| \log |A| + |B| \log |B| + H(\beta) + \log |V|}{H(\beta)}
\]

\[
\leq \max_{A} -H\left(\frac{|A|}{|V|}\right) + H(\beta) + \log |V| \leq \frac{-H\left(\frac{|A|}{|V|}\right) + H(\beta)}{H(\beta)}
\]

Note that since \(|A|/|V| \in [\beta, 1/2]\) (the condition of the max), \(H\left(\frac{|A|}{|V|}\right) \geq H(\beta)\). Thus, the max is non-positive, and thus,

\[
f(V) \leq \frac{\log(|V|)}{H(\beta)}
\]

Thus, we have proved the statement by induction and this suffices to show that the total runtime is at most \(\log(n)/H(\beta)\).

\[
\square
\]

** Proposition 3.1. ** If a problem is k-neighborly and has a uniform prior, then the problem is k-split-neighborly.

Proof. In the case that \(k = 1\), \(|\Delta(x, x')| = 1\) so \(|V| \leq 1\) so the problem is 1-split-neighborly. Assume \(k > 1\). Note that any set of hypotheses must have a test that distinguishes at least one of the hypotheses (otherwise the hypotheses are the same). If two points \(x\) and \(x'\) in the k-neighborly graph have an edge between them, then \(|\Delta(x, x') \cup \Delta(x', x)| \leq k\), which implies \(|\Delta(x, x')| \leq k\), and thus either \(|\Delta(x, x')| \leq 1\) or there is a test with a 1/k split constant and thus there is an edge from \(x\) to \(x'\) in the k-split-neighborly graph. By a similar argument, there is also an edge from \(x'\) to \(x\). Since the k-neighborly graph is connected and each edge corresponds to a bidirectional edge in the k-split-neighborly graph, the k-split-neighborly graph is strongly connected and thus the problem is k-split-neighborly. \(\square\)

6.2 Value of \(k\)

6.2.1 Disjunctions

For the disjunctions problem, for \(m \geq 2, d \geq 2m,\)

\[
n = \sum_{i=1}^{m} \binom{d}{i}
\]

\[
k \geq \sum_{i=1}^{m} \binom{d - 1}{i - 1}
\]

\[
k \geq 1 + \sum_{i=1}^{m-1} \binom{d - 1}{i}
\]

\[
k^2 - n \geq 1 + 2 \sum_{i=1}^{m-1} \binom{d - 1}{i} + \left(\sum_{i=1}^{m-1} \binom{d - 1}{i}\right)^2
\]

\[- \sum_{i=1}^{m-1} \binom{d}{i} - \binom{d}{m}
\]

Note that \(2^{d-i} \geq \binom{d}{i}\) since \(i \leq m - 1 \leq d/2.\)

\[
k^2 - n \geq 1 + \left(\sum_{i=1}^{m-1} \binom{d - 1}{i}\right)^2 - \binom{d}{m}
\]

\[
\geq \left(\frac{d - 1}{m - 1}\right)^2 - \binom{d}{m}
\]

\[
\geq \left(\frac{d - 1}{m - 1}\right)(\binom{d - 1}{m - 1} - d/m)
\]

Since \(m \geq 2,\)

\[
\geq \left(\frac{d - 1}{1}\right) - d/2
\]

\[
\geq d/2 - 1
\]

\[
\geq m - 1
\]

\[
\geq 0
\]

Thus, \(k^2 - n \geq 0\) and so \(k \geq \sqrt{n}.\)

6.2.2 Monotonic CNF

Note that \(n = |H| = \frac{1}{n!}\left(\frac{d}{m, m, \ldots, m, d - lm}\right)\). All of the bit strings with strictly less than \(l\) ones will be trivially connected in the k-neighborly graph, because they yield 0 on all hypotheses. However, the closest test to connect them to the rest of the graph is the bit string \(1^{d-l} \in \mathcal{X}\), which disagrees on \((m-1, m-1, \ldots, m-1, d-lm)\) \(\leq k\) hypotheses. We examine the case where \(d \geq 2ml\) and \(m \geq 2.\)

For the monotonic CNF formulas, recall that

\[
n = \sum_{i=1}^{m} \binom{d}{i}
\]

\[
k \geq \sum_{i=1}^{m} \binom{d - 1}{i - 1}
\]

\[
k \geq 1 + \sum_{i=1}^{m-1} \binom{d - 1}{i}
\]

\[
k^2 - n \geq 1 + 2 \sum_{i=1}^{m-1} \binom{d - 1}{i} + \left(\sum_{i=1}^{m-1} \binom{d - 1}{i}\right)^2
\]

\[- \sum_{i=1}^{m-1} \binom{d}{i} - \binom{d}{m}
\]

Note that \(2^{d-i} \geq \binom{d}{i}\) since \(i \leq m - 1 \leq d/2.\)

\[
k^2 - n \geq 1 + \left(\sum_{i=1}^{m-1} \binom{d - 1}{i}\right)^2 - \binom{d}{m}
\]

\[
\geq \left(\frac{d - 1}{m - 1}\right)^2 - \binom{d}{m}
\]

\[
\geq \left(\frac{d - 1}{m - 1}\right)(\binom{d - 1}{m - 1} - d/m)
\]

Since \(m \geq 2,\)

\[
\geq \left(\frac{d - 1}{1}\right) - d/2
\]

\[
\geq d/2 - 1
\]

\[
\geq m - 1
\]

\[
\geq 0
\]

Thus, \(k^2 - n \geq 0\) and so \(k \geq \sqrt{n}.\)
For simplicity, define
\[\frac{n}{k^2} \leq \frac{(4c)}{(3c)^2} \]
and
\[= \frac{(4c)!l!c!}{(3c)!l!(3c)!} \]

Note that we have the common Stirling’s approximation,
\[\sqrt{2\pi n} n^{+1/2} e^{-n} \leq n! \leq en^{n+1/2} e^{-n} \]

Thus,
\[\frac{n}{k^2} \leq \frac{e^{3} \sqrt{c} (4c)^4 c^c c^c}{6\pi (3c)^{3c+1} (3c)^{3c+1} e^{6c}} \]
\[= \frac{e^{3} \sqrt{c} (256}{729)} \]
\[\leq 1 \]
for \(c \geq 1 \).

