Generalized Binary Search For Split-Neighborly Problems

6 Appendix

6.1 Split-neighborly proofs

Theorem 3.2. If a problem is 1/a-split-neighborly and
has a coherence parameter of ¢, for

. 1
S = min(c, Tt 2)
GBS has a worst case query cost of at most %

and GBS has an average query cost of at most }fl’%ﬁn)

where H(p) is the entropy of a Bernoulli(p) random
variable

Proof. This theorem will follow from the next three
lemmas. O

Lemma 3.1. If a problem is 1/a-split-neighborly and
has a coherence parameter of c, then for any V C H,
|[V| <1 or there exists a test x € X such that

Enev[h(z)] € [,1 - f]

where B is defined as above.

Proof. Fix a subset V' C H. Assume |V| > 1, other-
wise we are done.

From the assumption, we have a coherence parameter
of

c>p

From the definition, this means that there exists a
probability distribution on the tests P such that for
any hypothesis h,

> P(x)

zeX

Bal_ﬂ]

Since this is true for all h € H, this is also true for all
convex combinations. Thus,

EhEV ZP [/871_6]
> P(@)Bhev[h(z)] € [8,1 - f]

zeX

For simplicity, define the split constant S(x) =
EhEV[h(l‘)}' ThllS,

> P(z)

zeX

ﬂal_ﬁ]

There are two possibilities, either there exists a test x
such that

S(z) = Enev[h(z)] € [8,1 - f]

in which case, this is the exact conclusion statement
and we are done, or that there exists no test with a
split constant in [3,1 — 8]. If there exists no test with
a split constant in [3,1 — ] but the weighted combi-
nation is in [8,1 — ], then there exists tests x and

such that S(z) < g and S(z’') > 1—p

Since the problem is 1/a-split neighborly, there exists a
graph over the tests that is strongly connected. Thus,
there is a path from z to z’. Since S(z) < B and
S(z') > 1 — f and since Vo’ € X : S(2”) ¢ [8,1 — [,
there must be an edge (g, z1) along the path where
S(zg) < p and S(z1) > 1 — 5. Thus,

hlzl‘"/[h(l‘o) = 1] = Enev[h(z0)] < B
Pr [h(z1) = 1] = Epev[h(z1)] > 1 -8

heV

Combining these two yields,

Pr [h(zo) =0 A h(z1) =1] >

1-2
heVv ﬁ

Recall A(zg,x1) = {h € H : h(zo) =0,h(x1) =1}

Pr[he Ay, o) > 128

|V n A(Io,fﬂl)‘

>1-28
V]

Recall from the definition of 3 that ﬁ > 3. Thus

™

1 1
1-283>1-2 _ Y > L2
1/a+2 1/oz+2 (07

Thus,

VN Ao, 21)l B
V] a

For brevity, define A = A(zo,x1). Since there is an
edge (29, x1) in the l/a-neighborly graph, for any sub-
set including VN A C A, either |[VNA| <1 or there
exists a test & such that,
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Ehe\/mA[h(iﬁ)] S [Ol7 1-— a]

First, [VNA| # 0, since |V] > 1 and w > g

If [V N Al =1, then, MOSEeml > 8 and V]| >
1 so % > Ii‘lf\ > g > (. Since the hypotheses are

identifiable, any pair of hypotheses yield a different
result on some test, so we can always find a test with
a split constant of at least i and this implies the
result of the theorem.

V K

In the other case, where |V N A| > 1, we have all the
necessary pieces and it’s just a matter of crunching the
algebra.

Lnev MUE)

EhEV[h(‘%)] |V|
 Shevos h)
- 4
. 2nevna M(#)
Ta  |VNA|
> gEheVmA[h(i)]
>0 -5
a
Additionally,
1 2onev M(#)
EhEV[h(x)] - |V|
_ 2nevna (@) + 2 e a M)
V]
< (L=a)[V A+ X hevna h(E)
- 14
< (I—-a)|VNA|+|V]|—|VNA]
- 14
[V NA
<1-
- 14
<1- aé =1-p
a
Thus, we have that
Enev[h(2)] € [8,1 - B

which is the conclusion of the lemma.

