## Appendix: Worst-case Optimal Submodular Extensions for Marginal Estimation

## 1 Proofs for Potts Model Extension

Remark 1 We show using induction over the number of variables that with 1-of- $L$ encoding for Potts,

$$
\begin{equation*}
\sum_{A \in \mathcal{M}} \exp (-s(A))=\prod_{a=1}^{N} \sum_{i=1}^{L} \exp \left(-s_{a i}\right) . \tag{1}
\end{equation*}
$$

Proof. Let $t$ be the number of variables, $V^{t}$ be the corresponding ground set and $\mathcal{M}^{t}$ be the sets corresponding to valid labelings. Equation (1) clearly holds for $t=1$.

Let us assume that the relation holds for $t=N$, that is,

$$
\begin{equation*}
\sum_{A^{N} \in \mathcal{M}^{N}} \exp \left(-s\left(A^{N}\right)\right)=\prod_{a=1}^{N} \sum_{i=1}^{L} \exp \left(-s_{a i}\right) \tag{2}
\end{equation*}
$$

For $t=N+1$,

$$
\begin{align*}
\sum_{A^{N+1} \in \mathcal{M}^{N+1}} \exp \left(-s\left(A^{N+1}\right)\right) & =\sum_{i=1}^{L} \sum_{A^{N} \in \mathcal{M}^{N}} \exp \left(-s\left(A^{N}\right)-s_{N+1, i}\right) \\
& =\sum_{i=1}^{L} \exp \left(-s_{N+1, i}\right) \sum_{A^{N} \in \mathcal{M}^{N}} \exp \left(-s\left(A^{N}\right)\right) \\
& =\sum_{i=1}^{L} \exp \left(-s_{N+1, i}\right) \prod_{a=1}^{N} \sum_{i=1}^{L} \exp \left(-s_{a i}\right) \\
& =\prod_{a=1}^{N+1} \sum_{i=1}^{L} \exp \left(-s_{a i}\right) \tag{3}
\end{align*}
$$

Remark 2 Given any submodular extension $F($.$) of a Potts energy function E($.$) , its Lovasz$ extension $f($.$) defines an LP relaxation of the MAP problem for E($.$) as$

$$
\begin{equation*}
\min _{\mathbf{y} \in \Delta} f(\mathbf{y}) . \tag{4}
\end{equation*}
$$

Proof. By definition of a submodular extension and the Lovasz extension, $E(\mathbf{x})=F\left(A_{\mathbf{x}}\right)=$ $f\left(1_{A_{\mathbf{x}}}\right)$ for all valid labelings $\mathbf{x}$. Also, from property $1, f(\mathbf{y})$ is maximum of linear functions. Hence, $f(\mathbf{y})$ is a piecewise linear relaxation of $E(\mathbf{x})$.

The domain $\Delta$ is a polytope formed by union of $N$ probability simplices

$$
\begin{equation*}
\Delta=\left\{\mathbf{y}_{a} \in \mathbb{R}^{L} \mid \mathbf{y}_{a} \succeq 0 \text { and }\left\langle\mathbf{1}, \mathbf{y}_{a}\right\rangle=1\right\} \tag{5}
\end{equation*}
$$

With objective as maximum of linear functions and domain as a polytope, we have an LP relaxation of the corresponding MAP problem.

Proposition 1. In the limit $T \rightarrow 0$, the following problem for Potts energies

$$
\begin{equation*}
\min _{\mathbf{s} \in E P(F)} \quad g_{T}(\mathbf{s})=\sum_{a=1}^{N} T \cdot \log \sum_{i=1}^{L} \exp \left(-\frac{s_{a i}}{T}\right) \tag{6}
\end{equation*}
$$

becomes

$$
\begin{equation*}
-\min _{\mathbf{y} \in \Delta} f(\mathbf{y}) \tag{7}
\end{equation*}
$$

Proof. In the limit of $T \rightarrow 0$, we can rewrite the above problem as

$$
\begin{equation*}
\min _{\mathbf{s} \in E P(F)} \sum_{a=1}^{N} \max _{i}\left(-s_{a i}\right) \tag{8}
\end{equation*}
$$