Thus, for \(d \geq 4 \),
\[\frac{n}{k^2} \leq 1 \]
\[k \geq \sqrt{n} \]

6.2.3 Discrete Linear Classifier

Recall that we are in the special case where \(d \) is divisible by 4, \(b = d/4 - 1 \) and there are an equal number of 1 and 0 weights \((d/2)\).

All tests with fewer than \(d/4 \) 1’s will yield a result of 0 for all hypotheses. The test with the next fewest hypotheses that yield 1 will be a test with exactly \(d/4 \) 1’s. Thus, \(k \) is at least the number of such hypotheses that yield 1.

\[n = \binom{d}{d/2} \]
\[k \geq \binom{3d/4}{d/4} \]

For simplicity, define \(c = d/4 \).

\[k \geq \binom{d-l}{m-1, \ldots, m-1, d-lm} \]

For \(d \geq 2ml \) and \(m \geq 2 \), \(k \geq \sqrt{n} \).

\[n = \frac{1}{l!} \binom{d}{m, \ldots, m, d-lm} \]
\[= \frac{1}{l!} \frac{d!}{(m!)^l (d-lm)!} \]
\[= \frac{(d-l)!}{(m-1)! (d-lm)!} \frac{1}{m!} \frac{d!}{(d-l)!^2} \frac{(d-l)!}{l!(d-2l)!} \]
\[\leq k \frac{1}{m!} \frac{d!}{(d-l)!^2} \binom{d-l}{l} \]

Since \(d \geq 2ml \geq 4l \),
\[n \leq k \frac{2^l}{m^{l}} \binom{d-l}{l} \]

Since \(d-l \geq 2l(m-1) \) and \(m \geq 2 \)
\[n \leq k \binom{d-l}{l(m-1)} \]
\[n \leq k \binom{d-l}{m-1, \ldots, m-1, d-lm} \]
\[n \leq k^2 \]
\[k \geq \sqrt{n} \]

6.3 Necessity of Dependencies

6.3.1 Linear classifiers on convex polygon data pool

For arbitrary data points where the points are not the vertices of a convex polygon, the linear classifier problem is not \(1/\alpha \)-split-neighborly for constant \(\alpha \). A counter-example is shown in Figure 8.

6.3.2 Disjunctions

The linear dependence on \(m \) for the disjunctions is necessary because of the case where \(d = m+1 \), and \(|\mathcal{H}| = d \) (each \(h \in \mathcal{H} \) lacking one variable). In this case, there are no tests with split constants of \(1/m \), so the problem cannot be better than \((m-2)\)-split-neighborly (recall coherence \(c = 1/2 \)).
Figure 8: A counterexample that shows a non-convex data pool need not be split-neighborly. Note that we can at most split off 1 of the n hypotheses by querying one of the points from the lower half. However, the problem has coherence close to 1/2 and thus it cannot be $1/\alpha$-split-neighborly for constant α.

6.3.3 Monotonic CNF

For the monotonic CNF problem, the linear dependence on m is necessary because of the case where $l = 1, d = m + 1$, and $|\mathcal{H}| = d$ (each $h \in \mathcal{H}$ lacking one variable). In this case, there are no tests with split constants of $1/m$, so the problem cannot be better than $(m - 2)$-split-neighborly (recall coherence $c = 1/2$). Furthermore, the linear dependence on l is necessary because of the problem where $m = 1, d = l + 1$, and $|\mathcal{H}| = d$ (each $h \in \mathcal{H}$ lacking one variable). For this problem, there are no tests with split constants of $1/l$, so the problem cannot be better than $(l - 2)$-split-neighborly. Thus, although the linear dependence on m and l is necessary, it may be possible to improve the constants.

6.3.4 Object Localization

For object localization with the axis-symmetric, axis-convex set S, the dependence on d is necessary because if we use the set $S = \{je_i : |j| \leq l, 1 \leq i \leq d\}$ and consider the set of hypotheses, $\{\pm le_i : 1 \leq i \leq d\}$, the problem has no test with split constant of $1/(d-1)$ but has coherence $c = 1/2$, so it can’t be $(2d - 3)$-split-neighborly.

6.4 Monotonic CNF

Theorem 4.2. The Conjunction of Disjunctions problem is $(m + 1 + 3(l - 1))$-split-neighborly.

Proof. We prove this theorem by induction on l. First, for the base case $l = 1$.

The test graph has an edge from x to x' if $||x - x'||_1 = 1$ (the bit strings differ in one location).

Let x^+ be the value of x or x' with more 1’s (and let x^- be the other one). Note that $|\Delta(x^+, x^-)| = 0$ so there is a directed edge (x^+, x^-).

For the other direction, fix a subset $V \subseteq \Delta(x^+, x^+)$.