Lemma 6.1. If, for any V. C H, |V| < 1 or there
exists a test x € X such that

Enev[h(z)] € [3,1 - F]

then GBS has a worst case query cost of at most
logn
log(115)

Proof. After m queries, there are at most max(1, (1 —
B)™n) remaining hypotheses since greedy will choose
a test with a split constant of at least 8 (a split with
respect to the hypotheses without a prior) and will ter-
minate when there is a single hypothesis. Thus, when
(1 — B)™n < 1, the algorithm must have terminated.

Rearranging, we see that when m > logn__ the al-
log(1=5)

gorithm must have terminated. This means that the
worst case query cost must be at most 1 logn O

g(m)
Lemma 6.2. If, for any V. C H, |V| < 1 or there
exists a test x € X such that

Enev[h(x)] € 8,1 f]
logn

then GBS has an average query cost of at most i)

where H(p) is the entropy of a Bernoulli(p) random
variable

Proof. Define H(p) as the entropy of a Bernoulli ran-
dom variable with probability p.

fv)

= Elaverage queries remaining while at subset V]
(1)

We will prove by induction on increasing subsets that

log(|V])
H(B)

Note that the base case is that f({h}) = 0 because
we are done when there is just one hypothesis left.
Note that this suffices to show that the total runtime
is log(n)/H(B) because |V| = n at the beginning of
the algorithm.

fV) < (2)

Let A, B be a partition of V based on a test split.
Without loss of generality, let |A] < |B|, so |4] <
1/2|]V|. Based on the recursive definition of cost and
there is a test with a split constant of at least 8 (so
GBS will choose a test with a split constant of at least

ﬁ)7

Al
~ AB IAI/\V\E[B 2] V|

A pay + Bl ey 41
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From the induction hypothesis,

X@log|A| |B| log |B|
VI H(B) V| H(B)
- max . |7 |A| + }5} log |B| + H(ﬁ)
- H(B)
B max %log%-kﬁlog%‘i‘ﬂv(ﬁ)"'bg‘w
- H(pB)
_ max. —H(%) + H(B) +log |V|
- H(B)

Note that since [4l/|v| € [5,1/2] (the condition of the
max), H(%) > H(B). Thus, the max is non-positive,
and thus,

log(IV'])

) < 5

Thus, we have proved the statement by induction and
this suffices to show that the total runtime is at most

log(n)/H ().
O

Proposition 3.1. If a problem is k-neighborly and has
a uniform prior, then the problem is k-split-neighborly.

Proof. In the case that k =1, |A(z,2')|=1s0 |[V| < 1
so the problem is 1-split-neighborly. Assume k& > 1.
Note that any set of hypotheses must have a test that
distinguishes at least one of the hypotheses (otherwise
the hypotheses are the same). If two points z and
2’ in the k-neighborly graph have an edge between
them, then |A(z,2) U A(2’,2z)| < k, which implies
|A(z,z")| <k, and thus either |A(z,2)] <1 or there
is a test with a 1/k split constant and thus there is
an edge from z to z’ in the k-split-neighborly graph.
By a similar argument, there is also an edge from z’
to x. Since the k-neighborly graph is connected and
each edge corresponds to a bidirectional edge in the
k-split-neighborly graph, the k-split-neighborly graph
is strongly connected and thus the problem is k-split-
neighborly. O

6.2 Value of &
6.2.1 Disjunctions

For the disjunctions problem, for m > 2,d > 2m,

%)

m d
=3 (1)
=1

m—1

k21+z<d;1>

Note that 2(d;1) > (‘j) since i <m —1<d/2.

K2 _n> 1+(n§_:1 <d;1>)2_ (i)
= (o) ()
> () o

Since m > 2,
> (d;l) dj2

>d/2—-1
>m-—1

>0
Thus, k? —n > 0 and so k > \/n.

6.2.2 Monotonic CNF

Note that n = |H| = %(m’m" iﬂ,dflm>' All of the
bit strings with strictly less than [ ones will be triv-
ially connected in the k-neighborly graph, because
they yield 0 on all hypotheses. However, the clos-
est test to connect them to the rest of the graph
is the bit string 109! € X, which disagrees on

=l ) < k hypotheses. We examine

(mfl,mfl,...,mfl,dflm

the case where d > 2ml and m > 2.

For the monotonic CNF formulas, recall that

1 d
n=IHl= l!(m,m,...,m,d lm)
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d—1
k>
“\m—-1m-1,...m—1,d—1Im

For d > 2ml and m > 2, k > \/n.

d—1
<k
m—1m—1,...m—1,d—1Im/) —

and

1 d
T m,m,...,m,d—Im

1 d!
U (mD(d — Im)!

