Discriminative Learning of Prediction Intervals: Supplementary Material

Nir Rosenfeld
Harvard University
and Microsoft Research

Yishay Mansour
Tel Aviv University

Elad Yom-Tov
Microsoft Research

1 Equivalence of Parameterization

There are two natural parameterizations of intervals. The first is to model the interval boundaries via:

$$
\hat{\ell}=f_{\ell}\left(x ; w_{\ell}\right), \quad \hat{u}=f_{u}\left(x ; w_{u}\right)
$$

The second is to model the interval center and size:

$$
\hat{y}=f(x ; w), \quad \hat{\Delta}=g(x ; v)
$$

Here we show that for linear predictors, both parameterizations are equivalent. Specifically, we show that for every $\left(w_{\ell}, w_{u}\right)$ there exist some (\tilde{w}, \tilde{v}) whose predictions coincide on all x, and vice versa.

Let $w_{\ell}, w_{u} \in \mathbb{R}^{d}$, and consider some $x \in \mathcal{X}$. Note that:

$$
\begin{aligned}
\hat{y} & =\frac{1}{2}\left(w_{\ell}^{\top} x+w_{u}^{\top} x\right)=\left(\frac{1}{2}\left(w_{\ell}+w_{u}\right)\right)^{\top} x=\tilde{w}^{\top} x \\
\hat{\Delta} & =w_{u}^{\top} x-w_{\ell}^{\top} x=\left(w_{u}-w_{\ell}\right)^{\top} x=\tilde{v}^{\top} x
\end{aligned}
$$

Similarly, for $w, v \in \mathbb{R}^{d}$, we have:

$$
\begin{aligned}
& \hat{\ell}=w^{\top} x-\frac{1}{2} v^{\top} x=\left(w-\frac{1}{2} v\right)^{\top} x=\tilde{w}_{\ell}^{\top} x \\
& \hat{u}=w^{\top} x+\frac{1}{2} v^{\top} x=\left(w+\frac{1}{2} v\right)^{\top} x=\tilde{w}_{u}^{\top} x
\end{aligned}
$$

We note that the only practical difference here would be when each component is regularized separately (e.g., with a different regularization constant).

2 VC of Functions and Losses

Recall that for a loss function L and a function class \mathcal{F}, we define their composition as:

$$
\begin{equation*}
\mathcal{L}(\mathcal{F})=\{L(y, f(x)): f \in \mathcal{F}\} \tag{1}
\end{equation*}
$$

we denote the by $\mathcal{L}_{0 / 1}(\mathcal{H})$ the composition of the binary $0 / 1$-loss function $L_{0 / 1}(\cdot)$ with a binary function class \mathcal{H}, where:

$$
\begin{equation*}
L_{0 / 1}(y, \hat{y})=\mathbb{1}_{\{y \neq \hat{y}\}} \tag{2}
\end{equation*}
$$

Here we prove the following claim:

Lemma 1. The $V C$ dimension of \mathcal{H} equals the $V C$ dimension of $\mathcal{L}_{0 / 1}(\mathcal{H})$.

Proof. The important observation here is that while both \mathcal{H} and $\mathcal{L}_{0 / 1}(\mathcal{H})$ include functions with binary outputs, the functions differ in their domain. Specifically, functions in \mathcal{H} map items x to binary outputs $y \in\{0,1\}$, while functions in $\mathcal{L}_{0 / 1}(\mathcal{H})$ take as input pairs (x, y) with $y \in\{0,1\}$ and, via some $h \in \mathcal{H}$, output the loss value $z \in\{0,1\}$.
Assume the VC dimension of \mathcal{H} is m, then there exist some x_{1}, \ldots, x_{m} which shatter \mathcal{H}. This means that for every y_{1}, \ldots, y_{m}, there exists some $h_{y} \in \mathcal{H}$ for which $h_{y}\left(x_{i}\right)=y_{i}$ for every i. Consider the set of pairs $\left(x_{1}, 0\right), \ldots,\left(x_{m}, 0\right)$. For any z_{1}, \ldots, z_{m}, we have some $h_{z} \in \mathcal{H}$ for which $h_{z}\left(x_{i}\right)=z_{i}$ for every i. This means that any $z_{i}=0$ gives $h_{z}\left(x_{i}\right)=0$, and hence:

$$
L_{0 / 1}\left(0, h_{z}\left(x_{i}\right)\right)=0=z_{i}
$$

Similarly, for any $z_{i}=1$ we have $h_{z}\left(x_{i}\right)=1$ and:

$$
L_{0 / 1}\left(0, h_{z}\left(x_{i}\right)\right)=1=z_{i}
$$

Now, assume the VC dimension of $\mathcal{L}_{0 / 1}(\mathcal{H})$ is m. Then there exist some $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ which shatter $\mathcal{L}_{0 / 1}(\mathcal{H})$. This means that for every z_{1}, \ldots, z_{m}, there exists some $h_{z} \in \mathcal{H}$ such that $L_{0 / 1}\left(y_{i}, h_{z}\left(x_{i}\right)\right)=z_{i}$. Consider the set x_{1}, \ldots, x_{m}. For any y_{1}, \ldots, y_{m}, set $z_{i}=0$ for all i. Hence, the corresponding h_{z} is such that $L_{0 / 1}\left(y_{i}, h_{z}\left(x_{i}\right)\right)=0$ for all i, which means that $h\left(x_{i}\right)=y_{i}$ as needed.

