
Di�erentially Private Regression with Gaussian Processes

Supplementary Material

Deriving and optimising the cloaking variables

When solving forM , we put an arbitrary (positive) bound
on ∆ of 1, as any scaling of ∆ caused by manipulating M ,
will scale the determinant of M by the inverse amount.6

We will express our problem as trying to maximise the en-
tropy of a k-dimensional Gaussian distribution with co-
variance P = M−1;

Maximise ln (|P |), subject to n constraints,
0 ≤ c>i Pci ≤ 1.

Considering just the upper bounds and expressing this as a
constraint satisfaction problem using Lagrange multipliers
we have L = ln |P |+

∑
i λi(1− c>i Pci). Di�erentiating

(and setting to zero), ∂L∂P = P−1 −
∑
i λicic

>
i = 0. We

also have the slackness conditions (for all i), λi(c>i Pci −
1) = 0 and we also require that λi ≥ 0. Rearranging
the derivative, we have, P−1 =

∑
i λicic

>
i . Note that as

λi ≥ 0,P−1 is positive semi-de�nite (psd),7 thus the initial
lower bound (that c>i Pci ≥ 0) is met. The upper bound
(that c>i Pci ≤ 1) is achieved if the λi are correctly chosen,
such that the Lagrange and slackness conditions are met.

We now must maximise the expression for L wrt
λj . To assist with this we rewrite our expression
for P−1 =

∑
i λicic

>
i = CΛC>, where C =

[c1, c2...cn] = K∗fK
−1 and Λ is a diagonal matrix of

the values of λi. The summation in the expression for L,∑
i λi(1− c>i Pci) can be written as Tr

(
Λ− C>PCΛ

)
.

Substituting in our de�nition of P , we can write
the summation as: Tr

(
Λ− C>(CΛC>)−1CΛ

)
=

Tr
(
Λ− C>C−>Λ−1C−1CΛ

)
. AssumingC is invertible,

the summation becomes Tr
(
Λ− Λ−1Λ

)
. Di�erentiating

this wrt λj equals one. We can use this result to �nd the

6For example if we write a new ∆′ with M as mM , we see
that we can take out the m term from ∆′’s inequality, leaving
∆′ = m−1/2∆. When we scale Z, which has covariance mM
by this new value of ∆′ the covariance of the scaled Z equals
(∆′)2mM = (m−1/2∆)2mM = ∆2M , the magnitude change
cancels, so any positive value of ∆ (e.g. 1) will su�ce for the
optimisation. Also: in the following we ignore d and reintroduce
it at the end of the derivation by de�ning ∆ = d instead of it
equalling 1.

7The summation is of a list of positive semi-de�nite rank-one
matrices. One can see that such a sum is also positive semi-
de�nite (to see this, consider distributing z> and z over the sum-
mation).

Figure 4: The duration of 5000 Citi Bike journeys. Note
the e�ect caused by thresholding at 2000 s.

gradient of L wrt λj :

∂L

∂λj
=
∂ ln |P |
∂λj

+
∂

∂λj

∑
i

λi(1− c>i Pci)

= Tr

(
P−1

∂P

∂λj

)
+ 1

= Tr
(
−P−1Pcjc>j P

)
+ 1

= −Tr
(
cjc
>
j M

−1)+ 1

= −c>j M−1cj + 1

(10)

This can be solved using a gradient descent method, to
give us those values of λi which minimise log |M | while
ensuring ∆ ≤ 1.

Citi Bike duration distribution

Figure 4 illustrates the distribution of journey times and
the e�ect of thresholding.

Algorithms

Algorithm 2 describes the Cloaking method. Algorithm 1
describes the earlier method, from Section 2.

Hyperparameter selection

So far in this paper we have selected the values of the ker-
nel hyperparameters a priori. Normally one may maximise
the marginal likelihood to select the values or potentially
integrates over the hyperparameters. In di�erential pri-
vacy we must take care when using private data to make
these choices. Previous work exists to perform this selec-
tion, for example Kusner et al. [2015] describes a method
for performing di�erentially private Bayesian optimisa-
tion, however their method assumes the training data is
not private. Kusner et al. [2015] do suggest that the work
of Chaudhuri and Vinterbo [2013] may allow Bayesian Op-
timisation to work in the situation in which the training
data also needs to be private.