B (d—1)! 1dl(d—20)! (d—1)!

T (m=DYd—Im)!m! (d—D)12 I(d—20)!

1 d(d—20) (d—1
Skmlw—nw( z)

Since d > 2ml > 41,
l _
n < k2— <d l)
m! l
Since d — 1 > 2I(m
d—1
<
"<k 1)

<k d=1
"= m—1m-—1,...m—1,d—1Im

n < k?
kE>n

6.2.3 Discrete Linear Classifier

—1) and m > 2

Recall that we are in the special case where d is divis-
ible by 4, b = d/4 — 1 and there are an equal number
of 1 and 0 weights (d/2).

All tests with fewer than d/4 1’s will yield a result of
0 for all hypotheses. The test with the next fewest
hypotheses that yield 1 will be a test with exactly d/4
1’s. Thus, k is at least the number of such hypotheses

that yield 1.
([ d
"= a2
3d/4
>
v ()

For simplicity, define ¢ = d/4.

_ (4e)lele!
~ (30)!(3¢)!

Note that we have the common Stirling’s approxima-
tion,

V2rnt1/2e

-n < n < enn+1/26—n
Thus,

n 63(40)4c+1/2Cc+1/260+1/26_60

k2 = 27(3c)3c+1/2(3¢)3c+1/2¢—6c

263\/’(40)4& C e
~ 67(3c)3¢(3c)3¢

_ 63 ﬁ44c
- 3m3Be3se

—f»/Y

<1

729>

for ¢ > 1.

Thus, for d > 4,

6.3 Necessity of Dependencies

6.3.1 Linear classifiers on convex polygon
data pool

For arbitrary data points where the points are not
the vertices of a convex polygon, the linear classifier
problem is not 1/a-split-neighborly for constant «. A
counter-example is shown in Figure 8.

6.3.2 Disjunctions

The linear dependence on m for the disjunctions is
necessary because of the case where d = m + 1, and
|H| = d (each h € H lacking one variable). In this
case, there are no tests with split constants of i, so the
problem cannot be better than (m—2)-split-neighborly
(recall coherence ¢ = 1/2).
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Figure 8: A counterexample that shows a non-convex
data pool need not be split-neighborly. Note that we
can at most split off 1 of the n hypotheses by querying
one of the points from the lower half. However, the
problem has coherence close to 1/2 and thus it cannot
be 1/a-split-neighborly for constant c.

6.3.3 Monotonic CNF

For the monotonic CNF problem, the linear depen-
dence on m is necessary because of the case where
Il=1,d=m+1, and |H| = d (each h € H lacking
one variable). In this case, there are no tests with split
constants of %, so the problem cannot be better than
(m — 2)-split-neighborly (recall coherence ¢ = 1/2).
Furthermore, the linear dependence on [ is necessary
because of the problem where m =1, d =1+ 1, and
|H| = d (each h € H lacking one variable). For this
problem, there are no tests with split constants of %,
so the problem cannot be better than (I — 2)-split-
neighborly. Thus, although the linear dependence on
m and [ is necessary, it may be possible to improve the
constants.

6.3.4 Object Localization

For object localization with the axis-symmetric, axis-
convex set .S, the dependence on d is necessary because
if we use the set S = {je; : |j| < 1,1 < i < d} and
consider the set of hypotheses, {+le; : 1 < i < d}, the
problem has no test with split constant of ﬁ but
has coherence ¢ = 1/2, so it can’t be (2d — 3)-split-
neighborly.

6.4 Monotonic CNF

Theorem 4.2. The Conjunction of Disjunctions prob-
lem is (m + 14 3(1 — 1))-split-neighborly.

Proof. We prove this theorem by induction on [. First,
for the base case [ = 1.

The test graph has an edge from z to 2’ if ||[x—2'||; = 1
(the bit strings differ in one location).

Let ™ be the value of z or 2’ with more 1’s (and let

2~ be the other one). Note that |[A(zT,27)| = 0 so
there is a directed edge (zT,z7).

For the other direction, fix a subset V' C A(z~,z™).
Without loss of generality, let ™ and z~ differ in the

first coordinate so 27 = 1 and 27 = 0 and Vi > 1 :

+ -

For a proof by contradiction, the problem is not (m +
1)-split-neighborly so that |V| > 1 and there is no
test x such that Epcy[h(x)] € [g,1 — q], where ¢ =
1/(m+1).