Without loss of generality, let x^+ and x^- differ in the first coordinate so $x_1^+ = 1$ and $x_1^- = 0$ and $\forall i > 1: x_i^+ = x_i^-$. For a proof by contradiction, the problem is not $(m + 1)$-split-neighborly so that $|V| > 1$ and there is no test x such that $\mathbb{E}_{h \in V}[h(x)] \in [q, 1 - q]$, where $q = 1/(m + 1)$.

Let

$$\mathcal{X}^+ = \{x \in \mathcal{X} : \Pr_{h \in V}[h(x) = 1] > 1 - q\},$$

$$\mathcal{X}^- = \{x \in \mathcal{X} : \Pr_{h \in V}[h(x) = 1] < q\} = \mathcal{X} - \mathcal{X}^+.$$

Let x' be the the element of \mathcal{X}^- with the fewest 0’s and let the 0’s be at indices Z (note $1 \in Z$). If $|Z| < m$, then $h(x') = 1$ for all h since the disjunctions have m variables. But since $x' \in \mathcal{X}^-$, which is a contradiction.

Define $\{x^{(j)}\}_{j \in Z}$ to be the test resulting changing the jth bit of x' to a 1. By the minimal definition of x', $\forall j \in Z : x^{(j)} \in \mathcal{X}^+$. Thus, $|Z| = |Z'| = m + 1$. Then, from the definition of \mathcal{X}^+ and \mathcal{X}^-, $\Pr_{h \in V}[h(x') = 0 \land \forall j \in Z' : h(x^{(j)}) = 1] > 1 - (m + 1)q \geq 0$, which means $\Pr_{h \in V}[h \text{ includes variables } Z' \text{ } > 0]$. Therefore, there is a disjunction with at least $m + 1$ variables, which is a contradiction.

Thus, $|Z| = m$, so there is only one hypothesis such that $h(x') = 0$, the hypothesis with variables at Z. So $1/|V| > 1 - q$ (by definition of \mathcal{X}^-), which implies $|V| = 1$ since $q \leq 1/2$, which is a contradiction. Thus, by contradiction, the problem with $l = 1$ is $(m + 1)$-split-neighborly. For $l > 1$, we proceed by induction.

We can define the graph as above, define \mathcal{X}^- and \mathcal{X}^+ as above, and x' and Z as above. The same argument goes through that $|Z| = m$. Thus, $1 - q$ proportion of the hypotheses have a disjunction with variables at the indices Z. These hypotheses are simply another copy of the problem with $l - 1$ conjunctions and $d - m$ variables. Since that problem has $1/2$ coherence and is $m + 1 + 3(l - 2)$-splittable (by induction hypothesis), there exists some test with a split constant of $1/\frac{m + 1 + 3(l - 2) + 2}{m + 1 + 3(l - 1)}$ for a total split constant on the original problem of

$$(1 - q)\frac{1}{m + 1 + 3(l - 2) + 2} = \frac{1}{m + 1 + 3(l - 1)}.$$
Thus, the problem is $m + 1 + 3(l - 1)$-split-neighborly by induction.

6.5 Box Object Localization

Theorem 4.3. The object localization problem where S is a box is 4-split-neighborly.

Notationally, refer to z_h as the integer vector for the hypothesis h and $z_{h,i}$ to be its i^{th} component.

We begin by fixing two tests x and x' such that $||x - x'||_1 = 1$. Without loss of generality, let $x' - x = e_1$ where e_1 is the 1^{st} elementary vector. Since the box is axis symmetric, there exists radii $r_i \geq 0$ such that $x - z_h \in S \iff \forall i : |x_i - z_{h,i}| \leq r_i$. Without loss of generality, assume $x = (r_1, 0, 0, ..., 0)$ and $x' = (r_1 + 1, 0, 0, ..., 0)$. Recall $\Delta(x, x') = \{ h : h(x) = 0 \land h(x') = 1 \}$, this implies that $\Delta(x, x') = \{ h : z_{h,1} = 0 \land \forall i > 1 : |z_{h,i}| \leq r_i \}$. We will begin by fixing a subset $V \subseteq \Delta(x, x')$. As in all the application proofs, we will start by assuming by contradiction that there is no test with a split constant in the range $[q, 1 - q)$ where $q = 1/4$.

We will use this contradiction to show that the size of V is small, so that there is in fact a test with a split constant q which is a contradiction.

6.5.1 Majority Element

Fix a dimension i. Examine the tests $X_i = \{je_i : j = 0, ..., 2r_i + 1 \}$ and note that for $h \in V \subseteq \Delta(x, x')$, $h(je_i) = 1 [z_{h,i} \geq j - r_i]$.

By the contradiction assumption,

\[
\Pr_{h \in V} [h(je_i)] \notin [q, 1 - q]
\]

\[
\Pr_{h \in V} [z_{h,i} \geq j - r_i] \notin [q, 1 - q]
\]

Since $\Pr_{h \in V} [z_{h,i} \geq -r_i] = 1$ and $\Pr_{h \in V} [z_{h,i} \geq r_i + 1] = 0$, there must be some integer m_i such that

\[
\Pr_{h \in V} [z_{h,i} \geq m_i] > 1 - q
\]

\[
\Pr_{h \in V} [z_{h,i} \geq m_i + 1] < q
\]

which implies that

\[
\Pr_{h \in V} [z_{h,i} = m_i] > 1 - 2q
\]

Define thus, there exists a vector m such that there is a $1 - 2q$ probability that an hypothesis’ i^{th} component matches m.

6.5.2 Side Splits

Intuitively, we will create a sequence of tests that each remove at least half of the elements with the i^{th} component not equal to m. For each test in the sequence, the probability that the test yields 1 over the hypotheses in V must be greater that $1 - q$ so we can prove that there aren’t many elements that disagree with m at any component.

