Random Subspace with Trees for Feature Selection Under Memory
Constraints
Supplementary materials

Antonio Sutera! Célia Chatel?
!University of Liége, Belgium

A Proof of Theorem 2]
Theorem 2. Vo, K, if r <gq:

X strongly relevant = X € Fql,(og

Proof. By definition, X belonging to F, ;ﬁ;g means that
there is at least one tree (grown with parameters ¢, «
and K') in which X receives a strictly positive score for
its split, i.e. such that Y depends on X conditionally
to the variable assignement defined by the path from
the root node to the node where X is used to split. Let
us show that one such tree always exists whatever K
and o when X is strongly relevant and r < q.

Within the infinite ensemble, let us consider only the
trees grown using all r relevant variables (and ¢ — r
irrelevant ones randomly selected). Given that r < ¢
and given that only relevant features can be kept in
memory, these trees are always explored whatever the
value of & > 0. Among these trees, let us furthermore
only consider those such that irrelevant variables are
tested in each branch only when all relevant variables
(including X) are exhausted. These trees are always
explored whatever the value of K. This derives from
the fact that a relevant variable can always be picked
with non zero probability at any tree node, except if
all relevant variables have been tested above that node.
Indeed, except in this latter case, the K tested vari-
ables can always include at least one relevant variable.
If some relevant variable gets a non zero score, one
relevant variable will be automatically used to split
since irrelevant variables can only get zero scores. Even
when all tested relevant variables get a zero score, one
of them can still be selected instead of an irrelevant
one given that tie are resolved by randomization.

Let us denote by 7 the set of trees as just defined and
let us show that X gets a non zero score in at least one
tree in TR.

By definition 2 and property 1, X strongly relevant
implies that there exists at least one assignement of

Gilles Louppe!+3
2 Aix-Marseille University, France

Louis Wehenkel! Pierre Geurts!
3New York University, USA

values to all relevant variables but X such that condi-
tionally to this assignement, Y is dependent on X. In
each tree in Tg, there is a path from the root node to a
node where X is used to split that is compatible with
this assignement. Let us assume that X always gets a
zero score in all these compatible paths and show that
this leads to a contradiction.

If all relevant variables are tested above X in a com-
patible path then X should receive a non zero score at
its node, which would contradict our hypothesis. Thus,
X can only be tested in a compatible path before all
relevant variables have been tested. Given our hypoth-
esis that X only gets zero scores, if X is used to split
in one compatible path, then there exists another tree
in 7p with the same splits above X in the compatible
path and with the split on X replaced by a split on an-
other relevant variables (because of tie randomization
or because of the randomization due to K < ¢). In
this new tree, X is thus used to split at least one level
below in the compatible path. Applying this argument
recursively, one can thus show that there is at least one
tree in Tg where X is the last variable used to split
in the compatible path. In this tree, X thus gets a
non zero score, which contradicts the hypothesis and
therefore concludes the theorem. O

B Convergence analysis

B.1 Simplifying assumptions

Below, we compute analytically the average number of
trees needed to find all relevant variables in the chaining
and clique scenarios and we derive transition matrices of
Markov chains that model the evolution of the number
of variables found through the iterations in the three
scenarios. These results are obtained assuming K = ¢
and r < ¢, and with either « = 0 (RS) or oo =1 (SRS).

To make these derivations possible and independent of
a particular data distribution, one needs furthermore to
simplify the decision tree growing algorithm in the case
of the chaining and clique scenarios. In what follows,

Random Subspace with Trees for Feature Selection Under Memory Constraints

trees are thus assumed to be grown such that a unique
variable is selected at each tree level and this variable
is selected at random among all variables X such that
Y) X|B where B is the set of all variables tested at
previous levels.

In the clique scenario, this assumption implies that only
one variable of the clique will get a non-zero importance
when all clique variables are selected at one iteration
of RS/SRS (since only the last variable of the clique
tested along a tree branch can get a non-zero score
and this variable is the same in each branch given our
tree growing assumption). This corresponds to a pes-
simistic scenario. Indeed, with standard unconstrained
trees, several relevant variables could be found at one
iteration given that the ordering of the variables, and
thus the last variable of the clique tested, might differ
from one tree branch to another. As a consequence, the
tree growing assumption will lead to an overestimation
of the number of trees needed to reach convergence.
In the chaining scenario, the simplified tree growing
algorithm implies that all relevant variables selected
at one iteration of RS/SRS together with their mini-
mal conditioning will get a non-zero importance. This
corresponds this time to an optimistic scenario, as,
with unconstrained trees, such variable might not be
detected at one iteration depending on the exact data
distribution. This will thus lead this time to an un-
derestimation of the number of trees needed to reach
convergence. Note however that, in both cases, these
over /under-estimations will affect both RS and SRS in
the same proportion and thus our assumption will not
impact their relative performance.