Let

X+:{xe2c;h12rv[h(x):1]>1—q},

X_:{xeX:hfg/[h(x)zl}<q}=X—X+.

Let 2’ be the the element of X'~ with the fewest 0’s and
let the 0’s be at indices Z (note 1 € Z). If |Z| < m,
then h(z") =1 for all h since the disjunctions have m
variables. But since 2’ € X', which is a contradiction.

Define {x(j)}jez to be the test resulting changing the
4t bit of 2’ to a 1. By the minimal definition of 2,
Vje Z:zU) e xt,

Suppose |Z| > m. Take a subset Z’ C Z such
that |Z'| = m 4+ 1. Then, from the definition
of X* and X~, Prpev[h(z’) = 0AVY)] € Z
h(z) = 1] > 1 — (m + 1)g > 0, which means
Prpev[h includes variables Z’] > 0. Therefore, there
is a disjunction with at least m + 1 variables, which is
a contradiction.

Thus, |Z| = m, so there is only one hypothesis such
that h(z’) = 0, the hypothesis with variables at Z.
So 1/|V] > 1 — g (by definition of X~), which implies
|[V| =1 since ¢ < 1/2, which is a contradiction. Thus,
by contradiction, the problem with [ = 1 is (m + 1)-
split-neighborly. For I > 1, we proceed by induction.
We can define the graph as above, define X~ and X'+
as above, and 2’ and Z as above. The same argument
goes through that |Z| = m. Thus, (1 — ¢) proportion
of the hypotheses have a disjunction with variables at
the indices Z. These hypotheses are simply another
copy of the problem with [ —1 conjunctions and d —m
variables. Since that problem has 1/2 coherence and
is m + 1 + 3(I — 2)-splittable (by induction hypoth-
esis), there exists some test with a split constant of

L for a total split constant on the original

m143(1—2)+2
problem of

1 1

1— -
) 30— 2 12  mr1430-1)
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Thus, the problem is m + 1 + 3(I — 1)-split-neighborly
by induction. O

6.5 Box Object Localization

Theorem 4.3. The object localization problem where
S is a box is 4-split-neighborly.

Notationally, refer to z;, as the integer vector for the
hypothesis h and z;; to be its it" component.

We begin by fixing two tests x and ' such that ||z —
2'||1 = 1. Without loss of generality, let 2/ — z = e;
where e; is the 15! elementary vector. Since the box
is axis symmetric, there exists radii r; > 0 such that
x—zp €8 ¢ Vi |z — zn,l < r;. Without loss of
generality, assume x = (r1,0,0,...,0) and 2’ = (r1 +
1,0,0,...,0). Recall A(z,z') = {h: h(z) =0AR(z) =
1}, this implies that A(z,z’) = {h : 21 = 0A Vi >
1:|2n4] < 1} We will begin by fixing a subset V' C
A(x,2’). Asin all the application proofs, we will start
by assuming by contradiction that there is no test with
a split constant in the range [¢,1 — ¢] where ¢ = 1/4.
We will use this contradiction to show that the size of
V' is small, so that there is in fact a test with a split
constant ¢ which is a contradiction.

6.5.1 Majority Element

Fix a dimension i. Examine the tests X; = {je; :
j=0,..,2r; + 1} and note that for h € V C A(x,z'),
h(jei) = Lzpi = j — ra.

By the contradiction assumption,

Enev[h(jei)] & [a,1 — q

P > i 1—
hel‘"/[zh,z >j—ri]élq,1—4q

Since Prpey [zn,; > —ri] = 1 and Prpev(zn,; > ri+1] =

0, there must be some integer m; such that

P > my > 1 —
Pl > mi] > 1- g
Pr[zp: > m; +1] < ¢
hev

which implies that
P i=my>1-2
P [2h,; = my] > q

Define thus, there exists a vector m such that there is
a 1 —2¢ probability that an hypothesis’ i*" component
matches m.

6.5.2 Side Splits

Intuitively, we will create a sequence of tests that each
remove at least half of the elements with the i*"* com-
ponent not equal to m. For each test in the sequence,
the probability that the test yields 1 over the hypothe-
ses in V' must be greater that 1 — ¢ so we can prove
that there aren’t many elements that disagree with m
at any component.

Here we recursively define sets S;, B;, and A;. .S; will
be defined in terms of B; and B; will be defined in
terms of S;_1.