In vector form, the problem becomes

$$
\begin{align*}
& \min _{\mathbf{s} \in E P(F)} \max _{\mathbf{y} \in \Delta}-\langle\mathbf{y}, \mathbf{s}\rangle  \tag{9}\\
& =-\max _{\mathbf{s} \in E P(F)} \min _{\mathbf{y} \in \Delta}\langle\mathbf{y}, \mathbf{s}\rangle \tag{10}
\end{align*}
$$

$\Delta$ is the union of $N$ probability simplices:

$$
\begin{equation*}
\Delta=\left\{\mathbf{y}_{a} \in \mathbb{R}^{L} \mid \mathbf{y}_{a} \succeq 0 \text { and }\left\langle\mathbf{1}, \mathbf{y}_{a}\right\rangle=1\right\} \tag{11}
\end{equation*}
$$

where $\mathbf{y}_{a}$ is the component of $\mathbf{y}$ corresponding to the $a$-th variable. By the minimax theorem for LP, we can reorder the terms:

$$
\begin{equation*}
-\min _{\mathbf{y} \in \Delta \mathbf{s} \in E P(F)} \max \langle\mathbf{y}, \mathbf{s}\rangle \tag{12}
\end{equation*}
$$

Recall that $\max _{\mathbf{s} \in E P(F)}\langle\mathbf{y}, \mathbf{s}\rangle$ is the value of the Lovasz extension of $F$ at $\mathbf{y}$, that is, $f(\mathbf{y})$. Hence, as $T \rightarrow 0$, the marginal inference problem converts to minimising the Lovasz extension under the simplices constraint:

$$
\begin{equation*}
-\min _{\mathbf{y} \in \Delta} f(\mathbf{y}) \tag{13}
\end{equation*}
$$

Proposition 2. The objective function $E(\mathbf{y})$ of the LP relaxation ( $P-L P$ ) is the Lovasz extension of $F_{\text {Potts }}(A)=\sum_{i=1}^{L} F_{i}(A)$, where

$$
\begin{align*}
F_{i}(A)= & \sum_{a} \phi_{a}(i)\left[\left|A \cap\left\{v_{a i}\right\}\right|=1\right]+ \\
& \sum_{(a, b) \in \mathcal{N}} \frac{w_{a b}}{2} \cdot\left[\left|A \cap\left\{v_{a i}, v_{b i}\right\}\right|=1\right] . \tag{14}
\end{align*}
$$

Proof. Since $F_{\text {Potts }}$ is sum of Ising models $F_{i}$, we first focus on a particular label $i$ and then generalize. Consider a graph with only two variables $X_{a}$ and $X_{b}$ with an edge between them. The ground set in this case is $\left\{v_{a i}, v_{b i}\right\}$. Let the corresponding relaxed indicator variables be $\mathbf{y}=\left\{y_{a j}, y_{b j}\right\}$, such that $y_{a i}, y_{b i} \in[0,1]$ and assume $y_{a i}>y_{b i}$. The Lovasz extension is:

$$
\begin{align*}
f(\mathbf{y}) & =y_{a i} \cdot\left[F_{i}\left(\left\{v_{a i}\right\}\right)-F_{i}(\{ \})\right]+y_{b i} \cdot\left[F_{i}\left(\left\{v_{a i}, v_{b i}\right\}\right)-F_{i}\left(\left\{v_{a i}\right\}\right)\right] \\
& =y_{a i} \cdot\left[\left(\phi_{a}(j)+\frac{w_{a b}}{2}\right)-0\right]+y_{b i} \cdot\left[\left(\phi_{a}(j)+\phi_{b}(j)\right)-\left(\phi_{a}(j)+\frac{w_{a b}}{2}\right)\right] \\
& =\phi_{a}(j) \cdot y_{a i}+\phi_{b}(j) \cdot y_{b i}+\frac{w_{a b}}{2} \cdot\left(y_{a i}-y_{b i}\right) \tag{15}
\end{align*}
$$

In general for both orderings of $y_{a b}$ and $y_{b i}$, we can write

$$
\begin{equation*}
f(\mathbf{y})=\phi_{a}(j) \cdot y_{a i}+\phi_{b}(j) \cdot y_{b i}+\frac{w_{a b}}{2} \cdot\left|y_{a i}-y_{b i}\right| \tag{16}
\end{equation*}
$$

Extending Lovasz extension (equation (16)) to all variables and labels gives $E(\mathbf{y})$ in (P-LP).