We decided instead that, due to the low-dimensionality
of many hyperparameter problems, a simple grid search,
combined with the exponential mechanism may allow the



Michael T. Smith∗, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence

Algorithm 1 Using the initial DP algorithm
Require: M, the GP model (the kernel, hyperparameters and training inputs and normalised outputs)
Require: X∗ ∈ RP×D , (the matrix of test inputs)
Require: d > 0, data sensitivity (maximum change possible) & ε > 0, δ ≥ 0, the DP parameters

1: function DifferentiallyPrivateRegression(X∗, M , d, ε, δ)
2: K ←M.get_K . covariance between training points
3: ∆← d2b(K−1)2

4: f∗, σ
2
∗ ←M.get_predictions(X∗) . Calculate non-DP predictions

5: f̃∗ ← f∗ + (∆dc(δ)/ε)z . z ∼ N (0,K)
6: return f̃∗, σ2

∗
7: end function

8: function b(K−1)
9: return max(| − [K−1A ]−|∞, |[K−1A ]+|∞)

10: end function

11: function c(δ)
12: return

√
2log(2/δ)

13: end function

selection of an acceptable set of hyperparameters. For
the utility function we considered using the log marginal
likelihood, with additional noise in the data-�t term to
capture the e�ect of the DP noise. However for simplic-
ity in estimating the bound and to avoid over�tting we
simply used the sum square error (SSE) over a series of
K-fold cross-validation runs, which for a given fold is∑N
i=1 (y∗i − yti)

2, with predictions y∗ and test values yt.

Before proceeding we need to compute a bound on the sen-
sitivity of the SSE. To brie�y recap, the DP assumption is
that one data point has been perturbed by at most d. We
need to bound the e�ect of this perturbation on the SSE.
First we realise that this data point will only be in the test
set in one of the K folds. In the remaining folds it will be
in the training data.

If the perturbed data point is in the training data (y), then
we can compute the sensitivity of the SSE. The perturba-
tion this would cause to the predictions (y∗) is described
using standard GP regression (and the cloaking matrix).
Speci�cally a change of d in training point j will cause a
dcjk change in the test point predictions, where cjk is the
jth column of the cloaking matrix for the kth fold.

To compute the perturbation caused by the change in the
training data, we note that the SSE is e�ectively the square
of the euclidean distance between the prediction and the
test data. We are moving the prediction by dcjk . The
largest e�ect that this movement of the prediction point
could have on the distance between prediction and test
locations is if it moves the prediction in the opposite di-
rection to the test points. Thus it can increase (or de-
crease) the distance between the test and predictions by
the largest length of dcjk over training points. Hence

for one of the folds, the largest change in the SSE is
d2 maxj |cjk|22.

If the perturbed data point, j, was in the test data then
the SSE will change by (y∗j + d− ytj)

2 − (y∗j − ytj)
2

=
d2 + 2d(y∗j − ytj). The last part of the expression (the
error in the prediction for point j) is unbounded. To allow
us to constrain the sensitivity we enforce a completely ar-
bitrary bound of being no larger than ±4d, thresholding
the value if it exceeds this. Thus a bound on the e�ect of
the perturbation is d2 + 2d× 4d = d2 + 8d2 = 9d2.

The SSE of each fold is added together to give an overall
SSE for the cross-validation exercise. We sum the K − 1
largest sensitivities and add 9d2 to account for the e�ect
of the single fold in which the perturbing data point, j,
will be in the test set. The perturbation could have been in
the test data in any of the folds. We assumed it was in the
fold with the smallest training-data sensitivity to allow us
to make the result a lower bound on the sensitivity of the
SSE to the perturbation. If it had been in any other fold the
sensitivity would have been less (as more sensitivity would
be contributed by the sum over the training sensitivities).
Thus the sensitivity of the SSE over the K folds is; 9d2 +∑K−1
k=1 d2 maxj |cjk|22 (where the k folds are ordered by

decreasing sensitivity)

We compute the SSE and the SSE’s sensitivity for each of
the hyperparameter combinations we want to test. We
then use the computed sensitivity bound with the expo-
nential mechanism to select the hyperparameters. To sum-
marise, to use the exponential mechanism one evaluates
the utility u(x, r) for a given database x and for elements
r, from a range. One also computes the sensitivity of this
utility function by picking the highest sensitivity of any



Di�erentially Private Regression with Gaussian Processes

Algorithm 2 Using the cloaking algorithm
Require: M, the GP model (the kernel, hyperparameters and training inputs and normalised* outputs)
Require: X∗ ∈ RP×D , (the matrix of test inputs)
Require: d > 0, data sensitivity (maximum change possible) & ε > 0, δ ≥ 0, the DP parameters

1: function DifferentiallyPrivateCloakingRegression(X∗, M , d, ε, δ)
2: C ←M.get_C(X∗) . Compute the value of the cloaking matrix (K∗fK−1)
3: λ← findLambdas(C)
4: M ← calcM(λ, C) . Calculate the DP noise covariance matrix
5: ∆← calcDelta(λ, C)†

6: c←
√

2log 2
δ

7: y∗, σ
2
∗ ←M.get_predictions(X∗) . Calculate non-DP predictions

8: ỹ∗ ← y∗ + (∆dc/ε)z . z ∼ N (0,M)
9: return ỹ∗, σ2

∗
10: end function

11: functionM.get_C(X∗)
12: FromM compute K∗f and K−1 . Compute covariances between training and test points
13: C ←K∗fK

−1

14: return C
15: end function

16: function findLambdas(C)
17: λ← Uniform(0.1, 0.9) . Initialise randomly‡

18: α← 0.05 . Learning rate
19: do
20: dL

dλ ← CalcGradient(λ, C)