Define So = V and for i > 1, S; = S;_1 — B;. Not-
ing that we could reflect the i** component about m;,
without loss of generality, suppose that

P

) 1> P . .
hegi [Zhﬂ > ml] - hégi [Zhﬂ < ml]

Define B, = {h € S;_1
Si—1t 2ni < mg}

Note that | B;| > |A;|.

s zps > myp and A; = {h €

Further, there is a test (¥ = (=71, ..., —r;,0, ...0) such
that h(z()) = 1 < h € S; and thus by the contradic-
tion assumption,

|Si
S|

g[(b]-*(ﬂ

However, since Prpev[zn: = mi] > 1 —2q, |B;|/|V] <
2¢q. We now prove by induction that |S;|/|V]| > 1 —q.
The base case is that |S1]/|V]|=1>1—¢. Aslong as
q < 1/4, since |S;—1]/|V| > 1 — q and |B;|/|V] < 2g,
[Si|/1S| > 1 —3q > ¢ (since ¢ = 1/4)and thus by the
contradiction assumption |S;|/|S] > 1 — q.

Note that the B; are disjoint because

BiQSi:V—Bl—BQ—...—Bi_l
|Sal > (1 = g)[V]
d
V-] Bil>1-qlV]
i=1
d
VI=IBil > (1= q)V]
i=1

d
alV|> " |Bil
i=1
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Define the set of elements M’ C V as the points with
a component not equal to m. This is the union of all
Ai and Bi,

d d
M| = JAiuBil
=1 =1
d

d
<Y A+ B
i=1

i=1

d
<2 |B|
i=1
< 2q|V|

Also note that [M’| > |V| — 1 since there can only be
one element that doesn’t disagree with any element of
m. Thus,

V=1 <2qV|
1

14

Since ¢ < 1/3, then this implies |V| < 3 so there is
a test with a split of 1/3, which is a contradiction.
So in a proof by contradiction, the problem is 4-split-
neighborly.

6.6 Convex, axis-symmetric Shape Object
Localization

Theorem 4.4. If S is a bounded, azis-symmetric,
azxis-convex shape, the object localization problem is
(4d + 1)-split-neighborly.

Proof. Let the test graph has an edge from z to x’ if
||z —a'|]s = 1.

Fix a subset V C A(x,2’). Without loss of generality,
let 2/ = 0% V C A(z,2') C {h: h(z') =1} = {h:
zn—a' €St ={h:z, €S}

For a proof by contradiction, the problem is not 4d+1-

split-neighborly so that |V| > 1 and there is no test x
such that Epev [h(x)] € [¢,1—q], where ¢ = 1/(4d+1).

Let

X" ={reX: Prihz)=1>1-g}

.)(_:{aceXzhlg"/[h(x)zl]<q}:X—2(+

Note that 2/ = 0¢ € X* since V. C {h: h(z') = 1}.

Fix a dimension ¢. Examine the set of tests {je; : j €
Z}. From above, Oe; € Xt. Further, since V C {h :

zn, € S} and since S is bounded, there exists some
B € Z such that +Be; € X~. Thus there exists some
c1 < 0,¢3 > 0 such that (¢c; —1)e; € X7, cre; € X,
c2e; € X, (ca + 1)e; € X7. From the definition of
Xt and X,

hlzI"/[h((Cl - 1)61) = 0, h(clei) = 1,

h(Cgei) =1, h((CQ + 1)61) = 0] >1—4q

Define S; = {s_; : s; = 1,5 € S} to be the slices of
S along axis 4 at location I. Therefore, h(je;) = 1 <
Zh,—i € SZh,i*j'

Note that S_; = S since the shape S is axis symmet-
ric. Combining these three facts,

h}él{/[zh,—i € S\Zh,i*01| N S‘Zh,i702| \

\(S)zni—(er—1) U Sjzni—(ea+1))] > 1 —4q

Note that for I’ > 1 >0, S;;y C S;; because of axis-
convexity. To see this, suppose there was ¢t € S; \
Si1, then there would be three elements s(=1 5(0) (1)
such that s(fl) =t and sl(._l) = —l’,sz(.o) = l,sz(.l) =1,
which would imply s € §,50) ¢ §,5s() € S which
contradicts axis-convexity.