Here we recursively define sets S_i, B_i, and A_i. S_i will be defined in terms of B_i and B_i will be defined in terms of S_{i-1}.

Define $S_0 = V$ and for $i > 1$, $S_i = S_{i-1} - B_i$. Noting that we could reflect the i^{th} component about m_i, without loss of generality, suppose that

\[
\Pr_{h \in S_i} [z_{h,i} > m_i] \geq \Pr_{h \in S_i} [z_{h,i} < m_i]
\]

Define $B_i = \{ h \in S_{i-1} : z_{h,i} > m_i \}$ and $A_i = \{ h \in S_{i-1} : z_{h,i} < m_i \}$

Note that $|B_i| \geq |A_i|$. Further, there is a test $x^{(i)} = (-r_1, ..., -r_i, 0, ...0)$ such that $h(x^{(i)}) = 1 \iff h \in S_i$ and thus by the contradiction assumption,

\[
\frac{|S_i|}{|S|} \notin [q, 1 - q]
\]

However, since $\Pr_{h \in V} [z_{h,i} = m_i] > 1 - 2q$, $|B_i|/|V| < 2q$. We now prove by induction that $|S_i|/|V| > 1 - q$.

The base case is that $|S_1|/|V| > 1 - q$. As long as $q \leq 1/4$, since $|S_{i-1}|/|V| > 1 - q$ and $|B_i|/|V| < 2q$, $|S_i|/|S| > 1 - 3q \geq q$ (since $q = 1/4$) and thus by the contradiction assumption $|S_i|/|S| > 1 - q$.

Note that the B_i are disjoint because

\[
B_i \subseteq S_i = V - B_1 - B_2 - ... - B_{i-1}
\]

\[
|S_d| > (1 - q)|V|
\]

\[
|V - \bigcup_{i=1}^{d} B_i| > (1 - q)|V|
\]

\[
|V| - \sum_{i=1}^{d} |B_i| > (1 - q)|V|
\]

\[
q|V| > \sum_{i=1}^{d} |B_i|
\]
Define the set of elements $M' \subseteq V$ as the points with a component not equal to m. This is the union of all A_i and B_i,

$$|M'| = \bigcup_{i=1}^{d} A_i \cup \bigcup_{i=1}^{d} B_i$$

$$\leq \sum_{i=1}^{d} |A_i| + \sum_{i=1}^{d} |B_i|$$

$$\leq 2 \sum_{i=1}^{d} |B_i|$$

$$< 2q|V|$$

Also note that $|M'| \geq |V| - 1$ since there can only be one element that doesn’t disagree with any element of m. Thus,

$$|V| - 1 < 2q|V|$$

$$|V| < \frac{1}{1 - 2q}$$

Since $q \leq 1/3$, then this implies $|V| < 3$ so there is a test with a split of $1/3$, which is a contradiction. So in a proof by contradiction, the problem is 4-split-neighborly.

6.6 Convex, axis-symmetric Shape Object Localization

Theorem 4.4. If S is a bounded, axis-symmetric, axis-convex shape, the object localization problem is $(4d + 1)$-split-neighborly.

Proof. Let the test graph has an edge from x to x' if $|\|x - x'\|_1 = 1$.

Fix a subset $V \subseteq \Delta(x,x')$. Without loss of generality, let $x' = 0^d$. $V \subseteq \Delta(x,x') \subseteq \{h : h(x') = 1\} = \{h : z_h - x' \in S\} = \{h : z_h \in S\}$

For a proof by contradiction, the problem is not 4d+1-split-neighborly so that $|V| > 1$ and there is no test x such that $E_{h \in V}[h(x)] \in [q, 1 - q]$, where $q = 1/(4d + 1)$. Let

$$X^+ = \{x \in X : \Pr_{h \in V}[h(x) = 1] > 1 - q\}$$

$$X^- = \{x \in X : \Pr_{h \in V}[h(x) = 1] < q\} = X - X^+$$

Note that $x' = 0^d \in X^+$ since $V \subseteq \{h : h(x') = 1\} = \{h : h(x) = 1\}$. Fix a dimension i. Examine the set of tests $\{je_i : j \in \mathbb{Z}\}$. From above, $0e_i \in X^+$. Further, since $V \subseteq \{h : z_h \in S\}$ and since S is bounded, there exists some $B \in \mathbb{Z}$ such that $\pm Be_i \in X^-$. Thus there exists some $c_1 < 0, c_2 > 0$ such that $(c_1 - 1)e_i \in X^+, c_1 e_i \in X^+, c_2 e_i \in X^+, (c_2 + 1)e_i \in X^-$. From the definition of X^+ and X^-,

$$\Pr_{h \in V}[h((c_1 - 1)e_i) = 0, h(c_1 e_i) = 1, ... h(c_2 e_i) = 1, h((c_2 + 1)e_i) = 0] > 1 - 4q$$

Define $S_t = \{s_{-i} : s_i = l, s \in S\}$ to be the slices of S along axis i at location l. Therefore, $h(je_i) = 1 \leftrightarrow z_{h,1-i} \in S_{\Delta s_{-1}}$

Note that $S_{-l} = S_l$ since the shape S is axis-symmetric. Combining these three facts,

$$\Pr_{h \in V}[z_{h,-i} \in S_{\Delta s_{-1}} \cap S_{\Delta s_{-2}}] \cdots$$

$$\{S_{\Delta s_{-1}} \cup S_{\Delta s_{-2}}\}] > 1 - 4q$$

Note that for $l' > l \geq 0$, $S_{i,l'} \subseteq S_{i,l}$ because of axis-convexity. To see this, suppose there was $t \in S_{i,l'} \setminus S_{i,l}$, then there would be three elements $s_{l-1}, s_{l+1}, s_{l+2}$ such that $s_{l-1} = t$ and $s_{l+1} = l', s_{l+2} = l$, which would imply $s_{l-1} \in S, s_{l+1} \not\in S, s_{l+2} \in S$ which contradicts axis-convexity.