21: ∆λ ←−dLdλα
22: λ← λ+ ∆λ

23: while ∆λ > 10−5

24: return λ
25: end function

26: function calcGradient(λ, C)
27: M← calcM(λ, C)
28: for 0 ≤ j < N do . N, number of columns in cloaking matrix, C.
29: [dLdλ ]j ←−Tr

(
M+C:jC

>
:j

)
+ 1

30: end for
31: return dL

dλ
32: end function

33: function calcM(λ, C)
34: M ←

∑
i λiC:iC

>
:i

35: returnM
36: end function

37: function calcDelta(λ, C)
38: M ← calcM(λ, C)
39: ∆←maxj C>:jM+C:j

40: return ∆
41: end function

*We assume the user will handle normalisation.
†Although we should have optimisedM such that ∆ ≤ 1, it may not have completely converged, so we compute the ∆ bound for the
value of M we have actually achieved.
‡We have found that occasionally the algorithm fails to converge. To con�rm convergence we have found it useful to reinitialise and
run the algorithm a few times.



Michael T. Smith∗, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence

Figure 5: E�ect of varying the di�erential privacy param-
eter, ε, on the likelihood of selecting each lengthscale.
Colour indicates probability of parameter selection. With
low privacy, a short lengthscale is appropriate which al-
lows the GP to describe details in the data. With high pri-
vacy, a longer lengthscale is required, which will average
over large numbers of individual data points.

of the utilities; in this case each utility corresponds to a
negative SSE, and each sensitivity corresponds to the sum
described above.

∆u , max
r∈R

max
x,y
|u(x, r)− u(y, r)|

(where x and y are neighbouring databases).

The exponential mechanism selects an element r with
probability proportional to:

exp

(
εu(x, r)

2∆u

)

Note that for a given privacy budget, some will need to be
expended on this selection problem, and the rest expended
on the actual regression.

E�ect of privacy on optimum hyperparameter
selection

A �nal interesting result is in the e�ect of the level of pri-
vacy in the regression stage on the selection of the length-
scale. This is demonstrated in the distribution of proba-
bilities over the lengthscales when we adjust ε. Figure 5
demonstrates this e�ect. Each column is for a di�erent
level of privacy (from none to high) and each tile shows
the probability of selecting that lengthscale. For low pri-
vacy, short lengthscales are acceptable, but as the privacy
increases, averaging over more data allows us to give more
accurate answers.

Privacy on the training inputs

To release the mean function such that the training inputs
remain private, we need a general bound on the in�nity
norm of the covariance function, that does not depend ex-
plicitly on the values of X .

Varah [1975] show that if J is strictly diagonally dominant8

then:
||J−1||∞ ≤ max

1≤i≤n

1

∆i(J)
= b(J)

where we have de�ned this bound as b(J−1). We also de-
�ne ∆i(J) = |Jii| −

∑
j 6=i |Jij |, i.e. the sum of the o�

diagonal elements in row i subtracted from the diagonal
element.

So if K is strictly diagonally dominant (which is achieved
if the inputs are su�ciently far apart, and/or if su�cient
uncertainty exists on the outputs), then we have a bound
on the sums of its rows. The above bound means that,

n∑
i=1

αi − α′i ≤ ∆yb(J
−1) (11)

To ensure su�cient distance between inputs, we could use
inducing variables, which can be arbitrarily placed, so that
the above constraints on the covariance matrix are ob-
served.

Integral Kernel

We used a custom kernel in the Citi Bike comparison to
make predictions over the binned DP-noisy dataset. In
summary the observations were considered to be the in-
tegrals over each bin (provided by multiplying the noisy
means by the sizes of the bins). The predictions were made
at points on the latent function being integrated. This al-
lowed us to make predictions from the binned data in a
principled manner.

Considering just one dimension. To compute the covari-
ance for the integrated function, F (·), we integrate the
original EQ kernel, kff (·, ·), over both its input values,

kFF ((s, t), (s′, t′)) = α

∫ t

s

∫ t′

s′
kff (u, u′) du′du,

so that given two pairs of input locations, corresponding
to two de�nite integrals, we can compute the covariance
between the two.

Similarly we can calculate the cross-covariance kFf be-
tweenF and f . Both kFF and kFf can be extended to mul-
tiple dimensions. Each kernel function contains a unique
lengthscale parameter, with the bracketed kernel subscript

8A matrix, J , is strictly diagonally dominant if ∆i(J) > 0
for all 1 ≤ i ≤ n.



Di�erentially Private Regression with Gaussian Processes

index indicating these di�erences. We can express the new
kernel as the product of our one dimensional kernels:

kFF =
∏
i

kFF (i)((si, ti), (s
′
i, t
′
i)),

with the cross covariance given by

kFf =
∏
i

kFf(i)((si, ti), (s
′
i, t
′
i)).

The above expressions can then be used to make predic-
tions of the latent function f given observations of its def-
inite integrals.


