
Direct Learning to Rank and Rerank

Cynthia Rudin Yining Wang
Duke University Carnegie Mellon University

Abstract

Learning-to-rank techniques have proven to
be extremely useful for prioritization prob-
lems, where we rank items in order of their
estimated probabilities, and dedicate our lim-
ited resources to the top-ranked items. This
work exposes a serious problem with the state
of learning-to-rank algorithms, which is that
they are based on convex proxies that lead to
poor approximations. We then discuss the
possibility of “exact” reranking algorithms
based on mathematical programming. We
prove that a relaxed version of the “exact”
problem has the same optimal solution, and
provide an empirical analysis.

1 Introduction

We are often faced with prioritization problems – how
can we rank aircraft in order of vulnerability to fail-
ure? How can we rank patients in order of priority
for treatment? When we have limited resources and
need to make decisions on how to allocate them, these
ranking problems become important. The quality of a
ranked list is often evaluated in terms of rank statis-
tics. The area under the receiver operator characteris-
tic curve (AUC), which counts pairwise comparisons,
is a rank statistic, but it does not focus on the top of
a ranked list, and is not a good evaluation measure if
we care about prioritization problems. For prioritiza-
tion problems, we would use rank statistics that focus
on the top of the ranked list, such as a weighted area
under the curve that focuses on the left part of the
curve. Then, since we evaluate our models using these
rank statistics, we should aim to optimize them out-of-
sample by optimizing them in-sample. The learning-
to-rank field (also called supervised ranking) is built

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

from this fundamental idea. Learning-to-rank is a nat-
ural fit for many prioritization problems. If we are
able to improve the quality of a prioritization policy
by even a small amount, it can have an important
practical impact. Learning-to-rank can be used to
prioritize mechanical equipment for repair (e.g., air-
planes, as considered by Oza et al, 2009), it could be
useful for prioritizing maintenance on the power grid
(Rudin et al, 2012, 2010), it could be used for ranking
medical workers in order of likelihood that they ac-
cessed medical records inappropriately (as considered
by Menon et al, 2013), prioritizing safety inspections
or lead paint inspections in dwellings (Potash et al,
2015), ranking companies in order of likeliness of com-
mitting tax violations (see Kong and Saar-Tsechansky,
2013), or ranking water pipes in order of vulnerability
(as considered by Li et al, 2013), and in almost any do-
main where one measures the quality of results by rank
statistics. Learning-to-rank algorithms have been used
also in sentiment analysis (Kessler and Nicolov, 2009),
natural language processing (Ji et al, 2006; Collins and
Koo, 2005), image retrieval (Jain and Varma, 2011;
Kang et al, 2011), and reverse-engineering product
quality rating systems (Chang et al, 2012).

This work exposes a serious problem with the state
of learning-to-rank algorithms, which is that they are
based on convex proxies for rank statistics, and when
these convex proxies are used, computation is faster
but the quality of the solution can be poor.

We then discuss the possibility of more direct opti-
mization of rank statistics for predictive learning-to-
rank problems. In particular, we consider a strategy
of ranking with a simple ranker (logistic regression
for instance) which is computationally efficient, and
then reranking only the candidates near the top of the
ranked list with an “exact” method. The exact method
does not have the shortcoming that we discussed ear-
lier for convex proxies.

For most ranking applications, we care only about the
top of the ranked list; thus, as long as we rerank
enough items with the exact method, the re-ranked
list is (for practical purposes) just as useful as a full
ranked list would be (if we could compute it with the

Direct Learning to Rank and Rerank

exact method, which would be computationally pro-
hibitive).

The best known theoretical guarantee on ranking
methods is obtained by directly optimizing the rank
statistic of interest (as shown by theoretical bounds
of Clemençon and Vayatis, 2008; Rudin and Schapire,
2009, for instance) hence our choice of methodology
– mixed-integer programming (MIP) – for reranking
in this work. Our general formulation can optimize
any member of a large class rank statistics using a
single mixed-integer linear program. Specifically, we
can handle (a generalization of) the large class of
conditional linear rank statistics, which includes the
Wilcoxon-Mann Whitney U statistic, or equivalently
the Area Under the ROC Curve, the Winner-Take-All
statistic, the Discounted Cumulative Gain used in in-
formation retrieval (Järvelin and Kekäläinen, 2000),
and the Mean Reciprocal Rank.

Exact learning-to-rank computations need to be per-
formed carefully; we should not refrain from solving
hard problems, but certain problems are harder than
others. We provide two MIP formulations aimed at the
same ranking problems. The first one works no mat-
ter what the properties of the data are. The second
formulation is much faster, and is theoretically shown
to produce the same quality of result as the first for-
mulation when there are no duplicated observations.
Note that if the observations are chosen from a con-
tinuous distribution then duplicated observations do
not occur, with probability one.

One challenge in the exact learning-to-rank formula-
tion is the way of handling ties in score. As it turns
out, the original definition of conditional linear rank
statistics can be used for the purpose of evaluation but
not optimization. We show that a small change to the
definition can be used for optimization.

This paper differs from our earlier technical report
and non-archival conference paper (Chang et al, 2011,
2010), which were focused on solving full problems to
optimality, and did not consider reranking or regu-
larization; our exposition for the formulations closely
follows this past work. The technique was used by
Chang et al (2012) for the purpose of reverse engi-
neering product rankings from rating companies that
do not reveal their secret rating formula.