Thus, in order for the set composed of slices of S in
the equation above to be non-empty,

|2hi — c1l, |2n,i — c2| <|zni —c1 + 1], |zn, — ca — 1]

it must be the case that z,; = % € 7 which we
define to be m;. So,

Przp; =mi] >1—4
Eyleni =mi] > 1~ dg

Repeating this argument for all dimensions and com-
bining,

Pr [Vi:zn, =m;] >1—4dg
hev

There is only one such element 2z, = m so

1 1
1 —ddg=1—4dd— —
> e d+1 dd+1

1

Vi
So |V| < 4d + 1 so there must be a split of at least ¢
which is a contradiction.

O
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6.7 Discrete Binary Linear Classifiers

Theorem 4.5. The discrete binary linear classifier
problem is max(16, 8r)-split-neighborly.

Define g = min(%7 é)

Recall that for the Discrete Binary Linear Classifier
case, we have hypotheses as a pair of vectors and
threshold h = (wp,bs) € {—1,0,1}¢ x Z and tests
as vectors {0,1}%. Recall h(z) = 1[wy, - x > by].

From the problem setting of Discrete Binary Linear
Classifiers, we know that,

_ d
wéﬂfbgr(w,a )er)fg
(=) (+) d

wy,  +b < r(w, —b—l)—g

Recall w) is the number of positive elements of w and
w(~) is the number of negative elements. Notationally
wp,; refers to the it" component of wy,.

6.7.1 Key Lemma and its Sufficiency

We will first state a lemma and then prove that it
implies the problem stated stated.

Lemma 6.3. Define
2© =(0,0,...,0)
M = (1,0,...,0)
H ={he H:h(z®=0AhzD)=1A..

_ d
/\w,(l+) < rw( ) _ 3 AN
_ d
. /\w,(L ) < r(w,(f) —-1) - g}

For any subset V.C H', there exists a test x such that
Enev[h(z)] € ;1 —q]

6.7.2 Proof of Theorem 4.5 from Lemma 6.3

We will prove Theorem 4.5 by a reduction to Lemma
6.3. To show that the problem is 1/a-split-neighborly,
we need to show that for two tests with x and a’ with
[lz — 2'||s = 1 that for any subset V C A(z,2') = {h:
h(z) = 0A h(z’) = 1}, that |V| < 1 or there exists a
test  such that

Pr[h(@)=1] € g1~

Note that by permuting the indices of z and z’, we can
make the first index the one that is different between z
and z’. Additionally, for the remaining indices we can

flip the 0’s and 1’s of the test so long as we flip the non-
zero entries of wy, at that same position, and change
by, accordingly. We flip the bits so that z becomes z(?)
and z’ becomes z(1).

Note that h(z(®)) = 0 implies that 0 < bj,. Further
note that, h(z(M) = 1 implies that wp,1 > by. Thus,
the only possibility is that wp 1 =1 and b, = 0.

Let T, _ denote the number of flips from positive to
negative weights and let 7_, denote the number of
flips from negative to positive. Then, the weights for
the new (reduction) problem will be

wfgl)u =™ 4 T -T,_

w) =) 4 T —T_ .,

new

Ozbnew:b—T+_+T_+

From the last equation, b =T, _ —T_,. Thus,

w®) = b

new

W) — w4

new

Since,
(+) -) d
w' —b < 7w +b) - 3
=) (+) d
w4+ b<r(w _b_l)_§
then,
(+) -) _ L
Wy ew < TWpew — =d
8
-) (+) 1
Wpew S T(wnew 1) gd

We can see that the hypothesis conditions for the orig-
inal theorem imply that A(z(®), (1) is a subset of the

hypotheses that satisfy the conditions based on whets

and wSLQU so Lemma 6.3 implies the binary linear clas-
sifier is 1/g-split-neighborly which means max(16, 8r)-

split-neighborly.

6.7.3 Proof of Lemma 6.3

The remainder of this is devoted to proving Lemma
6.3

We begin by fixing a subset V' C H’. As in all the
application proofs, we will start by assuming by con-
tradiction that there is no test with a split constant in
the range [q,1 — ¢]. We will use this contradiction to
show that the size of V is small.
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Recall that by, = 0 for all hypotheses in the reduced

problem and wy,,; = 1. This follows from the fact that
h(z(®) =0 and h(z(™M) = 1.

6.7.4 Majority Vector

Let e; be an elementary vector with all entries 0 except
for the i*" entry which is 1.