## 2 Proofs for Hierarchical Potts Model Extension

Transformed Tightest LP Relaxation We take (T-LP) and rewrite it using indicator variables for all labels and meta-labels. Let $\mathcal{R}$ denote the set of all labels and meta-labels, that is, all nodes in the tree apart from the root. Also, let $\mathcal{L}$ denote the set of labels, that is, the leaves of the tree. Let $T_{i}$ denote the subtree which is rooted at the $i$-th node. We introduce an indicator variable $z_{a i} \in\{0,1\}$, where

$$
z_{a i}= \begin{cases}y_{a i} & \text { if } i \in \mathcal{L}  \tag{17}\\ y_{a}\left(T_{i}\right) & \text { if } i \in \mathcal{R}-\mathcal{L}\end{cases}
$$

We need to extend the definition of unary potentials to the expanded label space as follows:

$$
\text { where } \phi_{a}^{\prime}(i)= \begin{cases}\phi_{a}(i) & \text { if } i \in \mathcal{L}  \tag{18}\\ 0 & \text { if } i \in \mathcal{R}-L\end{cases}
$$

We can now rewrite problem (T-LP) in terms of new indicator variables $z_{a i}$ :

$$
\begin{align*}
(\text { T-LP-FULL }) & \min \widetilde{E}(\mathbf{z})=\sum_{i \in \mathcal{R}} \sum_{a \in \mathcal{X}} \phi_{a}^{\prime}(i) \cdot z_{a i}+ \\
& \sum_{i \in \mathcal{R}} \sum_{(a, b) \in \mathcal{N}} w_{a b} \cdot l_{T_{i}} \cdot\left|z_{a i}-z_{b i}\right| \tag{19}
\end{align*}
$$

such that $\mathbf{z} \in \Delta^{\prime}$
where $\Delta^{\prime}$ is the convex hull of the vectors satisfying

$$
\begin{align*}
& \quad \sum_{i \in \mathcal{L}} z_{a i}=1, \quad z_{a i} \in\{0,1\} \quad \forall a \in \mathcal{X}, i \in \mathcal{L}  \tag{20}\\
& \text { and } z_{a i}=\sum_{j \in L\left(T_{i}\right)} z_{a j} . \forall a \in \mathcal{X}, i \in \mathcal{R}-\mathcal{L} \tag{21}
\end{align*}
$$

Constraint (21) ensures consistency among labels and meta-labels, that is, if a label is assigned then all the meta-labels which lie on the path from the root to the label should be assigned as well. We are now going to identify a suitable set encoding and the worst-case optimal submodular extension using (T-LP-FULL).

Remark 3 Given any submodular extension $F($.$) of a hierachical Potts energy function E($.$) ,$ its Lovasz extension defines an LP relaxation of the corresponding MAP estimation problem as

$$
\begin{equation*}
\min _{\mathbf{z} \in \Delta^{\prime}} f(\mathbf{z}) \tag{22}
\end{equation*}
$$

Proof. By definition of a submodular extension and the Lovasz extension, $E(\mathbf{x})=F\left(A_{\mathbf{x}}\right)=$ $f\left(1_{A_{\mathbf{x}}}\right)$ for all valid labelings $\mathbf{x}$. Also, from property $1, f(\mathbf{y})$ is maximum of linear functions. Hence, $f(\mathbf{y})$ is a piecewise linear relaxation of $E(\mathbf{x})$.