2 Learning-to-Rank and
Learning-To-Rerank

The training data are labeled observations
{(xi, yi)}ni=1, with observations xi ∈ X ⊂ Rd
and labels yi ∈ {0, 1} for all i. The observations
labeled “1” are called “positive observations,” and the

observations labeled “0” are “negative observations.”
There are n+ positive observations and n− negative
observations, with index sets S+ = {i : yi = 1} and
S− = {k : yk = 0}. A ranking algorithm uses the
training data to produce a scoring function f : X → R
that assigns each observation a real-valued score. Ide-
ally, for a set of test observations drawn from the
same (unknown) distribution as the training data, f
should rank the observations in order of P (y = 1|x),
and we measure the quality of the solution using
“rank statistics,” or functions of the observations
relative to each other. Note that bipartite ranking
and binary classification are fundamentally different,
and there are many works that explain the differences
(e.g., Ertekin and Rudin, 2011). Briefly, classification
algorithms consider a statistic of the observations
relative to a decision boundary (n comparisons)
whereas ranking algorithms consider observations
relative to each other (on the order of n2 comparisons
for pairwise rank statistics).

Since the evaluation of test observations uses a chosen
rank statistic, the same rank statistic (or a convexi-
fied version of it) is optimized on the training set to
produce f . Regularization is added to help with gen-
eralization. Thus, a ranking algorithm looks like:

min
f∈F

RankStatistic(f, {xi, yi}i) + C · Regularizer(f).

For efficiency we are considering reranking methods,
which have two ranking steps. In the first ranking
step, a base algorithm is run over the training set, and
a scoring function finitial is produced and observations
are rank-ordered by the score. A threshold is chosen,
and all observations with scores above the threshold
are reranked by another ranking algorithm which
produces another scoring function f . To evaluate
the quality of the solution on the test set, each test
observation is evaluated first by finitial. For the
observations with scores above the threshold, they
are reranked according to f . The full ranking of
test observations is produced by appending the test
observations scored by f to the test observations
scored only by finitial.

Rank Statistics. For the purpose of this section, the
rank is currently defined so that the top of the list has
the highest ranks, and all ranks are unique so that each
observation is assigned to one rank. The rank of an
observation is the number of observations with scores
at or beneath it: Rank(f(xi)) =

∑n
t=1 1[f(xt)≤f(xi)].

Thus, ranks can range from 1 at the bottom to n at the
top. A conditional linear rank statistic (CLRS)
created from scoring function f : X → R is of the

Cynthia Rudin, Yining Wang

form

CLRS(f) =

n∑
i=1

1[yi=1]φ(Rank(f(xi)).

Here φ is a non-decreasing function producing only
non-negative values. We define a` := φ(`), the contri-
bution to the score if the observation with rank ` has
label +1. By properties of φ, we know 0 ≤ a1 ≤ a2 ≤
· · · ≤ an. Then

CLRS(f) =

n∑
i=1

yi

n∑
`=1

1[Rank(f(xi))=`] · a`. (1)

This class captures a broad collection of rank statistics,
including the following well-known rank statistics:

• a` = `: Wilcoxon Rank Sum (WRS) statistic,
which is an affine function of the Area Under the
Receiver Operator Characteristic Curve (AUC)
when there are no ties in rank (that is, f such
that f(xi) 6= f(xk) ∀i 6= k).

WRS(f) = n+n− ·AUC(f) +
n+(n+ + 1)

2
.

The AUC is the fraction of correctly
ranked positive-negative pairs: AUC(f) =

1
n+n−

∑
i∈S+

∑
k∈S−

1[f(xk)<f(xi)]. The AUC,

when multiplied by constant n+n−, is the
Mann-Whitney U statistic.

• a` = ` · 1[`≥θ] for predetermined threshold θ: Re-
lated to the local AUC or partial AUC, which
looks at the area under the leftmost part of the
ROC curve only. The leftmost part of the ROC
curve is the top portion of the ranked list.

• a` = 1[`=n]: Winner Takes All (WTA), which is 1
when the top observation in the list is positively-
labeled.

• a` = 1
n−`+1 : Mean Reciprocal Rank (MRR) (as

used by Burges et al, 2006).

• a` = 1
log2(n−`+2) : Discounted Cumulative Gain

(DCG), which is used as a quality measure in
information retrieval (Järvelin and Kekäläinen,
2000).

• a` = 1
log2(n−`+2) · 1[`≥N]: DCG@N, which cuts off

the DCG after the top N.

• a` = `p for some p > 0: Similar to the P -Norm
Push, which uses `p norms to focus on the top of
the list, the same way as an `p norm focuses on
the largest elements of a vector (Rudin, 2009a).

Rank statistics have been studied in several theoret-
ical papers (e.g., Wang et al, 2013), and there are

many works that discuss how to approximately and
rapidly solve ranking and reranking problems on the
large scale (Freund et al, 2003; Tsochantaridis et al,
2005; Joachims, 2002, 2006; Cossock and Zhang, 2006;
Burges et al, 2006; Chakrabarti et al, 2008; Xu et al,
2008; Le et al, 2010; Qin et al, 2013; Ferri et al, 2002;
Qin et al, 2013; Ataman et al, 2006; Collins and Koo,
2005; Ji et al, 2006; Rudin, 2009a; Rudin and Schapire,
2009; Ertekin and Rudin, 2011). These works all use
heuristic loss functions or other approximations in or-
der to produce solutions more rapidly, possibly at the
expense of the quality of the solution, as we will dis-
cuss.

3 Why Learning-To-Rank Methods
Can Fail

Current methods for learning-to-rank optimize convex
proxies for the rank statistics we provided above. For
instance, RankBoost (Freund et al, 2003) uses the ex-
ponential loss function as an upper bound for the 0-
1 loss within the misranking error, 1[z≤0] ≤ e−z, and

minimizes
∑
i∈S+

∑
k∈S−

e−(f(xi)−f(xk)) as a proxy for
maximizing the AUC. There are algorithms that use
various other loss functions.