Lemma 6.4. There exists a vector m € {—1,0,1}4
such that Yi: m; = 0 : Prypey|wn,; = my] > 1—2q and
Vi:m; #0: Prpeviwp, =my] >1—¢q

Proof. By the contradiction assumption, there isn’t a
test with a split constant greater than g,

P fwn - e > by] & [g,1 =]
hlzl"/[wh,i >0/ ¢ [g,1—q]
h]-:e)r"/[ws,i = 1] ¢ [q7 1-— q]

Also, by the contradiction assumption,

Pr fwn - (eo+€:) > ba] & 0,1 -]

Pr [l +wn; > 0] ¢g,1 4]
Pt [wni # ~1] €[4, 1 —d]
Pr [wy; = —1] € [q,1 — ]

heV

Since Prhev[wm = 1] + Prh[wh,i = 0] + Prh[whﬂ =
=1,

hfe’rv[wh,i =0] & [q,1 — 2q]

Thus, each index is either mostly 1, mostly 0, or mostly

—1 for elements in S (since ¢ < 1/3). Define m €
{—1,01}% such that
m; = argrcnax hfe){/[“’h»i =]
O

Note that mq = 1.

6.7.5 Ratio between m(~) and m(+

Note,

ZPrwhl—l

+ ()m™ = gd+ (1 — gym™

IEheV wh

< (@)(d—m™) +

1
m*) > E(Ehev[ﬂ);ﬁ] - qd)

Further note,

Epev|w

(+) ZPrwhzfl

> (0)(d —mP)+ (1 —gm™ = (1 +)

—g)m!

! (+)
m(+) S 1= q]EheV[wh ]
We have similar equations for m(~) and Ehev[wé_)]
Let m be the vector of m without the first component.

Recall that we have

_ 1
VheV:w;f)Srwa)—gd

Eney [w' "] < rEnevw’ ] — grd

1
1—

1 _
~ q(EhGV[wz '] - qd)

(+)
thev[’wh | < 7

Also, recall,

_ 1
VhEV:wé)gr(wﬁ)—l)—gd

(+)]

Ehev[wi(l_)] <rEpeviw,”] —qrd —r

1 (=) 1
1_ theV[wh ] < 7"1 —

r

E ()7 d) —
el - ad) - 1
+__r

m(™) < pml
< 1—¢

m) <r(m —1)

m(*) < Tﬁl(+)



Stephen Mussmann, Percy Liang

6.7.6 Partition

Let w be the vector of w without the first component.
Definition 6.1. Let

o Xt ={z:Prpeyuwp-z>1>1-—q}
o X0 ={z:Prjev[up -2 =0] >1-2q}
o X~ ={z:Prpev|up -2 <-1]>1-g}

Lemma 6.5. X+, X% X~ is a partition of {0,1}¢71

Proof. Since ¢ < 1/4 and the three defining events
are mutually exclusive. It is clear that A+, A% A~ are
disjoint. Next we show that every point is in at least
one of the sets. Suppose a point z is in neither A™ or
A,

Using the contradiction assumption on the test (0, z),
P - (0 0 1-—
heI\‘/[wh ( ,.T) > ] ¢ [qa q]
P i > 0] ¢ (0,1 g
Pr |wy, - 0
hel‘r/[wh x>0/ <gq

Using the contradiction assumption on the test (1,z),

Pr [wp - (1,2) > 0] € [¢,1 — ]

heV
hfe’{,[1+wh'x>0]¢[q,lfd
0 - > _
hfe’{/[wh r>0]¢&[q,1—q]

Pr |wy, - 0
he{/[wh r<0]<gq

Combining these,

[Wh -z =0]=1— Pr [wp -z > 0] [wh -z < 0]
heV

Pr — Pr
hev heV
>1—2¢q

Thus, z € Xt and x € X~ imply = € X° so the three
sets are a partition. O

Definition 6.2. Define X* to be every x € {0,1}¢
that (m =1)-ax = (m = —1) - x, where (M = 1) is the
element-wise boolean function.

Intuitively, this means that there are as many ones of
x in positions where m = 1 as there are places where
m=—1.

Lemma 6.6. X* C X°

Proof. We prove this by induction on the number of
’'sin z for x € X*.

The base case is z = 0% which is trivially in X°.

For other x, suppose z; = 1 at a location where
m; = 0. Then we know =z — e; € X° by the induc-
tion hypothesis.
Prpeviwp - (x—e;) =01 >1-2¢q
Prhev[whﬂ = O] >1-— 2(]
From these,
Prieviwy -2 =0]>1-4g>q

for ¢ <1/5. So x ¢ X* U X~ and thus z € A°.