We can write the domain $\Delta^{\prime}$ as

$$
\begin{equation*}
\Delta^{\prime}=\left\{\mathbf{y}_{a} \in \mathbb{R}^{M} \mid \mathbf{y}_{a} \succeq 0,\left\langle\mathbf{1}, \mathbf{y}_{a}^{\text {label }}\right\rangle=1, \quad \mathbf{y}_{a}\left(p_{a i}\right)=\mathbf{1} \text { or } \mathbf{y}_{a}\left(p_{a i}\right)=\mathbf{0} \forall i \in[1, L]\right\} \tag{23}
\end{equation*}
$$

where $\mathbf{y}_{a}$ is the component of $\mathbf{y}$ corresponding to the $a$-th variable, $\mathbf{y}_{a}^{\text {label }}$ is the component of $\mathbf{y}_{a}$ corresponding to the $L$ labels, and $\mathbf{y}_{a}\left(p_{a i}\right)$ is the component of $\mathbf{y}_{a}$ corresponding to the elements of $p_{a i}$.

Since $\Delta^{\prime}$ is defined by linear equalities and inequalities, it is a polytope. With objective as maximum of linear functions and domain as a polytope, we have an LP relaxation of the corresponding MAP problem.

Proposition 3. In the limit $T \rightarrow 0$, the following problem for hierarchical Potts energies

$$
\begin{equation*}
\min _{\mathbf{s} \in E P(F)} g_{T}(\mathbf{s})=\sum_{a=1}^{N} T \cdot \log \sum_{i=1}^{L} \exp \left(-\frac{s_{a i}^{\prime}}{T}\right) . \tag{24}
\end{equation*}
$$

becomes:

$$
\begin{equation*}
-\min _{\mathbf{z} \in \Delta^{\prime}} f(\mathbf{z}) . \tag{25}
\end{equation*}
$$

Proof. In the limit of $T \rightarrow 0$, we can rewrite the above problem as

$$
\begin{equation*}
\min _{\mathbf{s} \in E P(F)} \sum_{a=1}^{N} \max _{i}\left(-s_{a i}^{\prime}\right) . \tag{26}
\end{equation*}
$$

In vector form, the problem becomes

$$
\begin{align*}
& \min _{\mathbf{s} \in E P(F)} \max _{\mathbf{z} \in \Delta}-\left\langle\mathbf{z}, \mathbf{s}^{\prime}\right\rangle  \tag{27}\\
& =-\max _{\mathbf{s} \in E P(F)} \min _{\mathbf{z} \in \Delta}\left\langle\mathbf{z}, \mathbf{s}^{\prime}\right\rangle \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\text { where } \Delta=\left\{\mathbf{z}_{a} \in \mathbb{R}^{L} \mid \mathbf{z}_{a} \succeq 0 \text { and }\left\langle\mathbf{1}, \mathbf{z}_{a}\right\rangle=1\right\} \tag{29}
\end{equation*}
$$

where $\mathbf{z}_{a}$ is the component of $\mathbf{z}$ corresponding to the $a$-th variable. We can unpack $\mathbf{s}^{\prime}$ using

$$
\begin{equation*}
s_{a i}^{\prime}=\sum_{t \in p_{a i}} s_{t} \tag{30}
\end{equation*}
$$

and rewrite problem (28) as

$$
\begin{equation*}
-\max _{\mathbf{s} \in E P(F)} \min _{\mathbf{y} \in \Delta^{\prime}}\langle\mathbf{y}, \mathbf{s}\rangle \tag{31}
\end{equation*}
$$

The new constraint set $\Delta^{\prime}$ ensures that the binary entries of labels and meta-labels is consistent:

$$
\begin{align*}
& \text { where } \Delta^{\prime}=\left\{\mathbf{y}_{a} \in \mathbb{R}^{M} \mid \mathbf{y}_{a} \succeq 0,\left\langle\mathbf{1}, \mathbf{y}_{a}^{l a b e l}\right\rangle=1\right. \\
& \left.\qquad \mathbf{y}_{a}\left(p_{a i}\right)=\mathbf{1} \text { or } \mathbf{y}_{a}\left(p_{a i}\right)=\mathbf{0} \forall i \in[1, L]\right\} \tag{32}
\end{align*}
$$

where $\mathbf{y}_{a}$ is the component of $\mathbf{y}$ corresponding to the $a$-th variable, $\mathbf{y}_{a}^{\text {label }}$ is the component of $\mathbf{y}_{a}$ corresponding to the $L$ labels, and $\mathbf{y}_{a}\left(p_{a i}\right)$ is the component of $\mathbf{y}_{a}$ corresponding to the elements of $p_{a i}$.