We prove that the exponential loss and other common
loss functions may yield poor results for some rank
statistics. In particular, the main result in this section
is as follows:

Theorem: There is a simple one-dimensional dataset
for which there exist two ranked lists (called Solution 1
and Solution 2) that are completely reversed from each
other (the top of one list is the bottom of the other
and vice versa) such that the WRS (the AUC), partial
AUC@100, DCG, MRR and hinge loss prefer solution
1, whereas the DCG@100, partialAUC@10 and expo-
nential loss all prefer Solution 2.

The proof is by construction. Along the single di-
mension x, the dataset has 10 negatives near x=3,
then 3000 positives near x=1, then 3000 negatives
near x=0, and 80 positives near x=−10. This the-
orem means that using the exponential loss to approx-
imate the AUC, as RankBoost does, could give the
completely opposite result than desired. It also means
that using the hinge loss to approximate the partial
DCG or partial AUC could yield completely the wrong
result. Further, the fact that the exponential loss and
hinge loss behave differently also suggests that convex
losses can behave quite differently than the underlying
rank statistics that they are meant to approximate.

If we were directly to optimize the rank statistic of
interest (as we do in this paper), the problem discussed
above would vanish.

Direct Learning to Rank and Rerank

3.1 Most Learning-To-Rank Methods Have
The Problem Discussed Above

The class of CLRS includes a very wide range of rank
statistics, some of which concentrate on the top of the
list (e.g., DCG) and some that do not (e.g.,WRS), and
it is not clear which conditional linear rank statistics
(if any) from the CLRS are close to the convexified loss
functions of the ranking algorithms. RankBoost is not
the only algorithm where problems can occur, and they
can also occur for support vector machine ranking al-
gorithms (e.g., Joachims, 2002; Herbrich et al, 2000)
and algorithms like RankProp and RankNet (Caruana
et al, 1996; Burges et al, 2005). The methods of Ata-
man et al (2006), Brooks (2010), and Tan et al (2013)
have used linear relaxations or greedy methods for
learning to rank, rather than exact reranking, which
will have similar issues; if one optimizes the wrong
rank statistic, one may not achieve the correct answer.
Logistic regression is commonly used for ranking. Lo-
gistic regression minimizes:

∑n
i=1 ln

(
1 + e−yif(xi)

)
.

This loss function does not closely resemble AUC. On
the other hand, it is surprising how common it is to
use logistic regression to produce a predictive model,
and yet evaluate the quality of the model using AUC.

The fundamental premise of learning-to-rank is that
better test performance can be achieved by optimiz-
ing the performance measure (a rank statistic) on the
training set. This means that one should choose to
optimize differently for each rank statistic. However,
in practice when the same convex substitute is used to
approximate a variety of rank statistics, it directly un-
dermines this fundamental premise, and could compro-
mise the quality of the solution. If convexified rank
statistics are a reasonable substitute for rank statistics,
we would expect to see that (i) the rank statistics are
reasonably approximated by their convexified versions,
(ii) if we consider several convex proxies for the same
rank statistic (in this case AUC), then they should all
behave very similarly to each other, and similarly to
the true (non-convexified) AUC. However, as we dis-
cussed, neither of these are true.

3.2 Ties Are Problematic, Thus Use
ResolvedRank and Subrank

Dealing with ties in rank is critical when directly op-
timizing rank statistics. If a tie in rank between a
positive and negative is considered as correct, then
an optimal learning algorithm would produce the triv-
ial scoring function f(x) = constant ∀x; this solution
would unfortunately attain the highest possible score
when optimizing any pairwise rank statistic. (This
problem happens with the definitions of Clemençon
and Vayatis, 2008).

We need to encourage our ranking algorithm not to
produce ties in score, and thus in rank. To do this, we
pessimistically consider a tie between and positive and
a negative as a misrank. We will use two definitions of
rank within the CLRS – ResolvedRanks and Subranks.
For ResolvedRanks, when negatives are tied with pos-
itives, we force the negatives to be higher ranked. For
Subranks, we do not force this, but when we optimize
the CLRS, we will prove that ties are resolved this way
anyway. The assignment of ResolvedRanks and Sub-
ranks are not unique, there can be multiple ways to
assign ResolvedRanks or Subranks for a set of obser-
vations.

We define the Subrank by the following formula:

Subrank(f(xi)) =

n∑
k=1

1[f(xk)<f(xi)], ∀i = 1, . . . , n.

The Subrank of observation i is the number of obser-
vations that score strictly below it. Subranks range
from 0 to n− 1 and the CLRS becomes:

CLRSSubrank(f) =

n∑
i=1

yi

n∑
`=1

1[Subrank(f(xi))=`−1] · a`.

Observations with equal score have tied Subranks. Re-
solvedRanks are defined as follows, where tied ranks
are resolved pessimistically.

ResolvedRanks obey: (i) The ResolvedRank of an ob-
servation is greater than or equal to its Subrank. (ii)
If a positive observation and a negative observation
have the same score, then the negative observation is
given a higher ResolvedRank. (iii) Each possible Re-
solvedRank, 0 through n−1, is assigned to exactly one
observation.

The SubRanks and ResolvedRanks are equal to each
other when there are no ties in score. We then have
the CLRS with ResolvedRanks as:

CLRSResolvedRank(f)

=

n∑
i=1

yi

n∑
`=1

1[ResolvedRank(f(xi))=`−1] · a`.

The ResolvedRanks are the quantity of interest, as op-
timizing them will provide a scoring function with min-
imal misranks and minimal ties between positives and
negatives.

