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Supplementary Material

7.1 Further line search figures
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Figure 8: Line search in the natural parameterization across 5 splits.
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Figure 9: Line search in the natural-sqrt parameterization across 5 splits.
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Figure 10: Line search in the natural-log parameterization across 5 splits.
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Figure 11: Line search in the mean/var parameterization across 5 splits.
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Figure 12: Line search in the mean/var-sqrt parameterization across 5 splits.
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Figure 13: Line search in the mean/var-log parameterization across 5 splits.
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7.2 Experimental details

Implementation. All experiments were run on a single desktop machine with a GTX 1070 GPU. The code was
written in GPflow (Matthews et al., 2017), a GP library built on tensorflow.

Kernel. For all experiments we used the Matern 5
2 kernel, with the (single) lengthscale initialized to the square

root of the data dimension. The kernel variance was initalized to 2, except for mnist, where we initialized to 10.

Inducing points. We used 100 inducing points, initialized with k-means. The variational parameters were
intialized to mean zero and identity covariance.

Jitter. We used a small jitter level of 10≠10 for all experiments.

Data normalization. For all datasets apart from mnist we scaled the inputs to have zero mean and unit
variance in the training data. We applied the same scaling to the test data. For mnist we used the standard
scaling to the unit interval.

For the Gaussian and student-t likelihoods we scaled the outputs to have zero mean and unit standard deviation
in the training data. The beta and ordinal likelihood are described in the main text.

7.3 The forward-mode trick

We describe how to obtain a forward-mode derivative using a reverse-mode library. The trick is due to Townsend
et al. (2017) and this explanation closely follows https://j-towns.github.io/2017/06/12/A-new-trick.html.

Reverse-mode di�erentiation is the successive application of the vector-Jacobian product (vjp) operation. The
vjp operation left multiplies a vector u with the Jacobian of f with respect to its input x:

vjp(f , x, u) = u€ ˆf
ˆx =

ÿ

i

ui
ˆfi

ˆx .

The vjp operation can be used to implement the gradient of a function L(f(g(x))) by using the chain rule
ˆL
ˆx

= ˆL
ˆf

ˆf

ˆg

ˆg

ˆx

and successively applying the vjp operation from left to right, i.e.,

u = vjp(L, f , 1) ,

u Ω vjp(f , g, u) ,

u Ω vjp(g, x, u) .

After these operations u = ˆL
ˆx

. Automatic reverse-mode di�erentiation libraries implement vjp for all basic
operations they support. Compositions of basic operations can be computed as above. Note that the values of f
and g need to be computed first, which requires a forward pass through the function.

Forward-mode di�erentiation makes use of a Jacobian-vector product operation (jvp), defined as

jvp(f , x, u) = ˆf
ˆxu =

ÿ

i

ˆf
ˆxi

ui .

Using the jvp operation, the chain rule can be implemented by successive application of jvp, working from right
to left, i.e.,

u = jvp(g, x, 1) ,

u Ω jvp(f , g, u) ,

u Ω jvp(L, f , u) ,

where 1 is a vector of ones with the same shape as x.

To implement natural gradients in any parameterization we require the jvp operation, but common libraries such
as Tensorflow implement only vjp (i.e. reverse mode). The trick to achieve jvp from vjp is to introduce a dummy
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variable v and define g(v) = vjp(f , x, v). We then use vjp again to find the gradient of g with respect to v,
passing in the vector u to be pushed forward: vjp(g, v, u). Since g is linear in v , we have

vjp(g, v, u) = u€ ˆ

ˆv

3
v€ ˆf

ˆx

4
= u€

3
ˆf
ˆx

4€
.

This is exactly the transpose of jvp(f , x, u). Therefore, any reverse-mode di�erentiation library can be used to
compute forward-mode derivatives.


