Discriminative Learning of Prediction Intervals: Supplementary Material

Nir Rosenfeld Harvard University and Microsoft Research Yishay Mansour Tel Aviv University **Elad Yom-Tov** Microsoft Research

1 Equivalence of Parameterization

There are two natural parameterizations of intervals. The first is to model the interval boundaries via:

$$\hat{\ell} = f_{\ell}(x; w_{\ell}), \qquad \hat{u} = f_{u}(x; w_{u})$$

The second is to model the interval center and size:

$$\hat{y} = f(x; w), \qquad \Delta = g(x; v)$$

Here we show that for linear predictors, both parameterizations are equivalent. Specifically, we show that for every (w_{ℓ}, w_u) there exist some (\tilde{w}, \tilde{v}) whose predictions coincide on all x, and vice versa.

Let $w_{\ell}, w_u \in \mathbb{R}^d$, and consider some $x \in \mathcal{X}$. Note that:

$$\hat{y} = \frac{1}{2} (w_{\ell}^{\top} x + w_{u}^{\top} x) = \left(\frac{1}{2} (w_{\ell} + w_{u})\right)^{\top} x = \tilde{w}^{\top} x$$
$$\hat{\Delta} = w_{u}^{\top} x - w_{\ell}^{\top} x = (w_{u} - w_{\ell})^{\top} x = \tilde{v}^{\top} x$$

Similarly, for $w, v \in \mathbb{R}^d$, we have:

$$\hat{\ell} = w^{\top} x - \frac{1}{2} v^{\top} x = (w - \frac{1}{2} v)^{\top} x = \tilde{w}_{\ell}^{\top} x$$
$$\hat{u} = w^{\top} x + \frac{1}{2} v^{\top} x = (w + \frac{1}{2} v)^{\top} x = \tilde{w}_{u}^{\top} x$$

We note that the only practical difference here would be when each component is regularized separately (e.g., with a different regularization constant).

2 VC of Functions and Losses

Recall that for a loss function L and a function class \mathcal{F} , we define their composition as:

$$\mathcal{L}(\mathcal{F}) = \{ L(y, f(x)) : f \in \mathcal{F} \}$$
(1)

we denote the by $\mathcal{L}_{0/1}(\mathcal{H})$ the composition of the binary 0/1-loss function $L_{0/1}(\cdot)$ with a binary function class \mathcal{H} , where:

$$L_{0/1}(y,\hat{y}) = \mathbb{1}_{\{y \neq \hat{y}\}}$$
(2)

Here we prove the following claim:

Lemma 1. The VC dimension of \mathcal{H} equals the VC dimension of $\mathcal{L}_{0/1}(\mathcal{H})$.

Proof. The important observation here is that while both \mathcal{H} and $\mathcal{L}_{0/1}(\mathcal{H})$ include functions with binary outputs, the functions differ in their domain. Specifically, functions in \mathcal{H} map items x to binary outputs $y \in \{0, 1\}$, while functions in $\mathcal{L}_{0/1}(\mathcal{H})$ take as input pairs (x, y) with $y \in \{0, 1\}$ and, via some $h \in \mathcal{H}$, output the loss value $z \in \{0, 1\}$.

Assume the VC dimension of \mathcal{H} is m, then there exist some x_1, \ldots, x_m which shatter \mathcal{H} . This means that for every y_1, \ldots, y_m , there exists some $h_y \in \mathcal{H}$ for which $h_y(x_i) = y_i$ for every *i*. Consider the set of pairs $(x_1, 0), \ldots, (x_m, 0)$. For any z_1, \ldots, z_m , we have some $h_z \in \mathcal{H}$ for which $h_z(x_i) = z_i$ for every *i*. This means that any $z_i = 0$ gives $h_z(x_i) = 0$, and hence:

$$L_{0/1}(0, h_z(x_i)) = 0 = z_i$$

Similarly, for any $z_i = 1$ we have $h_z(x_i) = 1$ and:

$$L_{0/1}(0, h_z(x_i)) = 1 = z_i$$

Now, assume the VC dimension of $\mathcal{L}_{0/1}(\mathcal{H})$ is m. Then there exist some $(x_1, y_1), \ldots, (x_m, y_m)$ which shatter $\mathcal{L}_{0/1}(\mathcal{H})$. This means that for every z_1, \ldots, z_m , there exists some $h_z \in \mathcal{H}$ such that $L_{0/1}(y_i, h_z(x_i)) = z_i$. Consider the set x_1, \ldots, x_m . For any y_1, \ldots, y_m , set $z_i = 0$ for all i. Hence, the corresponding h_z is such that $L_{0/1}(y_i, h_z(x_i)) = 0$ for all i, which means that $h(x_i) = y_i$ as needed.