4 Maximize the Regularized CLRS
with ResolvedRanks

In the supplement we produce two formulations – one
for optimizing the regularized CLRS with Resolve-
dRanks, and the other for optimizing the regularized

Cynthia Rudin, Yining Wang

CLRS with Subranks. Here we describe only the Re-
solvedRanks formulation, though the Subrank formu-
lation would be used for the reranking step.

We would like to optimize the general CLRS, for any
choices of the a`’s, where we want to penalize ties in
rank between positives and negatives, and we would
also like a full ranking of observations. Thus, we will
directly optimize

CLRSResolvedRank(f) + C · Regularizer(f)

for our reranking algorithm. Our hypothesis space is
the space of linear scoring functions f(xi) = wTxi,
where w ∈ Rd.

max
w∈Rd

CLRSResolvedRank(w)− C‖w‖0

= max
w∈Rd

n∑
i=1

yi

n∑
`=1

1[ResolvedRank(wTxi))=`−1] · a` − C‖w‖0.

Nonlinearities can be incorporated as usual by includ-
ing additional variables, such as indicator variables
or nonlinear functions of the original variables. We
optimize over choices for vector w. Building up to
the formulation, we will create the binary variable
ti` so that it is 1 for ` ≤ ResolvedRank(f(xi)) + 1
and 0 otherwise. That is, if observation i has Re-
solvedRank equal to 5, then ti1, ..., ti6 are all 1 and
ti7, ..., tin are 0. Then

∑n
`=1(a`−a`−1)ti` is a telescop-

ing sum for ` ≤ResolvedRank(f(xi))+1. When we de-
fine a0 = 0, the sum reduces to aResolvedRank(f(xi))+1,
or:

∑n
`=1 1[ResolvedRank(f(xi))=`−1] ·a`. We multiply by

yi and sum to produce the CLRSResolvedRank. Doing
this, CLRSResolvedRank becomes:

n∑
i=1

yi

n∑
`=1

(a` − a`−1)ti` where a0 = 0.

By definition ti1 = 1 for all i, so we can simplify the
CLRSResolvedRank function above to:∑

i∈S+

(
n∑
`=2

(a` − a`−1)ti` + a1

)

= |S+|a1 +
∑
i∈S+

n∑
`=2

(a` − a`−1)ti`.

Note that the differences a`−a`−1 are all nonnegative.
Only when they are strictly positive is a contribution
made to the CLRSResolvedRank function. Thus, we in-
troduce notation ã` = a`− a`−1 and Sr = {` ≥ 2 : ã >
0}. The CLRSResolvedRank becomes:

|S+|a1 +
∑
i∈S+

∑
`∈Sr

ã`ti`. (2)

We will maximize this, which means that the ti`’s will
be set to 1 when possible, because the ã`’s in the

sum are all positive. When we maximize, the constant
|S+|a1 term can be omitted. We define integer vari-
ables ri ∈ [0, n − 1] to represent the ResolvedRanks
of the observations. Variables ri and ti` are related
in that ti` can only be 1 when ` ≤ ri + 1, implying
ti` ≤ ri

`−1 . We use linear scoring functions, so the

score of instance xi is wTxi. Variables zik are indica-
tors of whether the score of observation i is above the
score of observation k. Thus we want to have zik = 1 if
wTxi > wTxk and zik = 0 otherwise. Beyond this we
want to ensure no ties in score, so we want all scores
to be at least ε apart. Thus we have derived our first
ranking algorithm, which maximizes the regularized
CLRS using ResolvedRanks.

argmax
w,γj ,zik,ti`,ri∀i,k,`,j

∑
i∈S+

∑
`∈Sr

ãlti` − C
∑
j

γj s.t.(3)

zik ≤ wT (xi − xk) + 1− ε, ∀i, k = 1, . . . , n, (4)

zik ≥ wT (xi − xk), ∀i, k = 1, . . . , n, (5)

γj ≥ wj (6)

γj ≥ −wj (7)

ri − rk ≥ 1 + n(zik − 1), ∀i, k = 1, . . . , n, (8)

rk − ri ≥ 1− nzik, ∀i ∈ S+, k ∈ S−, (9)

rk − ri ≥ 1− nzik, ∀i, k ∈ S+, i < k, (10)

rk − ri ≥ 1− nzik, ∀i, k ∈ S−, i < k, (11)

ti` ≤
ri

`− 1
, ∀i ∈ S+, ` ∈ Sr, (12)

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

0 ≤ ri ≤ n− 1, ∀i = 1, . . . , n, (13)

zik ∈ {0, 1} ∀i, k = 1, . . . , n,

ti` ∈ {0, 1} ∀i ∈ S+, ` ∈ Sr, (14)

γj ∈ {0, 1}∀j ∈ {1, ...d}. (15)

To ensure that solutions with ranks that are close to-
gether are not feasible, Constraint (4) forces zik = 0 if
wTxi −wTxk < ε, and Constraint (5) forces zik = 1
if wTxi − wTxk > 0. Thus, a solution where any
two observations have a score difference above 0 and
less than ε is not feasible. (Note that these constraints
alone do not prevent a score difference of exactly 0; for
that we need the constraints that follow.) Constraints
(6) and (7) define the γj ’s to be indicators of nonzero
coefficients wj . Constraints (8)-(11) are the “tie reso-
lution” equations. Constraint (8) says that for any pair
(xi,xk), if the score of i is larger than that of k so that
zik = 1, then ri ≥ rk+1. That handles the assignment
of ranks when there are no ties, so now we need only
to resolve ties in the score. We have Constraint (9)
that applies to positive-negative pairs: when the pair is
tied, this constraint forces the negative observation to
have higher rank. Similarly, Constraints (10) and (11)
apply to positive-positive pairs and negative-negative
pairs respectively, and state that ties are broken lexi-

Direct Learning to Rank and Rerank

cographically, that is, according to their index in the
dataset. We discussed Constraint (12) earlier, which
provides the definition of ti` so that ti` = 1 whenever
` ≤ ri + 1. Also we force the wj ’s to be between -1
and 1 so its values do not go to infinity and so that
the ε values are meaningful, in that they can be con-
sidered relative to the maximum possible range of wj .
The novelty of this formulation is that it is linear in
all variables, which is a challenge for a problem with
this level of complexity.