By the minimax theorem for LP, we can reorder the terms:

$$
\begin{equation*}
-\min _{\mathbf{y} \in \Delta^{\prime}} \max _{\mathbf{s} \in E P(F)}\langle\mathbf{y}, \mathbf{s}\rangle \tag{33}
\end{equation*}
$$

Recall that $\max _{\mathbf{s} \in E P(F)}\langle\mathbf{y}, \mathbf{s}\rangle$ is the value of the Lovasz extension of $F$ at $\mathbf{y}$, that is, $f(\mathbf{y})$. Hence, as $T \rightarrow 0$, the marginal inference problem converts to minimising the Lovasz extension under the constraints $\Delta^{\prime}$ :

$$
\begin{equation*}
-\min _{\mathbf{y} \in \Delta^{\prime}} f(\mathbf{y}) \tag{34}
\end{equation*}
$$

Proposition 4. The objective function $\widetilde{E}(\mathbf{z})$ of (T-LP-FULL) is the Lovasz extension of $F_{r-H S T}(A)=$ $\sum_{i=1}^{M} F_{i}(A)$, where

$$
\begin{align*}
F_{i}(A)= & \sum_{a} \phi_{a}^{\prime}(i)\left[\left|A \cap\left\{v_{a i}\right\}\right|=1\right]+ \\
& \sum_{(a, b) \in \mathcal{N}} w_{a b} \cdot l_{T_{i}} \cdot\left[\left|A \cap\left\{v_{a i}, v_{b i}\right\}\right|=1\right] . \tag{35}
\end{align*}
$$

Proof. We observe that $F_{r-\mathrm{HST}}$ is of exactly the same form as $F_{\text {Potts }}$, except that the Ising models $F_{i}$ are defined over not just labels, but meta-labels as well. Using the same logic as in the proof of proposition 2, each $F_{i}$ is the Lovasz extension of

$$
\begin{equation*}
\widetilde{E}_{i}(\mathbf{z})=\left(\sum_{a \in \mathcal{X}} \phi_{a}^{\prime}(i) \cdot z_{a i}+\sum_{(a, b) \in \mathcal{N}} w_{a b} \cdot l_{T_{i}} \cdot\left|z_{a i}-z_{b i}\right|\right) \tag{36}
\end{equation*}
$$

and the results follows.
Proposition 5. Computing the subgradient of $E(\mathbf{y})$ in ( $P-L P$ ) is equivalent to computing the conditional gradient for the submodular function $F_{\text {Potts }}$.

Proof. Due to Edmond's greedy algorithm, the Lovasz extension $f$ of a given submodular function can be written as

$$
\begin{equation*}
f(\mathbf{y})=\max _{\mathbf{s} \in E P(F)} \mathbf{y}^{T} \cdot \mathbf{s} \tag{37}
\end{equation*}
$$

Hence, $f(\mathbf{y})$ is the pointwise maximum of linear functions. The subdifferential of $f(\mathbf{y})$ at $\mathbf{y}_{\mathbf{0}}$ is the differential of the 'active' linear function at $\mathbf{y}_{\mathbf{0}}$. Hence,

$$
\begin{equation*}
\partial f(\mathbf{y})=\underset{\mathbf{s} \in E P(F)}{\operatorname{argmax}} \mathbf{y}^{T} \cdot \mathbf{s} \tag{38}
\end{equation*}
$$

This is exactly the computation of conditional gradient, and hence we have proved the equivalence.