Thus, in order for the set composed of slices of S in the equation above to be non-empty,

$$|z_{h,i} - e_1|, |z_{h,i} - e_2| < |z_{h,i} - c_1 + 1|, |z_{h,i} - c_2 - 1|$$

it must be the case that $z_{h,i} = \frac{e_1 + e_2}{2} \in \mathbb{Z}$ which we define to be m_i. So,

$$\Pr_{h \in V}[z_{h,i} = m_i] > 1 - 4q$$

Repeating this argument for all dimensions and combining,

$$\Pr_{h \in V}\{z_{h,i} = m_i\} > 1 - 4dq$$

There is only one such element $z_h = m$ so

$$\frac{1}{|V|} > 1 - 4dq = 1 - 4d \frac{1}{4d + 1} = \frac{1}{4d + 1}$$

So $|V| < 4d + 1$ so there must be a split of at least q which is a contradiction. □
6.7 Discrete Binary Linear Classifiers

Theorem 4.5. The discrete binary linear classifier problem is max(16, 8r)-split-neighborly.

Define \(q = \min(\frac{1}{16}, \frac{1}{8r}) \)

Recall that for the Discrete Binary Linear Classifier case, we have hypotheses as a pair of vectors and threshold \(h = (w_h, b_h) \in \{-1, 0, 1\}^d \times \mathbb{Z} \) and tests as vectors \(\{0, 1\}^d \). Recall \(h(x) = \mathbb{I}[w_h \cdot x > b_h] \).

From the problem setting of Discrete Binary Linear Classifiers, we know that,

\[
\begin{align*}
 w_h^{(+)} - b &\leq r(w_h^{(-)} + b) - \frac{d}{8} \\
 w_h^{(-)} + b &\leq r(w_h^{(+)} - b - 1) - \frac{d}{8}
\end{align*}
\]

Recall \(w_h^{(+)} \) is the number of positive elements of \(w \) and \(w_h^{(-)} \) is the number of negative elements. Notationally \(w_{h,i} \) refers to the \(i \)th component of \(w_h \).

6.7.1 Key Lemma and its Sufficiency

We will first state a lemma and then prove that it implies the problem stated stated.

Lemma 6.3. Define

\[
\begin{align*}
 x^{(0)} &= (0, 0, ..., 0) \\
 x^{(1)} &= (1, 0, ..., 0) \\
 H' &= \{ h \in H : h(x^{(0)}) = 0 \land h(x^{(1)}) = 1 \land ... \\
 &\land w_h^{(+)} \leq r w_h^{(-)} - \frac{d}{8} \land ...
 \\
 &... \land w_h^{(-)} \leq r (w_h^{(+)} - 1) - \frac{d}{8} \}
\end{align*}
\]

For any subset \(V \subset H' \), there exists a test \(x \) such that \(\mathbb{E}_{h \in V}[h(x)] \in [q, 1 - q] \)

6.7.2 Proof of Theorem 4.5 from Lemma 6.3

We will prove Theorem 4.5 by a reduction to Lemma 6.3. To show that the problem is \(\frac{1}{16}-\text{split-neighborly} \), we need to show that for two tests with \(x \) and \(x' \) with \(||x - x'||_1 = 1 \) that for any subset \(V \subseteq \Delta(x, x') = \{ h : h(x) = 0 \land h(x') = 1 \} \), that \(|V| \leq 1 \) or there exists a test \(\hat{x} \) such that

\[
\Pr_{h \in V}[h(\hat{x}) = 1] \in [q, 1 - q]
\]

Note that by permuting the indices of \(x \) and \(x' \), we can make the first index the one that is different between \(x \) and \(x' \). Additionally, for the remaining indices we can flip the 0’s and 1’s of the test so long as we flip the non-zero entries of \(w_h \) at that same position, and change \(b_h \) accordingly. We flip the bits so that \(x \) becomes \(x^{(0)} \) and \(x' \) becomes \(x^{(1)} \).

Note that \(h(x^{(0)}) = 0 \) implies that \(0 \leq b_h \). Further note that \(h(x^{(1)}) = 1 \) implies that \(w_{h,1} > b_h \). Thus, the only possibility is that \(w_{h,1} = 1 \) and \(b_h = 0 \).

Let \(T_{+-} \) denote the number of flips from positive to negative weights and let \(T_{-+} \) denote the number of flips from negative to positive. Then, the weights for the new (reduction) problem will be

\[
\begin{align*}
 w_{new}^{(+)} &= w^{(+)} + T_{+-} - T_{-+} \\
 w_{new}^{(-)} &= w^{(-)} + T_{-+} - T_{+-} \\
 0 &= b_{new} = b - T_{+-} - T_{-+}
\end{align*}
\]

From the last equation, \(b = T_{+-} + T_{-+} \). Thus,

\[
\begin{align*}
 w_{new}^{(+)} &= w^{(+)} - b \\
 w_{new}^{(-)} &= w^{(-)} + b
\end{align*}
\]

Since,

\[
\begin{align*}
 w^{(+)} - b &\leq r(w^{(-)} + b) - \frac{d}{8} \\
 w^{(-)} + b &\leq r(w^{(+)} - b - 1) - \frac{d}{8}
\end{align*}
\]

then,

\[
\begin{align*}
 w_{new}^{(+)} &\leq r w_{new}^{(-)} - \frac{1}{8}d \\
 w_{new}^{(-)} &\leq r (w_{new}^{(+)} - 1) - \frac{1}{8}d
\end{align*}
\]

We can see that the hypothesis conditions for the original theorem imply that \(\Delta(x^{(0)}, x^{(1)}) \) is a subset of the hypotheses that satisfy the conditions based on \(w_{new}^{(-)} \) and \(w_{new}^{(+)} \) so Lemma 6.3 implies the binary linear classifier is \(\frac{1}{q}\text{-split-neighborly} \) which means max(16, 8r)-split-neighborly.