The formulation for the Subrank optimization prob-
lem maxw∈Rd CLRSSubrank(w) − C‖w‖0 is provided
in the supplement. Maximizing the Subrank problem
is much easier, since we do not want to force a unique
assignment of ranks. This means the “tie resolution”
equations are no longer present. We can directly
assign a Subrank for observation i by ri =

∑n
k=1 zik

because it is exactly the count of observations ranked
beneath observation i; that way the ri variables do
not even need to appear in the formulation.

5 Why Subranks Are Often Sufficient.

We would ultimately like to get away with solving the
Subrank problem rather than the ResolvedRank prob-
lem. As we will show, this is generally possible.

The ResolvedRank formulation above has 2d + n2 +
n+|Sr|+n variables, which is the total number of w, γ,
z, t, and r variables. The Subrank formulation on the
other hand has only 2d+n+n+n+|Sr| variables, since
we only have w, γ, z, and t. Denote the objectives as
follows, where we have f(xi) = wTxi.

GRR(f) =

n∑
i=1

yi

n∑
`=1

1[ResolvedRank(f(xi))=`−1] · a`−C‖w‖0

GSub(f) =

n∑
i=1

yi

n∑
`=1

1[Subrank(f(xi))=`−1] · a`−C‖w‖0.

The following lemma contains a basic relationship:

Lemma 1 GSub(f) ≤ GRR(f) for all f . Further,
GSub(f) = GRR(f) for all f with no ties.

We will show that any maximizer of GSub also max-
imizes GRR. This is true under a general condition,
which is that there are no exactly duplicated obser-
vations. In the first part of the proof, we consider
whether there are maximizers of GRR that have no ties
in score, that is, solutions w where f(xi) 6= f(xk) for
any two observations i and k. Assuming such solutions
exist, we then show in Theorem 1 that any maximizer
of GSub is also a maximizer of GRR.

Theorem 1 Assume that the set argmaxfGRR(f)

contains at least one function f having no ties in score.
Then any f∗ such that f∗ ∈ argmaxfGSub(f) also
obeys f∗ ∈ argmaxfGRR(f).

Thus, if there are no ties, a maximizer of GSub is also a
maximizer of GRR. One of the main steps in the proof
of this theorem is:

Lemma 2 If we are given f ∈ argmaxfGRR(f) that

yields a scoring function f(x) = wTx with ties, it
is possible to construct a perturbed scoring function
f̂ that: (i) preserves all pairwise orderings, f(xi) >

f(xk) ⇒ f̂(xi) > f̂(xk), (ii) has no ties, f̂(xi) 6=
f̂(xk) for all i, k. (iii) has ‖w‖0 = ‖ŵ‖0. This result
holds whenever no observations are duplicates of each
other, xi 6= xk ∀i, k.

Here is the main result about the Subrank and Re-
solvedRank. It says that if there are no duplicated
observations, then there are no ties, and thus a maxi-
mizer of GSub is also a maximizer of GRR.

Theorem 2 Given f∗ ∈ argmaxfGSub(f), then f∗ ∈
argmaxfGRR(f). This holds when there are no dupli-
cated observations, xi 6= xk ∀i, k where i 6= k.

The result in Theorem 2 shows why optimizing GSub is
sufficient to obtain the maximizer of GRR to use in the
reranking algorithm. These theoretical results show
why the Subrank formulation is sufficient to solve
the ResolvedRank formulation. The proofs of each
theorem requires several lemmas proven over several
pages, and are thus relegated to the supplement.

6 Empirical Discussion of
Learning-To-Rank.

Table 1 illustrates that there are many datasets where
reranking using the Subrank formulation can sub-
stantially improve the quality of the solution. The
datasets we used were: ROC Flexibility (which was de-
signed to show differences in rank statistics, available
from Rudin, 2009b); Abalone19 (growth of sea crea-
tures, Alcalá-Fdez et al, 2011); UIS from the UMass
AIDS Research Unit, which contains patient informa-
tion including drug use history, and the label repre-
sents whether the patient remained drug free for 12
months afterwards (Hosmer et al, 2013); Travel, which
is from a transportation survey between 3 Australian
cities (Hosmer et al, 2013); NHANES, which considers
prediction of obesity (Hosmer et al, 2013); and Gaus-
sians, which is similar to the dataset discussed earlier
about why ranking methods can fail. We present com-
parative results with several baseline ranking meth-