The only other case is where z; = z; = 1 at locations
where m; =1 and m; = —1. Then we know x — e; —
e; € XY from the induction hypothesis.

Pricviwn - (x —e; —e;) =0 >1—2¢
Prpevwn: =1]>1—-¢q
P?’hev[wh,j = 71] >1-— q

From these,

Pricylwp-2=0>1—-4qg > ¢

and similarly, z € X°.

6.7.7 Probability Distribution

We now define a probability distribution over x € X*.

Without loss of generality, suppose m(t) > m(=).

e Randomly draw an injection f: {i:m; = -1} —
{Z tm; = 1}

e Initialize z = 041

e For indices {i : m; < 0}, draw a; ~
bernoulli(1/2).
o For {i:m; = —1}, set wp) = x5

Note that the result z € &A™ because of the pairing
f, there will be a 1 where m; = 1 for each 1 where
m; = —1.
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6.7.8 Set T
Definition 6.3. For the probability distribution,

Q(h) = Pr [wy-x=0]

reX*

Lemma 6.7. Let T ={h € V : Q(h) > 1 —4q}, then
V| > 5|T].

Proof. For x € X'*, since X* C X0,

hlg"/[wh~x:0] >1—2q
> oney Lwn -z =0
>1—2¢q
V|
1 cx =0
o Vi
2onev 2zexo P(@) 1wy -z = 0] >1-2q
Vi
>onev Q(h)
ZheV XV 1 9q
V]
T V|- 17|
(1) + ———(1—-4q) >1—2¢
Vi Vi
2T| > |V

Lemma 6.8. |T| <3

Proof. Recall that m*) < rm(=) and m(=) < rm(H)
as well

Alsol—4¢>1- min(i, %) since ¢ < min %7 %)

Forany t € T, Q(t) > 1 —4q > l—min(i,% )
Ber(1/2) to be a Bernoulli random variable.

1

.1
mg’;g*[wt cx=0]>1- mm(z, Q—T)
Ef[Pr[ > weBer(1/2) + ...
i:m;=0

Z (wy,i +wy piy)Ber(1/2) = 0]] > 1 — min(i, %)

im;=—1

Note that
Pr[ > wiiBer(1/2) + ...
i:m; =0
1
(wei + wr,p)Ber(1/2) = 0] < 5
im;=—1

unless Vi : m; = 0 : wyy = 0 and Vi : my = —1 :
Wi + wy p(;y = 0, call this condition(t, f).

E¢[1[condition(t, )] + ...
%(1 — Llcondition(t, f)])] > 1 — min(i, 2%4)

11
I;r[condition(t, Hl>1- min(i, ;)

If m(7) =0, then m(*) = 0, and thus Vi :
wg; =0s0t=0%and |T|=1<3.

m; = 0 :

Note that Pry[condition(t, f)] > 1/2 implies that Vi :
mi:()!wt’izo.

Lemma 6.9. If there exists i,j such that m; = m; =
—1, then wy; = wy ;.

Proof. Pry[condition(t, f)] > 3 means that

1
Priwe: = —wi ;0] > 5
1
Priwej = —wipn) > 5
S0
{l : ml = 17/\ W = —wt’i} > 1/2
{l:m =-1}
{l tmy = 17/\ Wy, = 7wt’j} S 1/2
{l:m =-1}
which is only possible if w; = wy ;. O

Thus, there is some ¢ € {—1,0, 1} such that Vi : m; =
1:wi; =c.
. 1
f}r[condztzon(t,f)] > —
,

. 1
f}r[Vz sy = —1iwy gy = —c] > 1— -

1
1751*[31':7711' =—1:w o) #—c]>1——
,

- 1

lz}r[ﬂz sy = =1 wy ey # —c] < -

Suppose 3j : m; = 1:w; # —c,

ljcr[ﬂi:mi:—lzf(i):j] :%

which is a contradiction. So Vj :m; =1:w; = —c.
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Thus, ¢ completely determines ¢. Since there are three
options for ¢, there are three options for ¢, and |T| <
3. O

Since |T| < 3 and 2|T| > |V|, |V| < 6. Thus, there
is a split of 1/6 which is a contradiction since g < %.
Thus, the lemma is proved. And thus the binary linear
classifier problem is split-neighborly.