6.7.3 Proof of Lemma 6.3

The remainder of this is devoted to proving Lemma 6.3.

We begin by fixing a subset \(V \subseteq H' \). As in all the application proofs, we will start by assuming by contradiction that there is no test with a split constant in the range \([q, 1 - q]\). We will use this contradiction to show that the size of \(V \) is small.
Recall that $b_h = 0$ for all hypotheses in the reduced problem and $w_{h,1} = 1$. This follows from the fact that $h(x(0)) = 0$ and $h(x(1)) = 1$.

6.7.4 Majority Vector

Let e_i be an elementary vector with all entries 0 except for the i^{th} entry which is 1.

Lemma 6.4. There exists a vector $m \in \{-1, 0, 1\}^d$ such that $\forall i : m_i = 0 : \Pr_{h \in V}[w_{h,i} = m_i] \geq 1 - 2q$ and $\forall i : m_i \neq 0 : \Pr_{h \in V}[w_{h,i} = m_i] \geq 1 - q$

Proof. By the contradiction assumption, there isn’t a test with a split constant greater than q,

$$\Pr_{h \in V}[w_h \cdot e_i > b_h] \notin [q, 1 - q]$$

$$\Pr_{h \in V}[w_{h,i} > 0] \notin [q, 1 - q]$$

$$\Pr_{h \in V}[w_{h,i} = 1] \notin [q, 1 - q]$$

Also, by the contradiction assumption,

$$\Pr_{h \in V}[w_h \cdot (e_0 + e_i) > b_h] \notin [q, 1 - q]$$

$$\Pr_{h \in V}[1 + w_{h,i} > 0] \notin [q, 1 - q]$$

$$\Pr_{h \in V}[w_{h,i} \neq -1] \notin [q, 1 - q]$$

$$\Pr_{h \in V}[w_{h,i} = -1] \notin [q, 1 - q]$$

Since $\Pr_{h \in V}[w_{h,1} = 1] + \Pr_{h}[w_{h,i} = 0] + \Pr_{h}[w_{h,i} = 1] = 1$,

$$\Pr_{h \in V}[w_{h,i} = 0] \notin [q, 1 - 2q]$$

Thus, each index is either mostly 1, mostly 0, or mostly -1 for elements in S (since $q < 1/3$). Define $m \in \{-1, 0, 1\}^d$ such that

$$m_i = \text{argmax}_c \Pr_{h \in V}[w_{h,i} = c]$$

Also, recall,

$$\forall h \in V : w_h^{(-)} \leq r(w_h^{(+)} - 1) - \frac{1}{8}d$$

$$\mathbb{E}_{h \in V}[w_h^{(-)}] \leq r\mathbb{E}_{h \in V}[w_h^{(+)}] - qr \frac{1}{1 - q}$$

$$\text{Also, recall,}$$

$$\forall h \in V : w_h^{(-)} \leq r(w_h^{(+)} - 1) - \frac{1}{8}d$$

$$\mathbb{E}_{h \in V}[w_h^{(-)}] \leq r\mathbb{E}_{h \in V}[w_h^{(+)}] - qr \frac{1}{1 - q}$$

6.7.5 Ratio between $m^{(-)}$ and $m^{(+)}$

Note,

$$\mathbb{E}_{h \in V}[w_h^{(+)}] = \sum_{i=1}^{d} \Pr[w_{h,i} = 1]$$

$$\leq (q)(d - m^{(+)} + (1)m^{(+)}) = qd + (1 - q)m^{(+)}$$

$$m^{(+)} \geq \frac{1}{1 - q} (\mathbb{E}_{h \in V}[w_h^{(+)}] - qd)$$

Further note,

$$\mathbb{E}_{h \in V}[w_h^{(+)}] = \sum_{i=1}^{d} \Pr[w_{h,i} = 1]$$

$$\geq (0)(d - m^{(+)} + (1)m^{(+)}) = (1 - q)m^{(+)}$$

$$m^{(+)} \leq \frac{1}{1 - q} \mathbb{E}_{h \in V}[w_h^{(+)}]$$

We have similar equations for $m^{(-)}$ and $\mathbb{E}_{h \in V}[w_h^{(-)}]$.

Let \bar{m} be the vector of m without the first component.

Recall that we have

$$\forall h \in V : w_h^{(-)} \leq r(w_h^{(+)} - 1) - \frac{1}{8}d$$

$$\mathbb{E}_{h \in V}[w_h^{(-)}] \leq r\mathbb{E}_{h \in V}[w_h^{(+)}] - qr \frac{1}{1 - q}$$

$$\text{Also, recall,}$$

$$\forall h \in V : w_h^{(-)} \leq r(w_h^{(+)} - 1) - \frac{1}{8}d$$

$$\mathbb{E}_{h \in V}[w_h^{(-)}] \leq r\mathbb{E}_{h \in V}[w_h^{(+)}] - qr \frac{1}{1 - q}$$

Note that $m_1 = 1$.

\[\square\]
6.7.6 Partition

Let \vec{w} be the vector of w without the first component.