Cynthia Rudin, Yining Wang

ods, namely Logistic Regression (LR), Support Vector
Machines (SVM), RankBoost (RB), and the P-Norm
Push for p = 2 and for the Subrank MIP formula-
tions at 4 different levels of the cutoff K for rerank-
ing. For the SVM, we tried regularization parameters
10−1, 10−2, . . ., 10−6 and reported the best. We chose
datasets with the right level of imbalance so that not
all of the top observations belong to a single class; this
ensures the rank statistics are meaningful at the top
of the list. For the MIP-based methods, we used lo-
gistic regression as the base ranker, and the reranker
was learned from the top K. We varied K between 50,
100, 150, and we also used the full list. An exception
is made for the Abalone19 data set, for which K varies
between 250, 500 and 750 instead because Abalone19 is
a highly imbalanced data set. We stopped the compu-
tation after 2 hours for each trial (1 hour for the ROC
flexibility dataset), which gives a higher chance for
the lower-K rerankers to solve to optimality. Most of
the K=50 experiments for the ROC flexibility dataset
solved to optimality within 5 minutes. The reported
means and standard deviations were computed over 10
randomly chosen training and test splits. We chose to
evaluate according to the DCG measure as it is used
heavily in information retrieval applications. Table 1
shows the results of our experiments, where we high-
lighted the best algorithm for each dataset on both
training and test in bold, and used italics to represent
test set results that are not statistically significantly
worse than the best algorithm according to a matched
pairs t-test. The smaller K models performed consis-
tently well on these data, achieving the best test per-
formance on all of these datasets. On some datasets,
we see a∼10% average performance improvement from
reranking; on the Travel dataset, the K=50 reranking
model had superior results over all of the baselines
uniformly across all 10 trials.

Thus our first observation is: Observation 1: There
are some datasets where reranking can substantially
improve the quality of the solution.

The supplement has several other experiments, illus-
trating the following observations.

Observation 2: There is a tradeoff between computa-
tion and quality of solution. Specifically, if the number
of elements to rerank (denoted by K) is too small, the
solution will not generalize as well, and if the number
of elements K is too large, we will not be able to suffi-
ciently solve the reranking problem within the allotted
time, and the solution again could suffer.

Observation 3: There are some datasets for which
the variance of the result is larger than the differ-
ences in the rank statistics themselves. These are cases
where better relative training values do not necessar-

ily lead to better relative test values. In these cases
we do not think it is worthwhile to use ranking al-
gorithms at all, let alone reranking algorithms. For
these datasets, logistic regression may suffice. The
cases where reranking/ranking makes a difference are
cases where the variance of the training and test val-
ues are small enough that we can reliably distinguish
between the different rank statistics.

Observation 4: As long as the margin parameter ε is
sufficiently small without being too small so that the
solver will not recognize it, the quality of the solution is
maintained. The regularization parameter C also can
have an influence on the quality of the solution, and
it is useful not to over-regularize or under-regularize.
Our experiments show that if ε is too large, the solver
will not be able to force all of the inequalities to be
strictly satisfied with margin ε. This could force many
good solutions to be considered infeasible and this may
ruin the quality of the solution. It could also cause
problems with convergence of the optimization prob-
lem. When ε is smaller, it increases the size of the fea-
sible solution space, so the problem is easier to solve.
On the other hand, if ε is too small, the solver will
have trouble recognizing the inequality and may have
numerical problems.

Observation 5: Proving optimality takes longer than
finding a reasonable solution. Usually a good solution
is found within a few minutes, which is an appropriate
timescale for maintenance applications.

7 Conclusion

We discussed why current methods for ranking can fail,
and presented new approaches to mitigate these seri-
ous issues. We proved an analytical reduction from the
problem we want to solve (the ResolvedRank formula-
tion) to a much more tractable problem (the Subrank
formulation). We created mixed integer linear pro-
grams that are solvable for many practical problems
(e.g., maintenance prioritization), and showed promis-
ing empirical results for reranking.

References

Alcalá-Fdez J, Fernandez A, Luengo J, J Derrac SG,
Sánchez L, Herrera F (2011) KEEL data-mining software
tool: Data set repository, integration of algorithms and
experimental analysis framework. Journal of Multiple-
Valued Logic and Soft Computing 17(2–3):255–287

Ataman K, Street WN, Zhang Y (2006) Learning to
rank by maximizing AUC with linear programming. In:
Proc. International Joint Conference on Neural Net-
works (IEEE IJCNN)

Brooks JP (2010) Support vector machines with the ramp
loss and the hard margin loss. Operations Research
59(2):467 – 479

Direct Learning to Rank and Rerank

T
ab

le
1:

D
at

as
et

s
fo

r
w

h
ic

h
re

ra
n

k
in

g
ca

n
m

a
k
e

a
d

iff
er

en
ce

B
a
se

li
n
e

m
et

h
o
d
s

M
IP

-b
a
se

d
m

et
h
o
d
s

D
a
ta

se
t

L
R

S
V

M
R

B
P

-n
o
rm

P
u
sh

K
=

5
0

K
=

1
0
0

K
=

1
5
0

F
u
ll

L
is

t

R
O

C
tr

a
in

3
1
.2

1
±

1
.6

5
3
0
.9

4
±

1
.5

7
2
9
.0

0
±

1
.3

9
3
1
.3

3
±

3
1
.4

3
3
1
.9
6
±

1
.3
2

3
1
.8

4
±

1
.3

6
3
1
.6

5
±

1
.1

2
2
8
.4

3
±

1
.8

0
te

st
3
1
.3

5
±

1
.4

8
3
1
.1

0
±

1
.6

3
2
9
.5

7
±

1
.4

3
3
1
.4

3
±

1
.6

1
3
2
.1
6
±

1
.3
1

3
2
.0
9
±

1
.3
1

3
1
.7
4
±

1
.6
5

2
8
.9

6
±

2
.4

0

A
b
a
lo

n
e1

9
a

tr
a
in

3
.6

3
±

0
.4

3
3
.4

1
±

0
.4

7
3
.4

0
±

0
.6

5
3
.4

4
±

0
.4

7
4
.8
9
±

0
.5
8

4
.4

5
±

0
.5

0
4
.1

3
±

0
.5

3
2
.5

4
±

0
.3

5
te

st
2
.9

6
±

0
.4

2
3
.0

2
±

0
.5

3
2
.6

6
±

0
.4

9
3
.0

3
±

0
.5

0
3
.0
8
±

0
.4
9

2
.8
9
±

0
.3
5

2
.7
6
±

0
.3
8

2
.4

2
±

0
.4

8

U
IS

tr
a
in

1
8
.8

6
±

1
.3

2
1
8
.4

6
±

1
.3

8
1
9
.4

4
±

1
.4

4
1
8
.7

8
±

1
.4

0
2
0
.4
5
±

1
.2
3

1
9
.7

6
±

1
.2

7
1
9
.2

6
±

1
.0

5
1
8
.8

4
±

1
.4

4
te

st
1
7
.8

8
±

1
.1

1
1
7
.8

1
±

1
.2

1
1
7
.7

0
±

1
.4

0
1
7
.8
9
±

1
.1
3

1
8
.0
0
±

1
.3
1

1
8
.6
4
±

1
.5
1

1
7
.7
9
±

1
.7
3

1
7
.8
9
±

0
.6
7

T
ra

v
el

tr
a
in

2
8
.1

6
±

1
.6

0
2
7
.5

9
±

1
.6

1
2
6
.5

7
±

1
.6

0
2
8
.0

9
±

1
.6

2
2
8
.3
0
±

1
.6
3

2
8
.2

4
±

1
.5

6
2
7
.1

2
±

1
.4

5
2
6
.9

4
±

1
.3

6
te

st
2
7
.3

2
±

1
.7

0
2
6
.8

1
±

1
.7

6
2
4
.9

5
±

1
.6

3
2
7
.2

4
±

1
.6

6
2
7
.6
1
±

1
.7
0

2
7
.3
9
±

1
.6
0

2
6
.0

0
±

2
.2

6
2
6
.3

1
±

1
.8

3

N
H

A
N

E
S

tr
a
in

1
4
.6

9
±

1
.6

3
1
3
.8

3
±

1
.8

7
1
3
.7

5
±

2
.0

1
1
4
.4

6
±

1
.5

7
1
5
.4
8
±

1
.6
9

1
5
.0

2
±

1
.9

3
1
4
.7

3
±

1
.5

9
1
3
.8

7
±

1
.2

5
te

st
1
3
.0
6
±

1
.7
4

1
2
.9
8
±

1
.7
9

1
2
.1

0
±

1
.7

5
1
3
.1
8
±

1
.8
2

1
3
.2
6
±

1
.5
0

1
2
.7
1
±

1
.6
1

1
2
.9
4
±

1
.5
5

1
3
.0
9
±

1
.8
2

P
im

a
tr

a
in

3
5
.5

0
±

1
.6

6
3
5
.3

0
±

1
.6

1
3
5
.8
0
±

1
.4
4

3
5
.6

4
±

1
.6

7
3
5
.7

5
±

1
.6

7
3
5
.4

3
±

1
.6

9
3
4
.8

5
±

1
.9

6
3
4
.7

7
±

2
.0

3
te

st
3
4
.1
8
±

1
.8
1

3
4
.0
3
±

1
.8
3

3
3
.8

3
±

1
.6

5
3
4
.2
4
±

1
.8
2

3
4
.4
4
±

1
.7
6

3
3
.5

6
±

1
.8

7
3
3
.7

2
±

2
.2

1
3
3
.6
5
±

2
.0
1

G
a
u
ss

ia
n
s

tr
a
in

6
9
.2

5
±

2
.7

0
6
9
.2

8
±

2
.7

0
7
1
.3

1
±

2
.1

5
6
9
.2

4
±

2
.7

0
7
1
.7

1
±

2
.2

2
7
1
.7
6
±

2
.1
8

7
1
.5

8
±

2
.2

9
6
4
.7

0
±

2
.5

3
te

st
6
4
.6

9
±

2
.4

5
6
4
.7

3
±

2
.4

5
6
7
.1

3
±

2
.0

6
6
4
.6

5
±

2
.4

3
6
8
.0
3
±

2
.2
7

6
7
.9
1
±

2
.2
7

6
7
.7
9
±

2
.3
0

5
9
.8

9
±

2
.2

6

a
W

e
u
se

K
=

2
5
0
,
K

=
5
0
0

a
n
d
K

=
7
5
0

fo
r

th
is

d
a
ta

se
t

b
ec

a
u
se

it
is

h
ig

h
ly

im
b
a
la

n
ce

d
.

Burges C, Shaked T, Renshaw E, Lazier A, Deeds M,
Hamilton N, Hullender G (2005) Learning to rank using
gradient descent. In: Proc. 22nd International Confer-
ence on Machine Learning (ICML)

Burges CJ, Ragno R, Le QV (2006) Learning to rank with
nonsmooth cost functions. In: Proc. Advances in Neural
Information Processing Systems (NIPS), pp 395–402

Caruana R, Baluja S, Mitchell T (1996) Using the future to
“sort out” the present: Rankprop and multitask learn-
ing for medical risk evaluation. In: Advances in Neural
Information Processing Systems (NIPS), vol 8, pp 959–
965

Chakrabarti S, Khanna R, Sawant U, Bhattacharyya
C (2008) Structured learning for non-smooth ranking
losses. In: Proc. 14th ACM SIGKDD international
conference on Knowledge discovery and data mining
(KDD), pp 88–96

Chang A, Rudin C, Bertsimas D (2010) A discrete op-
timization approach to supervised ranking. In: Proc.
INFORMS 5th Annual Workshop on Data Mining and
Health Informatics

Chang A, Rudin C, Bersimas D (2011) Integer optimization
methods for supervised ranking. Operations Research
Center Working Paper Series OR 388-11, MIT

Chang A, Rudin C, Cavaretta M, Thomas R, Chou G
(2012) How to reverse-engineer quality rankings. Ma-
chine Learning 88:369–398

