
Supplementary material for Paper “Matrix-normal models
for fMRI analysis”
Anonymous Author(s)

1 Appendix A : Matrix-normal intersubject functional connectivity and
simultaneous modeling

Here we derive matrix-normal variants of two additional models from the literature,
intersubject functional connectivity (Simony et al., 2016), and simultaneous modeling
(Turner et al., 2013, 2014, 2016).

1.1 Matrix-normal intersubject functional connectivity
The goal of the ISFC method is to estimate a “shared stimulus-induced covariance ma-
trix” in fMRI data as a way to measure functional connectivity between brain regions
while abstracting over subject-specific connectivity patterns and extracting only the pat-
terns that are consistent across subjects. The intuition behind the method is simple:
it computes pairwise correlations between each subject’s patterns and averages them.
To prove that the method is indeed free of subject-specific bias, Simony and colleagues
frame their model in terms of a gaussian generative model. Here is this generative model,
rewritten in the matrix-normal formalism:

A | C ∼ MN (0,C, I) (1)
Di | σ2D ∼ MN (0, σ2DI, I) (2)

S ∼ MN (0, I, I) (3)
E | Q ∼ MN (0,Q, I) (4)

Xi = (A+Di)S+Ei (5)

The “shared stimulus-induced covariance matrix” the method is intended to estimate
is C, the row covariance of the projection matrix into latent space. The somewhat re-
dundant formulation is needed to motivate the closed-form estimator used in the original
method. However, the formulation required for the closed-form estimator places severe
restrictions on the projection matrix S, both in terms of its rank (which must be full)
and distribution (which is independent standard normal). We instead simplify the model

1

and integrate out the projection. Let Wi = A+Di, and rewrite:

A | C ∼ MN (0,C, I) (6)
Wi | A, σ2D ∼ MN (A, σ2DI, I) (7)

S ∼ MN (0, I, I) (8)
Xi | W,S,Q ∼ MN (WiS,Q, I) (9)

Then marginalize A:

Wi | C, σ2D ∼ MN (0,C+ σ2DI, I) (10)
S ∼ MN (0, I, I) (11)

Xi | W,S,Q ∼ MN (WiS,Q, I) (12)

The resultant model is remarkably similar to MN-SRM: ISFC models the row (spa-
tial) noise covariance as full-rank whereas MN-SRM models it as diagonal. MN-SRM
models the shared response covariance as full-rank but ISFC models it as diagonal.
Finally, and most importantly, MN-SRM models the projection into latent space as or-
thonormal whereas ISFC is specifically interested in its covariance (which MN-SRM can
in fact estimate).

1.2 Matrix-normal simultaneous modeling
The simultaneous modeling framework (Turner et al., 2015) is organized around attempts
to estimate the joint covariance of the vector {ψ1, ψ2, . . . , ψp, ϕi, ϕ2, . . . , ϕk}, which is a
combined vector of cognitive model parameters ψ and features extracted from fMRI
signal ϕ. As it is a broad framework, a number of specific instances have been provided,
with specific cognitive models including accumulator models and signal detection theory
models, and feature extraction mechanisms including ICA, PCA, and other methods.

There are a number of challenges with the current formulation of simultaneous mod-
eling that we address: first, while the formulation in terms of correlations between brain
and behavior allows for intuitive interpretation, it makes it challenging to regularize the
model, or place priors on brain-behavior relationships, except for the special case of com-
plete independence. Second, by performing the feature extraction in an unsupervised
way, there is no guarantee that the features extracted will be relevant to the behavior
or cognitive model; on the other hand, applying the framework to whole-brain data is
not generally tractable, as it involves estimating a sizable covariance matrix by MCMC.

We show how matrix-normal simultaneous modeling can address all of these chal-
lenges. Since SM is a framework rather than one specific model, and no public imple-
mentation is available, we focus on a toy example to illustrate our contribution. We
choose factor analysis as our factor model, leave the cognitive model unspecified for the
derivation, which is applicable to any cognitive model, and any linear factor model.

First, we can use properties of partitioned Gaussians to write the conditional distri-
bution of ϕ | ψ, which is a simple linear regression:

ϕi | µϕ, ℓ,Σϕ|ψ,Ψ ∼ N (µϕ +Ψℓ,Σϕ|ψ) (13)

2

As we show in the supplement, the intercepts and slopes here map directly to the full
covariance of the simultaneous modeling framework. Now we add the cognitive model
and factorization, and stack into matrix-variate form. We also add an additional design
matrix for observed stimulus features X and its coefficient matrix β:

H | Ψ ∼ Cog.(Ψ,S) (14)
Φ | β, ℓ,Σϕ|ψ,S,Ψ ∼ MN (Ψℓ+Xβ,ΣΦt,ΣΦs) (15)
Y⊤ | Φ,W,Σs,Σt ∼ MN (WΦ,Σs,Σt) (16)

This analysis combines the matrix-regression model for Φ and matrix-factor model
for Y. In this case since we only need the latent factors Φ to map to the cognitive
parameters Ψ, we can marginalize over the factor mapping W. For decoding cognitive
parameters Ψ, we do not need the regression mapping either, so we marginalize over the
coefficients, giving us a direct model from brain behavior via latent cognitive parameters
and a neural factor space:

W ∼ MN (0,Σs, I) (17)
β ∼ MN (0,ΣΦs,U) (18)
ℓ ∼ MN (0,ΣΦs,V) (19)
H | Ψ ∼ Cog.(Ψ,X) (20)
Φ | ΣΦs,ΣΦt,X,Ψ ∼ MN (0,ΣΦs,ΣΦt +X⊤UX+Ψ⊤VΨ) (21)
Y⊤ | Φ,Σs,Σt ∼ MN (0,Σs,Σt +Φ⊺Φ) (22)

Given this marginalization, both the latent neural factors and the latent cognitive
parameters appear in the model only as their inner products, and are perfectly noniden-
tifiable. Therefore, an equivalent model is a direct regression from voxels to cognitive
parameters, marginalized over the mapping. This will be true for any linear factor model
under marginalization:

H | Ψ,X ∼ Cog.(Ψ,X) (23)
Y | ΣΦs,ΣΦt,S,Ψ,U,V ∼ MN (0,Σs,Σt +XU⊤X+Ψ⊤VΨ) (24)

In this view we have arrived again at an RSA-type intuition, namely that while it
may very challenging to know the true projection from Y to Ψ, mapping them on second-
order statistics in time space can prove to be useful, especially as the dimensionality of
Y (and hence the marginalized-over mapping) grows.

With the mapping marginalized, we can still perform prediction from the model by
maximizing the likelihood of the cognitive parameters corresponding to new data given
parameters estimated previously:

Ynew | Ψ ∼ MN (M, Σ̂s,C) (25)
M = Yold(Σ̂t + Ψ̂⊤Ψ̂)−1(Ψ̂⊤Ψ) (26)
C = Σ̂t +Ψ⊤Ψ− (Ψ⊤Ψ̂)(Σ̂t + Ψ̂⊤Ψ̂)−1(Ψ̂⊤Ψ) (27)

3

This maximization rotates the inner-products of the train and test sets into the same
orientation. If the train and test sets have different numbers of TRs, we need to replace
the temporal noise covariance matrix with a kernel function, but otherwise the derivation
proceeds identically.

The resultant matrix-normal model mitigates the issues we identified previously:
first, the only thing that scales with the number of voxels is the noise model rather than
the mapping itself, allowing analysis to proceed using voxels directly assuming the noise
model is efficient enough; second, it is targeted in that it automatically identifies the
voxels most related to the cognitive model parameters; third, it is implicitly regularized
via the priors on β and ℓ. As with all MNMs, it can also simultaneously handle both
spatial and temporal noise in the fMRI signal.

2 Appendix B : Derivation of matrix normal identities
Consider the following three distributions:

Xij ∼ MN (Aij ,ΣXi,ΣXj) (28)
Yjk ∼ MN (Bjk,ΣYj ,ΣYk) (29)

Zik | Xij ,Yjk ∼ MN (XijYjk +Cik,ΣZi ,ΣZk
) (30)

We use lowercase subscripts to denote sizes, to make dimension constraints clearer.
We first use the relationship between the matrix-normal and multivariate normal dis-
tribution to rewrite the densities in vectorized form. Next, we rewrite the vectorized
product in the mean into kronecker form:

vec(Zik) | Xij ,Yjk ∼ N (vec(XijYjk +Cik),ΣZk
⊗ ΣZi) (31)

vec(Zik) | Xij ,Yjk ∼ N ((Ik ⊗Xij)vec(Yjk) + vec(Cik),ΣZk
⊗ ΣZi) (32)

We recognize the resultant distribution as following into the form y ∼ N (Mx+b,Σ).
Now, the standard gaussian marginalization identity (e.g. Bishop et al. 2006) can be
applied:

vec(Zik) | Xij ∼ N ((Ik ⊗Xij)vec(Bjk) + vec(Cik),ΣZk
⊗ ΣZi + (Ik ⊗Xij)(ΣYk

⊗ ΣYj)(Ik ⊗Xij)
⊤)

(33)

We collect terms using the mixed-product property of kronecker products:

vec(Zik) | Xij ∼ N (vec(XijBjk) + vec(Cik),ΣZk
⊗ ΣZi +ΣYk

⊗XijΣYjXij
⊤) (34)

Now, we can see that the marginal density is a matrix-variate normal only if ΣZk
=

ΣYk
– that is, the variable we’re marginalizing over has the same covariance in the

4

dimension we are not marginalizing over as the marginal density. Otherwise the density
is well-defined but not matrix-normal. If we let Σk := ΣZk

= ΣYk
, then we can factor

out that term and rewrite the marginal density as a matrix normal:

vec(Zik) | Xij ∼ N (vec(XBjk) + vec(Cik),Σk ⊗ ΣZi +Σ
k
⊗XΣYjX

⊤) (35)
vec(Zik) | Xij ∼ N (vec(XBjk) + vec(Cik),Σk ⊗ (ΣZi +XΣYjX

⊤)) (36)
Zik | Xij ∼ MN (XBjk +Cik,ΣZi +XΣYjX

⊤,Σk) (37)

Unlike the multivariate normal case, we can apply the same identity over either X or
Y, since if X ∼ MN (M,U, V) then X⊤ ∼ MN (M⊤, V, U). We write it directly below:

Z⊤
ik | Xij ,Yjk ∼ MN (Yjk

⊤Xij
⊤ +C⊤

ik,ΣZk
,ΣZi) (38)

let Σi := ΣZi = ΣXi (39)
· · · (40)

Z⊤
ik | Yjk ∼ MN (Ajk

⊤Xij
⊤ +C⊤

ik,ΣZk
+Y⊤ΣYjY,ΣZi) (41)

Zik | Yjk ∼ MN (XijAjk +Cik,ΣZi ,ΣZk
+Y⊤ΣYjY) (42)

Next, we do the same for the partitioned gaussian identity. First two vectorized
matrix-normals that form our partition:

Xij ∼ MN (Aij ,Σi,Σj) → vec[Xij] ∼ N (vec[Aij],Σj ⊗ Σi) (43)
Yik ∼ MN (Bik,Σi,Σk) → vec[Yik] ∼ N (vec[Bik],Σk ⊗ Σi) (44)[

vec[Xij]
vec[Yik]

]
∼ N

(
vec

[
Aij

Bik

]
,

[
Σj ⊗ Σi Σjk ⊗ Σi
Σkj ⊗ Σi Σk ⊗ Σi

])
(45)

We apply the standard partitioned Gaussian identity and simplify using the proper-
ties of the vec operator and the mixed product property of kronecker products:

vec[Xij] | vec[Yik] ∼ N (vec[Aij] + (Σjk ⊗ Σi)(Σ
−1
k ⊗ Σ−1

i)(vec[Yik]− vec[Bik]), (46)
Σj ⊗ Σi − (Σjk ⊗ Σi)(Σ

−1
k ⊗ Σ−1

i)(Σkj ⊗ Σi)) (47)
= N (vec[Aij] + (ΣjkΣ

−1
k ⊗ ΣiΣ

−1
i)(vec[Yik]− vec[Bik]), (48)

Σj ⊗ Σi − (ΣjkΣ
−1
k Σkj ⊗ ΣiΣ

−1
i Σi)) (49)

= N (vec[Aij] + (ΣjkΣ
−1
k ⊗ I)(vec[Yik]− vec[Bik]), (50)

Σj ⊗ Σi − (ΣjkΣ
−1
k Σkj ⊗ Σi) (51)

= N (vec[Aij] + vec[Yik −BikΣ
−1
k Σkj], (Σj − ΣjkΣ

−1
k Σkj)⊗ Σi)

(52)

5

Next, we recognize that this multivariate gaussian is equivalent to the following
matrix variate gaussian:

Xij | Yik ∼ MN (Aij + (Yik −Bik)Σ
−1
k Σkj ,Σi,Σj − ΣjkΣ

−1
k Σkj) (53)

The conditional in the other direction can be written by working through the same
algebra:

Yik | Xij ∼ MN (Bik + (Xij −Aij)Σ
−1
j Σjk,Σi,Σk − ΣkjΣ

−1
j Σjk) (54)

Finally, vertical rather than horizontal concatenation (yielding a partitioned row
rather than column covariance) can be written by recognizing the behavior of the matrix
normal under transposition:

X⊤
ji | Y⊤

ki ∼ MN (A⊤
ji +ΣjkΣ

−1
k (Y⊤

ki −B⊤
ki),Σj − ΣjkΣ

−1
k Σkj ,Σi) (55)

Y⊤
ki | X⊤

ji ∼ MN (B⊤
ki +ΣkjΣ

−1
j (X⊤

ji −A⊤
ji),Σk − ΣkjΣ

−1
j Σjk,Σi) (56)

6

3 Appendix C : Expectation Conditional Maximization (ECM) deriva-
tion for Matrix-Normal Shared Response Model

The Q function, marginalized W

X ∼ MN (WS+ b1⊤, ρ⊗ Σv,Σt) (57)
S ∼ MN (0, I,Σt) (58)
W ∼ MN (0, ρ⊗ Σv, I) (59)

L := Ep(W|X,θ′) log p(X,W | θ) =1

2
E
[
nv log |Σ−1

t |+ tv log |ρ−1|+ tn log |Σ−1
v |

− Tr
[
Σ−1
t (X−WS− b1⊤)⊤(ρ⊗ Σv)

−1(X−WS− b1⊤)
]

+ kv log |ρ−1|+ kn log |Σ−1
v | − Tr

[
Σ−1
w W⊤(ρ⊗ Σv)

−1W
]

+ k log |Σ−1
t | − Tr[Σ−1

t S⊤S]
]
+ const.θ (60)

=
1

2

[
(nv + k) log |Σ−1

t |+ v(k + t) log |ρ−1|+ n(k + t) log |Σ−1
v |

− Tr
[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S)
]

− Tr
[
Σ−1
w W′⊤(ρ⊗ Σv)

−1W′
]
− Tr[ρ−1ρ′] Tr[Σ−1

v Σ′
v] Tr[Σ

′
wS

⊤Σ−1
t S]

−Tr[ρ−1ρ′] Tr[Σ−1
v Σ′

v] Tr[Σ
−1
w Σ′

w]− Tr[Σ−1
t S⊤S]

]
+ const.θ

(61)

The sufficient statistics are:

W | X, θ ∼MN
(
W′, ρ′w ⊗ Σ′

vw,Σ
′
w

)
(62)

Σ′
w :=I− S(Σt + S⊤S)−1S⊤ = (I+ SΣ−1

t S⊤)−1 (63)
ρ′w :=ρw (64)

Σ′
vw :=Σvw (65)
W′ =(X− b1⊤)S⊤(Σt + S⊤S)−1 = (X− b1⊤)Σ−1

t S⊤Σ′
w (66)

7

3.1 Gradients for S

dSL =
1

2
d
[
−Tr

[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S)
]

(67)

−Tr[ρ−1ρ′w] Tr[Σ
−1
v Σ′

vw] Tr[Σ
′
wSΣ

−1
t S]− Tr[Σ−1

t S⊤S]
]

(68)

=
1

2

[
−2Tr

[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(W′dS)
]

(69)

−2Tr[ρ−1ρ′w] Tr[Σ
−1
v Σ′

vw] Tr[Σ
′
wdSΣ

−1
t S⊤]−1Σ′

w]− 2Tr[Σ−1
t S⊤dS]

]
(70)

=− Tr
[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1W′dS
]

(71)

− Tr[ρ−1ρ′w] Tr[Σ
−1
v Σ′

vw] Tr[Σ
−1
t S⊤Σ′

wdS]− Tr[Σ−1
t S⊤dS] (72)

(73)
∂L
∂S

=W′⊤(ρ−1 ⊗ Σ−1
v)(X− b1⊤ −W′S)Σ−1

t − Tr[ρ−1ρ′w] Tr[Σ
−1
v Σ′

vw]Σ
′
wSΣ

−1
t − SΣ−1

t

(74)
=W′⊤(ρ−1 ⊗ Σ−1

v)(X− b1⊤)− (W′⊤(ρ−1 ⊗ Σ−1
v)W′S− Tr[ρ−1ρ′w] Tr[Σ

−1
v Σ′

vw]Σ
′
wS− S

(75)
=W′⊤(ρ−1 ⊗ Σ−1

v)(X− b1⊤)− (W′⊤(ρ−1 ⊗ Σ−1
v)W′ +Tr[ρ−1ρ′w] Tr[Σ

−1
v Σ′

vw]Σ
′
w + 1)S

(76)
(77)

Ŝ = (W′⊤(ρ−1 ⊗ Σ−1
v)W′ +Tr[ρ−1ρ′w] Tr[Σ

−1
v Σ′

vw]Σ
′
w + 1)−1W′⊤(ρ−1 ⊗ Σ−1

v)(X− b1⊤)
(78)

3.2 Gradients for b

dbL =− 1

2
Tr

[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S)
]

(79)

=− Tr
[
1⊤Σ−1

t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)
−1db

]
(80)

∂L
∂b

=(ρ⊗ Σv)
−1(X− b1⊤ −W′S)Σ−1

t 1 (81)

(82)
0 =(ρ⊗ Σv)

−1(X− b1⊤ −W′S)Σ−1
t 1 (83)

b1⊤Σ−1
t 1 = (X−W′S)Σ−1

t 1 (84)

b̂ =
(X−W′S)Σ−1

t 1∑
Σ−1
t

(85)

8

3.3 Gradients for Σt

dΣ−1
t
L =

1

2
d
[
(nv + k) log |Σ−1

t |+ v(k + t) log |ρ−1|+ n(k + t) log |Σ−1
v | (86)

− Tr
[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S)
]

(87)

− Tr
[
Σ−1
w W′⊤(ρ⊗ Σv)

−1W′
]
− Tr[ρ−1ρ′] Tr[Σ−1

v Σ′
v] Tr[Σ

′
wSΣ

−1
t S⊤] (88)

−Tr[ρ−1ρ′] Tr[Σ−1
v Σ′

v] Tr[Σ
−1
w Σ′

w]− Tr[Σ−1
t S⊤S]

]
(89)

=
1

2

[
(nv + k)Tr[ΣtdΣ

−1
t]− Tr

[
dΣ−1

t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)
−1(X− b1⊤ −W′S)

]
(90)

−Tr[ρ−1ρ′] Tr[Σ−1
v Σ′

v] Tr[Σ
′
wSdΣ

−1
t S⊤]− Tr[dΣ−1

t S⊤S]
]

(91)

(92)
∂L
∂Σ−1

t

=
1

2

[
(nv + k)Σt − (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S) (93)

−Tr[ρ−1ρ′] Tr[Σ−1
v Σ′

v]S
⊤Σ′

wS− S⊤S
]

(94)

(95)

Σ̂−1
t =

(
1

nv + k
(X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S) (96)

−Tr[ρ−1ρ′] Tr[Σ−1
v Σ′

v]S
⊤Σ′

wS− S⊤S
)−1

(97)

3.4 Gradients for Σv

Here again we assume ρ is diagonal, in which case:

9

dΣ−1
v
L =d

1

2

[
(nv + k) log |Σ−1

t |+ v(k + t) log |ρ−1|+ n(k + t) log |Σ−1
v | (98)

− Tr
[
Σ−1
t (X− b1⊤ −W′S)⊤(ρ⊗ Σv)

−1(X− b1⊤ −W′S)
]

(99)

− Tr
[
Σ−1
w W′⊤(ρ⊗ Σv)

−1W′
]
− Tr[ρ−1ρ′] Tr[Σ−1

v Σ′
v] Tr[Σ

′
wS

⊤Σ−1
t S] (100)

−Tr[ρ−1ρ′] Tr[Σ−1
v Σ′

v] Tr[Σ
−1
w Σ′

w]− Tr[Σ−1
t S⊤S]

]
(101)

=
1

2

[
n(k + t)ΣvdΣ

−1
v (102)

−
∑
j

τj Tr
[
Σ−1
t (X− b1⊤ −W′S)⊤dΣ−1

v (X− b1⊤ −W′S)
]

(103)

−
∑
j

τj Tr
[
Σ−1
w W′⊤dΣ−1

v W′
]
− Tr[ρ−1ρ′] Tr[Σ′

vdΣ
−1
v] Tr[Σ′

w(I+ S⊤Σ−1
t S)]

(104)
(105)

∂L
∂Σ−1

v
=

1

2
[n(k + t)Σv (106)

−
∑
j

τj(X− b1⊤ −W′S)Σ−1
t (X− b1⊤ −W′S)⊤ (107)

−
∑
j

τjW
′Σ−1
w W′⊤ − Tr[ρ−1ρ′] Tr[Σ′

w(I+ SΣ−1
t S⊤)]Σ′

v

 (108)

(109)

Σ̂−1
v =

 1

n(k + t)

∑
j

τj(X− b1⊤ −W′S)Σ−1
t (X− b1⊤ −W′S)⊤ (110)

+
∑
j

τjW
′Σ−1
w W′⊤ − Tr[ρ−1ρ′] Tr[Σ′

w(I+ SΣ−1
t S⊤)]Σ′

v

−1

(111)

3.5 Constrained covariances
For template constraints (e.g. diagonal, blocked, banded), we can elementwise-multiply
the gradient by a template matrix, and construct the constrained update.

10

Algorithm 1 Solve x = (L0 ⊗ L1 ⊗ · · · ⊗ Ln−1)\y
1: Input: vector y, matrices L0, L1, · · ·Ln−1

2: Output: vector x
3: if n == 1 then
4: return matrix_triangular_solve(L0, y)
5: else
6: x = y
7: na = dim(L0)
8: nb = dim(L1)× dim(L2)× · · ·dim(Ln−1)
9: for i = 0 to na− 1 do

10: t = x[i ∗ nb : (i+ 1) ∗ nb]/L0[i, i]
11: x[i ∗ nb : (i+ 1) ∗ nb] = (L1 ⊗ · · · ⊗ Ln−1)\t
12: for j = i+ 1 to na− 1 do
13: x[j ∗ nb : (j + 1) ∗ nb]− = L0[j, i] ∗ t
14: end for
15: end for
16: return x
17: end if

4 Appendix D : Algorithm for solving kronecker factored matrices
In algorithm 1, we show how to efficiently solve for a lower triangular matrix that is the
kronecker product of smaller lower triangular matrices.

Since the cholesky of a kronecker product is the kronecker product of its cholesky
factors, we avoid computing the cholesky factorization of a large matrix and instead
only cholesky factorize the individual factors. Algorithm 1 is recursive: line 11 calls the
same function but with one less kronecker factor. The masked variant of the algorithm
is similar except for lines 4, 11 and 13. Lines 4 and 11 now perform matrix solves with
a mask. Line 13 multiplies L0[j, i] not with t but with t′ = (L1 ⊗ · · · ⊗ Ln−1) · x[i ∗
nb : (i + 1) ∗ nb]. t and t′ are identical when no rows and columns are masked, but
differ when some of them are masked. Solving Σ−1X now involves the following steps
- (1) Cholesky factorize the kronecker factor matrices. (2) Use algorithm 1 to solve
Z = (L0 ⊗ L1 ⊗ · · · ⊗ Ln−1)\X. (3) Apply the corresponding upper triangular variant
to solve (L0 ⊗ L1 ⊗ · · · ⊗ Ln−1)

T \Z.
We can calculate log-determinant for kronecker products as follows. After cholesky

factorization, log |Σ| = 2 ·
∑

i((log |Li|)(
∏
j,j ̸=i dim(Lj))). log |Li| is easy to calculate

for a triangular matrix Li. For masked kronecker product, the latter product term
in the previous expression is replaced by counting the number of valid rows/columns
corresponding to that element in the mask.

11

5 Appendix E : Additional null hypothesis RSA results
First, we show RSA matrices under the null hypothesis for all subjects and methods:

5 6 7 8 9

25 26 27 28 3 4

2 20 21 22 23 24

14 15 16 17 18 19

0 1 10 11 12 13

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

−10

0

10

20

Covariance

Naive RSA average matrix, null

12

5 6 7 8 9

25 26 27 28 3 4

2 20 21 22 23 24

14 15 16 17 18 19

0 1 10 11 12 13

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0.0

0.2

0.4
Covariance

BRSA average matrix, null

13

5 6 7 8 9

25 26 27 28 3 4

2 20 21 22 23 24

14 15 16 17 18 19

0 1 10 11 12 13

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0 5 10 15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

10

20

30

40

Covariance

MN−RSA average matrix, null

Notice that only for MN-RSA most of the covariances are noticeably degenerate.
This is not a scaling effect on the figure driven by the color bar, but an effect on the
underlying data, as we can see in the distribution of values in the covariance matrix for
BRSA and MN-RSA:

14

6 Appendix F : timing figures for BRSA and MN-RSA
Experiment details mentioned in main text. Note time on the log scale.

● ● ●

●

● ●

● ● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

n_voxels: 2500 n_voxels: 10000

snr_level: 0.08
snr_level: 0.32

1 2 4 1 2 4

10

1000

10

1000

Runs

T
im

e(
s)

method ● ●BRSA MN−RSA

Bibliography
E. Simony, C. J. Honey, J. Chen, O. Lositsky, Y. Yeshurun, A. Wiesel, and U. Hasson.

Dynamic reconfiguration of the default mode network during narrative comprehension.

15

Nature Communications, 7(May 2015):12141, jul 2016.

B. M. Turner, B. U. Forstmann, E.-J. Wagenmakers, S. D. Brown, P. B. Sederberg, and
M. Steyvers. A Bayesian framework for simultaneously modeling neural and behavioral
data. NeuroImage, 72:193–206, may 2013.

B. M. Turner, P. B. Sederberg, and J. L. McClelland. Bayesian analysis of simulation-
based models. Journal of Mathematical Psychology, 2014.

B. M. Turner, L. van Maanen, and B. U. Forstmann. Informing cognitive abstractions
through neuroimaging: The neural drift diffusion model. Psychological Review, 122
(2):312–336, 2015.

B. M. Turner, C. A. Rodriguez, T. M. Norcia, S. M. McClure, and M. Steyvers. Why
more is better: Simultaneous modeling of EEG, fMRI, and behavioral data. NeuroIm-
age, 128:96–115, mar 2016.

16