Definition 6.1. Let

- $\mathcal{X}^+ = \{x : \Pr_{h \in V} [\vec{w}_h \cdot x \geq 1] > 1 - q\}$
- $\mathcal{X}^0 = \{x : \Pr_{h \in V} [\vec{w}_h \cdot x = 0] > 1 - 2q\}$
- $\mathcal{X}^- = \{x : \Pr_{h \in V} [\vec{w}_h \cdot x \leq -1] > 1 - q\}$

Lemma 6.5. $\mathcal{X}^+, \mathcal{X}^0, \mathcal{X}^-$ is a partition of $\{0, 1\}^{d-1}$

Proof. Since $q \leq 1/4$ and the three defining events are mutually exclusive. It is clear that $\mathcal{X}^+, \mathcal{X}^0, \mathcal{X}^-$ are disjoint. Next we show that every point is in at least one of the sets. Suppose a point x is in neither \mathcal{X}^+ or \mathcal{X}^-. Using the contradiction assumption on the test $(0, x)$,

$$
\Pr_{h \in V} [\vec{w}_h \cdot (0, x) > 0] \not\in [q, 1 - q]
$$

$$
\Pr_{h \in V} [\vec{w}_h \cdot x > 0] \not\in [q, 1 - q]
$$

Using the contradiction assumption on the test $(1, x)$,

$$
\Pr_{h \in V} [\vec{w}_h \cdot (1, x) > 0] \not\in [q, 1 - q]
$$

$$
\Pr_{h \in V} [1 + \vec{w}_h \cdot x > 0] \not\in [q, 1 - q]
$$

Using the contradiction assumption on the test $(1, x)$,

$$
\Pr_{h \in V} [\vec{w}_h \cdot x \geq 0] \not\in [q, 1 - q]
$$

$$
\Pr_{h \in V} [\vec{w}_h \cdot x < 0] < q
$$

Combining these,

$$
\Pr_{h \in V} [\vec{w}_h \cdot x = 0] = 1 - \Pr_{h \in V} [\vec{w}_h \cdot x > 0] - \Pr_{h \in V} [\vec{w}_h \cdot x < 0]
$$

$$
> 1 - 2q
$$

Thus, $x \not\in \mathcal{X}^+$ and $x \not\in \mathcal{X}^-$ imply $x \in \mathcal{X}^0$ so the three sets are a partition.

Definition 6.2. Define \mathcal{X}^* to be every $x \in \{0, 1\}^d$ that $(\vec{m} + 1) \cdot x = (\vec{m} - 1) \cdot x$, where $(\vec{m} + 1)$ is the element-wise boolean function.

Intuitively, this means that there are as many ones of x in positions where $\vec{m} = 1$ as there are places where $\vec{m} = -1$.

Lemma 6.6. $\mathcal{X}^* \subseteq \mathcal{X}^0$

Proof. We prove this by induction on the number of 1’s in x for $x \in \mathcal{X}^*$.

The base case is $x = 0^d$ which is trivially in \mathcal{X}^0.

For other x, suppose $x_i = 1$ at a location where $m_i = 0$. Then we know $x - e_i \in \mathcal{X}^0$ by the induction hypothesis.

$$
\Pr_{h \in V} [\vec{w}_h \cdot (x - e_i) = 0] > 1 - 2q
$$

$$
\Pr_{h \in V} [\vec{w}_h \cdot e_i = 0] > 1 - 2q
$$

From these,

$$
\Pr_{h \in V} [\vec{w}_h \cdot x = 0] > 1 - 4q \geq q
$$

for $q \leq 1/5$. So $x \not\in \mathcal{X}^+ \cup \mathcal{X}^-$ and thus $x \in \mathcal{X}^0$.

The only other case is where $x_i = x_j = 1$ at locations where $m_i = 1$ and $m_j = -1$. Then we know $x - e_i - e_j \in \mathcal{X}^0$ from the induction hypothesis.

$$
\Pr_{h \in V} [\vec{w}_h \cdot (x - e_i - e_j) = 0] > 1 - 2q
$$

$$
\Pr_{h \in V} [\vec{w}_h \cdot e_i = 1] > 1 - q
$$

$$
\Pr_{h \in V} [\vec{w}_h \cdot e_j = -1] > 1 - q
$$

From these,

$$
\Pr_{h \in V} [\vec{w}_h \cdot x = 0] > 1 - 4q \geq q
$$

and similarly, $x \in \mathcal{X}^0$.

\Box

6.7.7 Probability Distribution

We now define a probability distribution over $x \in \mathcal{X}^*$. Without loss of generality, suppose $\vec{m}(+) \geq \vec{m}(-)$.

- Randomly draw an injection $f : \{i : \vec{m}_i = -1\} \rightarrow \{i : \vec{m}_i = 1\}$.
- Initialize $x = 0^{d-1}$
- For indices $\{i : \vec{m}_i \leq 0\}$, draw $x_i \sim$ bernoulli(1/2).
- For $\{i : \vec{m}_i = -1\}$, set $x_{f(i)} = x_i$

Note that the result $x \in \mathcal{X}^*$ because of the pairing f, there will be a 1 where $\vec{m}_i = 1$ for each 1 where $\vec{m}_i = -1$.

6.7.8 Set T

Definition 6.3. For the probability distribution,
\[Q(h) = \Pr_{x \in \mathcal{X}}[w_h \cdot x = 0] \]

Lemma 6.7. Let \(T = \{ h \in V : Q(h) > 1 - 4q \} \), then \(|V| > 5|T| \).

Proof. For \(x \in \mathcal{X}^\ast \), since \(\mathcal{X}^\ast \subseteq \mathcal{X}^0 \),
\[\Pr_{h \in V}[w_h \cdot x = 0] > 1 - 2q \]
\[\sum_{h \in V} \frac{1}{|V|} \sum_{x \in \mathcal{X}^\ast} P(x) \frac{1}{|V|} w_h \cdot x = 0 > 1 - 2q \]
\[\sum_{h \in V} \sum_{x \in \mathcal{X}^\ast} P(x) \frac{1}{|V|} w_h \cdot x = 0 > 1 - 2q \]
\[\sum_{h \in V} \frac{Q(h)}{|V|} > 1 - 2q \]
\[\frac{|T|}{|V|} (1 + \frac{|V| - |T|}{|V|} (1 - 4q)) > 1 - 2q \]
\[2|T| > |V| \]
\[\square \]

Lemma 6.8. \(|T| \leq 3 \)

Proof. Recall that \(\tilde{m}^{(+)} \leq r\tilde{m}^{(-)} \) and \(\tilde{m}^{(-)} \leq r\tilde{m}^{(+)} \)
as well

Also \(1 - 4q \geq 1 - \min(\frac{1}{4}, \frac{1}{2r}) \) since \(q \leq \min(\frac{1}{8}, \frac{1}{2r}) \)

For any \(t \in T \), \(Q(t) > 1 - 4q \geq 1 - \min(\frac{1}{4}, \frac{1}{2r}) \). Define \(\text{Ber}(1/2) \) to be a Bernoulli random variable.

\[\Pr_{x \in \mathcal{X}^\ast}[w_t \cdot x = 0] > 1 - \min(\frac{1}{4}, \frac{1}{2r}) \]
\[\mathbb{E}_f[\Pr[\sum_{i: m_i = 0} w_t,i \text{Ber}(1/2) + ... } \]
\[\sum_{i: m_i = 0} (w_t,i + w_t,f(i)) \text{Ber}(1/2)] = 0] > 1 - \min(\frac{1}{4}, \frac{1}{2r}) \]

Note that
\[\Pr[\sum_{i: m_i = 0} w_t,i \text{Ber}(1/2) + ... } \]
\[\sum_{i: m_i = 0} (w_t,i + w_t,f(i)) \text{Ber}(1/2)] = 0] \leq \frac{1}{2} \]

unless \(\forall i : m_i = 0 : w_{t,i} = 0 \) and \(\forall i : m_i = -1 : w_{t,i} + w_{t,f(i)} = 0 \), call this condition \((t, f)\).

\[\mathbb{E}_f[\Pr[\text{condition}(t, f)] + ... } \]
\[\frac{1}{2}(1 - \text{condition}(t, f))] > 1 - \min(\frac{1}{4}, \frac{1}{2r}) \]
\[\Pr[\text{condition}(t, f)] > 1 - \min(\frac{1}{2}, \frac{1}{r}) \]

If \(\tilde{m}^{(-)} = 0 \), then \(\tilde{m}^{(+)} = 0 \), and thus \(\forall i : m_i = 0 : w_{t,i} = 0 \) so \(\forall t \neq 0^d \) and \(|T| = 1 \leq 3 \).

Note that \(\Pr_f[\text{condition}(t, f)] > 1/2 \) implies that \(\forall i : m_i = 0 : w_{t,i} = 0 \).

Lemma 6.9. If there exists \(i, j \) such that \(m_i = m_j = -1 \), then \(w_{t,i} = w_{t,j} \).

Proof. \(\Pr_f[\text{condition}(t, f)] > \frac{1}{2} \) means that

\[\Pr_f[w_{t,i} = -w_{t,f(i)}] > \frac{1}{2} \]
\[\Pr_f[w_{t,j} = -w_{t,f(j)}] > \frac{1}{2} \]

so

\[\frac{|l : m_i = 1 \land w_{t,i} = -w_{t,j}|}{|l : m_i = 1\}} > \frac{1}{2} \]
\[\frac{|l : m_i = 1 \land w_{t,i} = -w_{t,j}|}{|l : m_i = -1\}} > \frac{1}{2} \]

which is only possible if \(w_{t,i} = w_{t,j} \).

\[\square \]

Thus, there is some \(c \in \{ -1, 0, 1 \} \) such that \(\forall i : m_i = 1 : w_{t,i} = c \).

\[\Pr_f[\text{condition}(t, f)] < \frac{1}{r} \]
\[\Pr_f[\forall i : m_i = -1 : w_{t,f(i)} = -c] > 1 - \frac{1}{r} \]
\[1 - \Pr_f[\exists i : m_i = -1 : w_{t,f(i)} = -c] > 1 - \frac{1}{r} \]
\[\Pr_f[\exists i : m_i = -1 : w_{t,f(i)} = -c] < \frac{1}{r} \]

Suppose \(\exists j : m_j = 1 : w_{t,j} = -c \),

\[\Pr_f[\exists i : m_i = -1 : f(i) = j] = \frac{1}{r} \]

which is a contradiction. So \(\forall j : m_j = 1 : w_{t,j} = -c \).
Thus, c completely determines t. Since there are three options for c, there are three options for t, and $|T| \leq 3$.

Since $|T| \leq 3$ and $2|T| \geq |V|$, $|V| \leq 6$. Thus, there is a split of $1/6$ which is a contradiction since $q \leq \frac{1}{5}$. Thus, the lemma is proved. And thus the binary linear classifier problem is split-neighborly.