Clemençon S, Vayatis N (2008) Empirical performance
maximization for linear rank statistics. Proc Advances
in Neural Information Processing Systems (NIPS) 21

Collins M, Koo T (2005) Discriminative reranking for nat-
ural language parsing. Journal of Association for Com-
putational Linguistics 31(1):25–70

Cossock D, Zhang T (2006) Subset ranking using regres-
sion. In: Conference on Learning Theory (COLT), pp
605–619

Ertekin Ş, Rudin C (2011) On equivalence relationships
between classification and ranking algorithms. Journal
of Machine Learning Research 12:2905–2929

Ferri C, Flach P, Hernández-Orallo J (2002) Learning de-
cision trees using the area under the ROC curve. In:
Proc. 19th International Conference on Machine Learn-
ing (ICML), Morgan Kaufmann, pp 139–146

Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient
boosting algorithm for combining preferences. Journal of
Machine Learning Research 4:933–969

Herbrich R, Graepel T, Obermayer K (2000) Large mar-
gin rank boundaries for ordinal regression. Advances in
Large Margin Classifiers

Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied
Logistic Regression: Third Edition. John Wiley & Sons
Inc.

Jain V, Varma M (2011) Learning to re-rank: Query-
dependent image re-ranking using click data. In: Proc.
20th International Conference on World Wide Web
(WWW), pp 277–286

Järvelin K, Kekäläinen J (2000) IR evaluation methods for
retrieving highly relevant documents. In: Proc. 23rd An-
nual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp 41–48

Cynthia Rudin, Yining Wang

Ji H, Rudin C, Grishman R (2006) Re-ranking algorithms
for name tagging. In: Proc. HLT-NAACL Workshop on
Computationally Hard Problems and Joint Inference in
Speech and Language Processing, pp 49–56

Joachims T (2002) Optimizing search engines using click-
through data. In: Proc. Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD)

Joachims T (2006) Training linear svms in linear time. In:
Proc. 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp 217–
226

Kang C, Wang X, Chen J, Liao C, Chang Y, Tseng B,
Zheng Z (2011) Learning to re-rank web search results
with multiple pairwise features. In: Proc. Fourth Inter-
national Conference on Web Search and Web Data Min-
ing (WSDM)

Kessler JS, Nicolov N (2009) Targeting sentiment expres-
sions through supervised ranking of linguistic configura-
tions. In: Proceedings of the Third International Con-
ference on Weblogs and Social Media (ICWSM)

Kong D, Saar-Tsechansky M (2013) Collaborative infor-
mation acquisition for data-driven decisions. Machine
Learning, Special Issue on ML for Science and Society

Le QV, Smola A, Chapelle O, Teo CH (2010) Optimiza-
tion of ranking measures. Journal of Machine Learning
Research pp 1–48

Li Z, Zhang MB, Wang Y, Chen F, Whiffin V, Taib R,
Vicky W, Wang Y (2013) Water pipe condition assess-
ment: A hierarchical beta process approach for sparse
incident data. Machine Learning, Special Issue on ML
for Science and Society

Menon AK, Jiang X, Kim J, Vaidya J, Ohno-Machado
L (2013) Detecting inappropriate access to electronic
health records using collaborative filtering. Machine
Learning, Special Issue on ML for Science and Society

Oza N, Castle JP, Stutz J (2009) Classification of aeronau-
tics system health and safety documents. IEEE Transac-
tions on Systems, Man and Cybernetics, Part C 39:1–11

Potash E, Brew J, Loewi A, Majumdar S, Reece A, Walsh
J, Rozier E, Jorgenson E, Mansour R, Ghani R (2015)
Predictive modeling for public health: Preventing child-
hood lead poisoning. In: Proc. 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD)

Qin T, Liu T, Li H (2013) A general approximation frame-
work for direct optimization of information retrieval
measures. Information Retrieval 13(4):375–397

Rudin C (2009a) The P-Norm Push: A simple convex rank-
ing algorithm that concentrates at the top of the list.
Journal of Machine Learning Research 10:2233–2271

Rudin C (2009b) ROC Flexibility Data.
https://users.cs.duke.edu/
∼cynthia/code/ROCFlexibilityData.html

Rudin C, Schapire RE (2009) Margin-based ranking and an
equivalence between AdaBoost and RankBoost. Journal
of Machine Learning Research 10:2193–2232

Rudin C, Passonneau R, Radeva A, Dutta H, Ierome S,
Isaac D (2010) A process for predicting manhole events
in Manhattan. Machine Learning 80:1–31

Rudin C, Waltz D, Anderson RN, Boulanger A, Salleb-
Aouissi A, Chow M, Dutta H, Gross P, Huang B, Ierome
S, Isaac D, Kressner A, Passonneau RJ, Radeva A, Wu
L (2012) Machine learning for the New York City power
grid. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 34(2):328–345

Tan M, Xia T, Guo L, Wang S (2013) Direct optimiza-
tion of ranking measures for learning to rank models.
In: Proc. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp 856–
864

Tsochantaridis I, Joachims T, Hofmann T, Altun Y, Singer
Y (2005) Large margin methods for structured and inter-
dependent output variables. Journal of Machine Learn-
ing Research 6:1453–1484

Wang Y, Wang L, Li Y, He D, Liu TY (2013) A theoret-
ical analysis of ndcg type ranking measures. In: Proc.
26th Annual Conference on Learning Theory (COLT),
PMLR, vol 30, pp 25–54

Xu J, Liu TY, Lu M, Li H, Ma WY (2008) Directly opti-
mizing evaluation measures in learning to rank. In: Proc.
31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval

