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Abstract

Multivariate analysis of fMRI data has bene-
fited substantially from advances in machine
learning. Most recently, a range of prob-
abilistic latent variable models applied to
fMRI data have been successful in a variety
of tasks, including identifying similarity pat-
terns in neural data, combining multi-subject
datasets, and mapping between brain and be-
havior. Although these methods share some
underpinnings, they have been developed as
distinct methods, with distinct algorithms
and software tools. We show how the matrix-
variate normal (MN) formalism can unify
some of these methods into a single frame-
work. In doing so, we gain the ability to reuse
noise modeling assumptions, algorithms, and
code across models. Our primary theoretical
contribution shows how some of these meth-
ods can be written as instantiations of the
same model, allowing us to generalize them to
flexibly modeling structured residual covari-
ances. Our formalism permits novel model
variants and improved estimation strategies
for SRM and RSA using substantially fewer
parameters. We empirically demonstrate ad-
vantages of our two new methods: for MN-
RSA, we show up to 10x improvement in run-
time, up to 6x improvement in RMSE, and
more conservative behavior under the null.
For MN-SRM, our method grants a modest
improvement to out-of-sample reconstruction
while relaxing the orthonormality constraint
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of SRM. We also provide a software proto-
typing tool for MN models that can flexibly
reuse residual covariance assumptions and al-
gorithms across models.

1 Introduction

Functional magnetic resonance imaging (fMRI) anal-
ysis is a challenging problem for statistics and ma-
chine learning: signal-to-noise ratio for extracting sci-
entifically meaningful information is low, and physio-
logical and instrumentation noise creates correlations
in space and time that can mask signal and magnify
false alarms. Recent methods have been developed in
the statistics and machine learning community to ad-
dress these challenges, including for dimension reduc-
tion and subject-to-subject mapping [7, 16]), estima-
tion of patterns of neural similarity within and across
subjects [5, 21], and mapping from brain to behavior
via latent cognitive models [25].

These models are similar in that they seek a latent,
typically low-rank, structure in fMRI data using mul-
tivariate gaussian models. Yet they are different in the
quantity they attempt to estimate, and in the estima-
tion methods they use. Furthermore, these techniques
are restricted to modeling only either temporal or spa-
tial correlation (or neither), even though both spatial
and temporal noise structure exists in the data. These
differences make it difficult to share insights and ad-
vances across techniques. In this work we show that
matrix-variate (MN) normal models provide a power-
ful formalism for understanding and developing fMRI
data analysis methods in a unified way.

Specifically, we show that many existing methods can
be derived from the MN framework. MN variants of
these methods are not restricted in their noise model
and can simultaneously capture spatial and temporal
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noise. Furthermore, the shared mathematical struc-
ture enables the creation of an MN development soft-
ware framework that admits flexible swapping between
various covariance models—a task that otherwise in-
volves substantial engineering effort.

In addition to showing the formal connection between
existing methods, we also use the formalism to develop
two novel analyses, MN-RSA and MN-SRM. MN-RSA
outperforms the previous a state-of-the-art method in
both speed and accuracy, and MN-SRM method im-
proves on SRM in reconstruction accuracy.

Our contributions are as follows:

1. Motivation for MN models as a unifying math-
ematical model for fMRI analysis, illustrating its
wide applicability with examples from both regres-
sion (via RSA) and factor analysis (via SRM).

2. A toolkit for developing MN models using Tensor-
flow [1], and implementations of RSA and SRM
variants that can model both spatial and temporal
covariance. (§4).

3. An expectation-conditional-maximization (ECM)
algorithm for fitting MN-SRM, which removes the
orthonormality constraint of SRM and in which
the number of parameters does not scale with the
number of subjects, unlike SRM (§4).

4. Demonstration that MN-RSA is approximately an
order of magnitude faster than the previous state
of the art method, can be up to 6x more accurate
at SNRs as low as 0.08 and thousands of voxels,
and is most conservative under the null hypothe-
sis.

5. Demonstration that MN-SRM can improve on
SRM performance in terms of reconstruction (§5).

The remainder of the paper is organized as follows: we
discuss background and related work in §2. §3 provides
motivation for our formalism, and derives MN-RSA
and MN-SRM. §4 discusses our software implementa-
tion and the challenges involved therein. We show the
results of our experiments in §5 and conclude in §6
with some discussion as to how other cutting edge anal-
yses fall into our framework.

2 Background

fMRI uses the magnetic properties of oxygenated
blood to measure blood flow in the brain as a proxy
for neural computation. fMRI data exhibits temporal
and spatial correlations due to blood flow dynamics,
acquisition constraints, and the spatially distributed

temporally evolving mental computation itself. With
computational and theoretical advances, Multi-Voxel
Pattern Analysis (MVPA; 17) has leveraged successes
in machine learning for decoding more sophisticated
representations and processes from fMRI data. A num-
ber of recent analyses pipelines have relied on gaussian
latent variable models due to their wide applicability
and computational tractability. We focus on two here
– SRM and RSA – due to their wide use and broad
applicability, though we treat two additional models
in the supplementary material.

2.1 Representational Similarity Analysis
(RSA)

The goal of RSA [13, 14, 29] is to use distances between
correlations or other (dis)similarity metrics between re-
sponses to stimuli in the fMRI dataset to theoretically
predicted distances. Due to the isomorphism between
correlation and regression, the standard RSA estima-
tor is biased when applied to within-run data, but the
state of the art empirical Bayes method based on max-
imum marginal likelihood (BRSA) mitigates this par-
ticular bias [5].

2.2 Shared response mapping

A challenge in analyzing grouped data (e.g. coming
from multiple subjects) is that while we expect sub-
jects to have similar mental responses to a given stim-
uli, these responses may be idiosyncratically realized
in the neural signal. For classification-based decoding
and other discriminative analyses that fall under the
rubric of MVPA, managing this is called the hyper-
alignment problem. Hyperalignment models project
all subjects into a shared space that is used for analy-
sis. SRM [7] is one recent factor-analytic hyperalign-
ment method that linearly projects all subjects’ data
into a shared, low-dimensional functional timecourse.
SRM can also be used for feature selection to enable
state of the art decoding performance.

3 Matrix Normal Models for fMRI

Conventional multivariate fMRI analysis methods
choose whether to model noise covariance in space or
in time, while assuming independence in the other di-
mension, an assumption violated in real fMRI data as
noted above.

MN models, also known as kronecker-separable covari-
ance models, provide a formalism addressing the prob-
lem of multivariate data analysis [e.g. 3, 28]. The
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matrix-normal distribution is defined as:

X ∼MNmn(M,R,C) (1)
log p(X | M,R,C) = −2 logmn−m log |C| (2)

− n log |R| − Tr
[
C−1(X−M)⊤R−1(X−M)

]
.

The intuition behind the kronecker separability is that
if Y ∼ MN (M,R,C) then vec(Y) ∼ N (vec(M),C⊗
R), where ⊗ is the kronecker product operator and
vec is the vectorization operator. In the case of fMRI,
a kronecker-separable covariance assumes that spatial
covariance is the same at every time, and temporal
covariance is the same for every voxel. The covariance
between any two voxels at two times is a product of
their space and time covariance.

In this section, we show how the popular representa-
tional similarity analysis (RSA; Cai et al. 5, Kriegesko-
rte 14) and shared response mapping (SRM; Chen
et al. 7) methods in neuroimaging can be written as
matrix-normal models. We perform similar derivations
for intersubject functional connectivity (ISFC; Simony
et al. 21) and joint modeling (JM; Turner et al. 25) in
the supplement. We begin with RSA [14]. Standard
correlation-based RSA estimates stimulus-by-stimulus
distances in brain activity space. If the distance ma-
trix is a correlation matrix, this process is equivalent
to encoding the predicted process model components
(e.g. Markov states for reinforcement learning, or neu-
ral network activations) in a design matrix X, under
the linear model [5]:

yi | X, βi, τ
2 ∼ N (Xβi, τ

−2I), (3)

where τ2 is the residual precision, yi is the (centered)
timecourse of the ith voxel, and the coefficient vector
βi is the response pattern of each voxel to the mod-
eled stimulus. The empirical row correlation of the β’s
is the RSA correlation matrix. If one uses point esti-
mates of β to compute the RSA correlation matrix the
estimator is biased, and this bias can inject structure
from the design matrix into the estimate [5]. Bayesian
RSA (BRSA; [5]) instead marginalizes over β:

β ∼ N (0,U) (4)
yi | X, βi, τ

2 ∼ N (0, τ−2I+XUX⊤), (5)

and performs MAP estimation on U by gradient de-
scent, mitigating this bias.

Now we derive matrix-variate RSA. To write a matrix-
normal density for RSA (MN-RSA), we stack all of
the yi vectors into a matrix Y, and stack all of the
regression weights β into a matrix W:

Y | W,Σt,Σv ∼ MN (XW,Σt,Σv,Y) (6)
W | U,Σv ∼ MN (0,U,Σv,W) (7)

This model can no longer model voxel-specific tempo-
ral correlations, but in return can model the residual
spatial covariance Σv. This tradeoff will play out dif-
ferently in different datasets. In this multilinear regres-
sion form, this problem appears similar to a number
of models used recently in the multi-task learning lit-
erature [e.g. 4, 9, 18, 22, 23]. However, unlike those
settings, the estimation target in RSA is the covari-
ance U rather than predicted data in new tasks.

In previous work on estimating kronecker-separable
covariances, both the signal and noise spatial covari-
ances are assumed to be different, i.e. Σv,Y ̸= Σv,W.
As a result, the marginal covariance (marginalizing
over W) is a sum of kronecker factors, which previous
work had estimated using Permuted Rank-penalized
Least Squares [9–11] or gradient descent exploiting
the compatibility between diagonalization and the kro-
necker product for efficient likelihood computation
[18, 20, 23].

In fMRI, spatiotemporal covariance is driven by a com-
bination of physiological factors (blood flow), instru-
ment constraints, and task-related shared structure.
We assume that the covariance is dominated by task-
irrelevant factors, i.e. we assume Σv := Σv,Y = Σv,W.
This gives us a convenient matrix-normal marginal like-
lihood (see supplement for derivation):

Y | U,Σt,Σv ∼ MN (0,Σt +XUX⊤,Σv), (8)

which we term the MN-RSA model.

3.1 Matrix-variate shared response model

Consider the following factor analysis model for fMRI
data for multiple subjects:

yjk | Wk, sj ,Σv, τk ∼ N (Wksj , τ
−2
k Σv), (9)

where yjk is a mean-centered vector containing all
voxel activities at a single timepoint (rather than yi,
the single voxel’s time series in Eq. 3). We have also
added indexing by subject k, since SRM (unlike RSA)
is a multi-subject method. sj is a latent spatial map
for all subjects for that particular time point, and W
is subject-specific a projection matrix from the shared
map into that subject’s data. Σv is a shared spatial
residual covariance as in MN-RSA above, scaled by a
subject-specific precision τ2k . To make a matrix-variate
factor model, we row-stack yjk

⊤ into Yk
⊤, stack sj

into S, and obtain the following model:

Yk
⊤ | Wk,S, µ,Σv, τk ∼ MN v,n(WkS

⊤, τ−2
k Σv, I)

(10)

This factor analysis model now has the exact same
form as the regression model above, except that Xk is
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observed and S is latent. Both of these matrix-variate
models now have the exact same form: a mean that
is an intercept plus a product of two matrices, one
fully-specified covariance, and an identity covariance.

We drop the subject indices by row-stacking all of
the subject timecourses Xj into X and weights Wj

into W, and introducing a subject covariance ρ :=
diag(τ−2

1 , τ−2
1 , . . . , τ−2

n ):

S ∼ MN (0,Σs,Σt) (11)
W ∼ MN (0, ρ⊗ Σv,Σw) (12)

X | W,S,Σt,Σv, ρ ∼ MN (WS, ρ⊗ Σv,Σt), (13)

giving us the MN-SRM model1. The covariances
Σw,Σs are both set to I to regularize the model. The
model implies that all subjects share a latent time-
course S, as well as temporal and spatial noise covari-
ances Σv,Σt that are scaled independently for each
subject2. In practice, we restrict the form of both the
spatial and temporal residuals to be diagonal or au-
toregressive, since estimating unconstrained Σv,Σt is
still intractable at fMRI scale.

If Σt = Σv = I and Wk
⊤Wk = I ∀k, this MN-SRM

model is exactly the SRM model. However, in the MN
formulation, we see that we have two marginalization
choices: the first is marginalizing over the shared time-
course S, as SRM does, and the second is marginalizing
over the mappings W instead. We choose the latter
marginalization, which only estimates tk parameters (t
timepoints, k features) rather than the vnk parameters
estimated by the original SRM method, which is ap-
pealing because for whole-brain analyses v ≫ t. It also
replaces the strong orthonormal constraint on W with
a weaker Gaussian prior. This is a theoretically desir-
able property for the following reason: if the true data
is not generated with orthonormal W per subject, forc-
ing an orthonormal W makes S counter-rotate against
it. With a single subject W⊤W = I w.l.o.g., but with
multiple subjects, the best S for each subject is ro-
tated differently to maintain orthonormality for that
subject, giving a worse group S. We later validate this
intuition empirically in our reconstruction task.

4 Estimation and the matnormal
prototyping tool

We leverage the shared structure of MN models to de-
velop a unified framework for estimation using Python

1we omit the spatial mean µj in the derivation for
brevity, though not in the implementation

2Since a kronecker-structured covariance is determined
only up to a constant, the scale on Σt and Σv is isomorphic,
except that by scaling Σv we make the remainder of the
derivation more straightforward.

and the Tensorflow library. The implementation is flex-
ible in the specification of residual covariances: for
a (spatial or temporal) covariance Σ, the API only
requires implementations of Σ−1X and log |Σ| given
X for efficient computation of marginal likelihoods
marginalizing in either the row or column direction.
This gives users the ability to choose the noise model
complexity relative to the size of their data – or the
ability to explore a large number of models with sim-
ple noise quickly before selecting a more complex noise
model for later analysis.

All other routines are automatically derived from
these, including marginalization that automatically
leverages efficiencies derived from non-marginal covari-
ance structures using the Woodbury and Sylvester
lemmas. The amount of shared code allows, for ex-
ample, MN-RSA to be implemented in only 50 lines
of python code. We have implemented isotropic, di-
agonal, full rank, AR(1) kernel, squared exponential
kernel, and Kronecker factored covariances. That is,
we can further factor the spatial covariance Σv into
Σz ⊗Σy ⊗Σx, where x, y, z are the spatial dimensions.
Using kronecker-factored spatial covariances in fMRI
is challenging because, since the brain is not a perfect
cube, the masking of voxels that do not contain brain
partially violates the kronecker structure. We address
this challenge by developing a fast algorithm for the in-
verse and determinant of a masked kronecker-factored
covariance (detailed in the supplement), increasing the
toolbox’s utility to a wider variety of fMRI datasets.
We also include example implementations of MN (mul-
tilinear) regression, MN factor analysis MN-RSA, and
MN-SRM.

Using this toolbox, we can perform maximum marginal
likelihood estimation using gradient descent, leverag-
ing gradients automatically computed with Tensorflow
and our covariance API for rapid prototyping. In prac-
tice, this is sufficient for single-subject estimates, and
our results for MN-RSA below are all using gradient
descent.

Directly maximizing the marginal likelihood for group
models such as MN-SRM is substantially slower be-
cause RSA is fit to a single subject whereas SRM is fit
to a ten subjects or more, an order of magnitude more
data. To mitigate this issue, we derive an efficient ex-
pectation conditional maximization (ECM) algorithm
for learning MN-SRM, which estimates the sufficient
statistics of S in the E-step and performs conditional
maximization updates of the remaining parameters in
the M-step. When estimating MN-SRM using ECM
in our toolkit, we can still impose structure on Σv and
Σt, however only certain constraints allow closed-form
covariance updates. Due to space constraints we dele-
gate the ECM derivation to the supplementary mate-
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rial. The algorithm does not exploit any special prop-
erties of MN-SRM relative to other MN models, and
should be applicable to them with minor changes.

5 Results

We validate the MN framework for fMRI by explor-
ing the behavior of MN-RSA and MN-SRM in simu-
lations and real data. To demonstrate the accuracy
of MN-RSA, we explore its performance on synthetic
data. Our focus on synthetic data is because neither
out-of-sample prediction nor real-data ground truth
for RSA is well-defined in the literature, with the stan-
dard measure for evaluating RSA methods comparing
the estimated covariance to a behaviorally relevant ma-
trix. Since RSA matrices consistent with behavior can
arise due to estimator bias alone [5], this metric is not
useful. We do show MN-RSA performance on real data
to verify that it does not recover spurious correlations
when the design matrix and brain data are unrelated,
and highlight the need for the field to develop better
predictive validation metrics for covariance estimation.

For MN-SRM, we perform two experiments. The first
is an out-of-sample reconstruction experiment testing
whether the shared response we recover can recon-
struct a new subject’s data. The second is using MN-
SRM for feature extraction with the goal of classifica-
tion. We fit all of the models using the Brain Imag-
ing Analysis Kit (BrainIAK, http://brainiak.org),
which also includes implementations of our methods.

5.1 MN-RSA

For the MN-RSA experiment we compare BRSA [5]
against MN-RSA with diagonal spatial covariance tem-
poral covariance consisting of an AR(1) component,
plus a low-rank matrix with the rank set to 15. For
the spatial variance, the intuition is that by learning
the variance of each voxel we can better tune SNR. For
temporal covariance, AR(1) is simple, expressive and
comparable to BRSA. We excluded naive RSA from
this comparison because of its known bias, and since
BRSA has been shown to achieve superior performance
[5].

Experiment 1: synthetic data We generated syn-
thetic data using the BRSA example in the brainiak
package. This synthetic dataset has AR(1) noise in
the temporal domain, spatial noise generated from a
gaussian process, and a number of design-irrelevant
timecourses included. Thus, it violates both mod-
els’ assumptions, and includes spatial structure that
is challenging for non-matrix-variate models to handle.
The synthetic datasets included two different SNR lev-
els, three different numbers of timepoints known in
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Figure 1: MN-RSA performs better at larger
numbers of voxels and lower SNR. For smaller
datasets (e.g. 400 voxels; not shown) and larger SNRs,
BRSA performs better. The improved performance of
MN-RSA is enabled by not modeling temporal noise
independently for each voxel.

the field as ‘TRs’ (equivalent to 1, 2, and 4 runs of
the experiment), and two different numbers of voxels
(2500, 10000) to show how the algorithms scale with
noise, time, and space. We replicated each combina-
tion 10 times. Each model was run and timed sepa-
rately on a full node of a compute cluster with two
Intel R⃝ Xeon R⃝ E5-2670 processors at 2.6 GHz with
hyper-threading enabled. The deviation from ceiling
performance on simple synthetic training data suggests
that these methods are not overfitting. MN-RSA is
up to 10x faster than the reference implementation of
BRSA (estimated using BFGS) on the largest prob-
lems (figure in supplement).

Fig. 1 shows estimated root-mean-squared-error
(RMSE) performance against the true correlation ma-
trix for the different numbers of voxels, TRs, and
SNRs. MN-RSA obtains lower RMSE than BRSA in
most settings, with the difference being particularly
stark at larger problem sizes. In addition, because it
estimates fewer parameters, MN-RSA can be up to 10x
faster on the same hardware for large-scale problems.

Experiment 2: null data As noted above, there
is no ground truth evaluation or RSA, and has been
shown to recover spurious results under the null hy-
pothesis when there is structure in the design matrix
(for conventional RSA) or model mismatch in noise co-

http://brainiak.org
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variance (for all RSA methods) [5]. Consequently, an
important evaluation of RSA methods is their behav-
ior under the null hypothesis, i.e. where no signal is
expected to exist.

In this experiment, we use a real resting state dataset
[26] in which subjects are not given a task, with a
random temporally contiguous window of 186 TRs se-
lected from each participant and a lateral occipital cor-
tex region of interest (ROI). With this resting state
dataset, we used the same design matrix as in the ex-
periment above, which is completely unrelated to the
dataset. We show two example subjects’ RSA covari-
ance matrices under all three methods in Fig. 5.1, and
the remainder in the supplement. Since MN-RSA esti-
mates both the low-rank temporal structure and the U
matrix simultaneously, it is capable of assigning next
to zero variance to U if the design matrix is unrelated
to the data. This feature means that for most subjects
under the null hypothesis, U correctly approaches 0,
and the RSA correlation matrix is clearly degenerate,
in contrast to RSA and BRSA, both of which produce
the appearance of structure. In the supplement, we
also show the distribution of the elements of the esti-
mated RSA matrix for each subject, with a clear spike
at zero in a majority of subjects only for MN-RSA,
showing that it is the most conservative method under
the null hypothesis.

5.2 MN-SRM

We test two variants of MN-SRM. The first sets Σv =
Σt = I, differing from SRM only in the marginaliza-
tion direction and the removal of the orthonormality
constraint on W. Since it has the same relationship to
SRM that dual probabilistic PCA [15] has to PCA, we
call it dual probabilistic SRM (DP-SRM). The second
variant, MN-SRM, uses the diagonal Σv and AR(1) Σt

we used for MN-RSA, above. We compare these mod-
els to SRM, as well as to ICA as a naive baseline. For
these experiments, we use the raider [13] and sherlock
[6] datasets (see Tab. 1for detail).

Experiment 3: out of sample reconstruction
To test each model’s ability to recover the shared la-
tent time-course, we perform a held-out reconstruction
experiment. We fit the factorization methods on all
but one subject with 10, 30, or 50 features, and then
learn a projection from the shared time-course into
that new subject. Our loss metric is the reconstruc-
tion error of the held out subject’s data using the esti-
mated shared time-course, and the new subject’s map.
In both, we use the portion of the dataset where sub-
jects watched the same movie (Raiders of the Lost Ark,
and an episode of BBC’s Sherlock).

Fig. 3 shows that the reconstruction error of both MN

methods is consistently lower than that of SRM in the
raider dataset, and lower in all but the smallest num-
bers of features in the sherlock dataset. The improve-
ment of MN methods over SRM validates our asser-
tion that we should be able to more effectively fit our
model by marginalizing over a larger number of pa-
rameters, and shows that benefit of MN models’ flex-
ibility in removing the orthonormality constraint on
W. The relative performance between the MN meth-
ods on the two datasets is also interesting: on raider,
adding the noise covariance modeling improves perfor-
mance, whereas on sherlock it does not. The ultimate
reason for this is an interesting scientific question, and
provides validation for our approach of flexible noise
covariance modeling: there may not be a one-size-fits-
all hyperalignment method.

Experiment 4: feature extraction for classifica-
tion One of the primary use-cases for SRM is as fea-
ture extraction method for classification. For this rea-
son, and because classification performance was previ-
ously used to compare hyperalignment methods [7], we
report performance on this task next. In both raider
and sherlock, subjects begin by watching a movie clip,
and then perform a cognitive task. SRM and simi-
lar methods can be used to learn a projection into
a shared space while subjects are watching the same
movie stimulus, and then use that learned mapping to
project fMRI data recorded during the cognitive task.
For raider this task was viewing one of 7 possible im-
ages, and for sherlock it was free-recalling scenes in the
movie. We train a linear SVM to discriminate between
the images subjects viewed in raider, and between the
scenes in sherlock.

Fig 4 shows that in spite of our methods’ better per-
formance on the reconstruction task, their ability to
extract features useful for linear classification lags be-
hind the original SRM method. Note however that
neither method is designed for post-hoc linear classifi-
cation. Rather, both methods are designed to do un-
supervised learning of a latent space that explains the
shared variance across subjects based on the training
data. By that metric our method outperforms SRM
and differences in classification performance must be
incidental.

The fact that SRM does better on classification sug-
gests that there is movie-specific variability that ex-
ists across subjects but is nevertheless unrelated to the
classification task. It is possible that the orthonormal-
ity constraint regularizes the solution for W away from
subspaces explaining variability specific to the training
movie, leaving the proportion of variability explained
lower, while providing a higher SNR for information
relevant to classification. However, this need not be
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Figure 2: MN-RSA is the only method that delivers obviously degenerate results under the null.
Estimates for all but three of the subjects look like subject 2 for MN-RSA, BRSA estimates all look homogeneous,
and naive RSA estimates are about evenly split between finding low rank structure like subject 1 and not finding
it like subject 2.

Dataset Subjs. TRs Region of Interest Voxels
sherlock [6] 16 1976 Posterior Medial Cortex 813
raider [13] 10 2203 Ventral Temporal Cortex 1000
HCP [26] 29 186 Lateral Occipital Cortex 2000

Table 1: fMRI dataset properties used for experiments 2, 3, and 4. We thank the authors for sharing their data.

the case and it is an empirical question as to why the
orthogonality constraint confers this property.

6 Discussion and conclusion

Probabilistic multivariate analyses of fMRI data are a
promising direction of research, combining the inter-
pretability previously associated with univariate anal-
yses with the power of multivariate approaches. How-
ever, advances tend to proceed independently of each
other, with distinct methods and algorithms for dif-
ferent problems. At face value this is not surpris-
ing as they have substantial differences: SRM and
TFA are unsupervised, while BRSA and ISFC are
supervised; BRSA and ISFC are somewhat unusual
in seeking the correlation matrices of latent variables,
whereas SRM is more conventionally concerned with
latent space projection, and TFA with inferring brain
networks. In addition, they all use distinct fitting
techniques: gradient-based maximum marginal likeli-
hood for BRSA, expectation-maximization for SRM,

and variational inference for TFA.

We showed how some of these methods can be viewed
as closely related matrix-variate models, and how the
matrix-variate view allows us to simultaneously model
spatial and temporal noise covariances in both meth-
ods. In neuroscience, such models have been applied to
MEG/EEG data [19], as well as non-latent models for
fMRI data [12], with some evidence that a separable
covariance is a reasonable approximation to fMRI data
even though voxel temporal correlations vary with spa-
tial location. Our work contrasts with this previous
work both in its unification of distinct methods, and
in bringing matrix-variate latent variable models to
fMRI analysis more broadly.

In the MN view, we can show the relationship of some
supervised fMRI analysis methods (RSA and ISFC) to
multi-task regression and more broadly to kronecker-
structured covariance models. Such models have been
applied in areas as diverse as recommendation sys-
tems [2], environmental science [8, 24], MIMO chan-
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Figure 3: MN-SRM and DP-SRM reconstruct the same or better than SRM and ICA. All models
are trained on n-1 subjects, and the shared timecourse used to reconstruct the nth subject. Plotted are means
and standard error across subjects.
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Figure 4: MN-SRM and DP-SRM approach SRM performance in feature extraction, while relaxing
the orthonormality constraint on W. We train the SRM on all subjects watching a movie, and project the
other task data into a shared space for classification. Plotted are means and error bars of out-of-sample prediction
across subjects. The dashed line is chance performance.

nel behavior [27, 28], collaborative filtering [31], com-
piler performance prediction and student test score
modeling [4], video understanding [11], and genomics
[18, 23, 30]. However, in contrast to this existing work
(and especially [18, 23], which is closest to our contribu-
tion), the nature of fMRI noise admits simpler noise co-
variance assumptions that in turn yield different tech-
niques for efficient likelihood computation, and a novel
expectation-conditional-maximization algorithm.

In addition to our theoretical contribution, we pro-
vided a software package for estimating the above mod-
els that allows for flexible assumptions about noise co-
variance, and provided evidence that for best perfor-
mance, noise covariance assumptions may need to be
adjusted for different datasets and tasks.

Our experiments also revealed opportunity for future
work. For example, MN-RSA performed worse than
the previous method at larger numbers of TRs and

smaller numbers of voxels (figure not shown), we sus-
pect partially because of our method’s inability to
model different noise covariances for each voxel. Al-
ternatively, it may exploit the connection between
RSA and multi-task regression apparent in the matrix-
variate formalization to bring techniques from multi-
task regression to this latent covariance estimation
problem. Likewise, while MN-SRM performed bet-
ter at reconstruction than SRM, it did not produce
features that improved classification performance. A
broader exploration of noise models may help here, but
we suspect that the true next gain may come from us-
ing the matrix-variate view to bring SRM and RSA
even closer together into a unified formalism. Regard-
less, our toolkit will enable rapid prototyping as we
progress in this domain.
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