Note that in the marginal-only scenario, given that all
relevant variables are marginally and strongly relevant,
they will always get a non-zero importance as soon
as they are selected at one iteration. Our estimations
below are thus not impacted by the simplification of
the tree growing algorithm.

B.2 Average times

Chaining. Let us denote by TS, (i,p,q) (1 <i <
r) the average number of iterations needed to find
the feature X; of degree i — 1 and by T5E% (i,p,q)
the average number of iterations needed to find the
same feature with the SRS algorithm (that forces the
selection of already found relevant variables). Given
our assumptions above, each tree will be able to identify
all relevant variables X it gets as soon as it gets also the
relevant variables in its minimal conditioning. Note
that TiingS(i,p, q) can also be interpreted as the
average time needed to find the first i relevant features,
given that one can not find X; without finding all

features X; with 1 < j < 4. TRS/SRS(r,p, q) also

chain

represents the average number of iterations needed to
find all relevant variables under the chain assumption.

Theorem 4. Under our assumptions, the T5S. ~ func-
tion can be computed as follows:
i-1
Tclfzgin(iap7 Q> = L—l (1)
kAl

Proof. Indeed, THS, (i,p,q) is the mean of a geomet-
ric distributed random variable with a probability of
success defined as the probability of drawing the ¢ — 1
variables in X;’s conditioning and X; at the same time,

which is given by:

(q:i) _]j L—l (2)

@ mer—t

O
Theorem 5. Under the same assumption,
TSES (i,p,q) can be computed as follows:
i—1 bl
ngi(iapa q) = Z m —(i-1) (3)
1=0

Proof. Let us show this by induction on i. The base
case corresponds to ¢ = 1. In this case, we have:

SRS s p
Tchliin(lapv Q) = Tﬁiain(Lpa Q) = ;7

which satisfies Eqn . Let us assume that Eqn. (3]
is satisfied for ¢ < ¢’ and let us show that it is satisfied

for i = i'. T5E (i, p,q) can be defined as follows:

TSES (i p,q) = gTiﬁfn(i’ —1,p—1,q—1)+

(4)
(1- %)(1 + TSRS (i p,q)).

One can indeed distinguish two cases:

e X is selected at the first iteration (this happens
with probability ¢/p): the average time needed to
find feature X, of degree ¢/ — 1 then becomes the
time needed to find a feature of degree ¢/ — 2 when
one is allowed to draw ¢ — 1 features among p — 1,
which is 7525 (i/ —1,p — 1, — 1)

chain

e X, is not selected at the first iteration (this hap-
pens with probability 1 — ¢/p): in this case, the
first iteration is useless and thus the number of

iterations needed will be 1+ T325 (i’ p, q).

TSRS

chain

Eqn. (4) can be used to compute recursively:

TSRS

. . p
chain(l/apv (I) = ilgfn(@/ -]-7p - 17(] -]‘) + (6 B 1) (5)

Deriving Eqn. from Eqn. (5 is then straightfor-
ward, which concludes the proof by induction. O

Sutera, Chatel, Louppe, Wehenkel and Geurts

Eqn. shows that the average time needed to find the
1 first features is equal to the sum of the time needed
to find all features individually minus the number of
features. This last term takes into account the fact

that by chance, one might find several features at once.

denote by THS(i,p,q) and
i,p,q), the average time needed to find 1
features (among r) from the clique respectively with
the RS and the SRS algorithm. Given our assumptions
above, when the tree growing algorithm is given all r
relevant features, it will be able to identify one (and
only one) feature from the clique at random. If it has
already found i features from the clique, the chance to
get a new one, when all r features are selected among
the ¢ ones, will thus be (r — ¢)/r, i.e., the probability
to test one of the » — i not yet found features after all
other r features from the clique.

Clique. Let wus
TSRS

Theorem 6.

oo (1) (£2) o

=0

Proof. The first factor in Eqn.@ is the inverse of the

probability of selecting all r relevant features at once.

Each term of the sum in the second factor corresponds

to the inverse of the probability of testing a new relevant

variables, not yet found, at the bottom of the tree. As
T

discussed above, this probability is %l when we have
already found [features from the clique. O

Theorem 7.

i—1

L
@
3

TSRS 7
o (1,0, q) l:o’"l (7)

3

L
I-Q
S

Proof. Each term of the sum represents the average
time needed to find a new clique feature given that
we have already found [features. This time is equal
to one over the probability of finding a new feature
when we have already found [of them. This latter is
the probability of selecting among q the r — [missing
relevant features (ie., [] _, p 4=") times the probability
of testing one of the missing relevant features at the
bottom of the tree (i.e., (r —1)/r). O

When i = 1, T55%5(1,p,q) = TF5(1,p, q). Intuitively,
it indeed takes the same time for the RS and the SRS
algorithms to find the first relevant features. When i
increases however, the SRS algorithm becomes faster
and faster than the RS algorithm. Indeed, the RS
algorithm always needs to find all r clique features,
while the SRS one only needs to find the r — ¢ missing
relevant features.

B.3 Markov chain interpretation

Let us denote by NtX ¥ the number of variables found
for ¢ iterations, with X = ¢, X = g, and X = m respec-
tively for the chain hypothesis, the clique hypothesis
and the marginal only hypothesis (as defined in the
first section of this document) and Y =n and Y = s
respectively for the RS and SRS algorithms. All these
random variables follow order 1 Markov chains. The
transition probabilities are provided below for each
chain (without proof), under the assumptions given in

Section [Bl

Chain hypothesis.

0 if 1y <l
(=) _
P(Ntc’n = ll‘Nthn = l2) — (g) if I > 1z
1=2 i (p)) ifly =1l
(8)
0 iflp < l2
(=) .
f
P(Ntc’S = l1|NtcvS = l2) — (2:53) ifly > 1>
p—r
1= lo+1 ((pq:l;)) ifly =1
q—13
9)
Clique hypothesis.
0 if < o
p—r
1- Q‘—lz if 1y =1l
P(NI" = WINP™ =) =3 (5-n)'"
%ﬁlz ifly=1la+1
0" ifly >l +1
(10)
0 ifly < lo
p—r
1- ((;?:12) T_TZQ ifli =1
P(th’s = l1|th»S — 12) = (p77‘)q7l2
= R T
-1
Oq ’ ifly >la+1
(11)

Marginal only hypothesis.

0 if 1 <lg

m,n m,n w iflp > 1

PN = [N = 1) = ; 1>
p—r+ly

%) if 1 =19

()
(12)

Random Subspace with Trees for Feature Selection Under Memory Constraints

0 if 1 < Iy
(R
P(N™* = [1|N;"* =1p) = W if iy > 1y
(470,) .
= £l =1
(¢-2) i =t
(13)

C Details for Section [l

In this section, we give more details about our practical
implementation of SRS and performed experiments.

C.1 On the use of a random probe to
distinguish relevant features from
irrelevant features.

As explained in Section [we add an artificial irrelevant
feature in data as a random probe. By comparison with
that probe of importances scores, one can distinguish
relevant features (better than the probe) from irrelevant
features. Through iterations, we can compute a p-value
score which is the percentage of times a variable has
been better than the probe. If the p-wvalue is above
a given threshold S then the feature is likely relevant.
Moreover, a variable has to be sampled more than L
times in @ sets to insure that the p-value is reliable.
Then at each iteration, the variables that satisfy the two
criteria are added to F. In the following experiments,
we choose arbitrarily L = 10 and 3 = 95%.

C.2 On the datasets and on the protocol

We evaluate the accuracy of all these methods on a list
of both artificial and real classifications problems (all
but madelon are real data) described in Table [1| and
publicly available in the UCI machine learning reposi-
tory [Lichman| [2013|. For each dataset, we separate it
into two random partitions of the same size (i.e., the
same number of samples) to have a training set and a
test set. There is no optimization of the parameters.
For all datasets, the procedure was repeated 50 times,
using the same random partitions between all methods.
Following results are averages over those 50 runs.

C.3 Detailed results

Table [2| is average accuracy scores obtained on all
datasets for each method for some parameters. We
consider different sizes of memory (i.e., parameter q)
and different value for the parameter a for the SRS
algorithm. This allows to consider every behaviour of
the SRS algorithm : without memory (o = 0) which
is equivalent to the Random Subspace method, with a
full memory (a = 1) and a non-full memory (o = 0.5).

Dataset # samples # features

arcene 100 10000

breast2 295 24496
cina0 16033 132
isolet 7797 617
madelon 2000 500
marti0 500 1024
reged0 500 999
secom 1567 591
mnist 70000 784
mnist3v8 13966 784
mnist4v9 13782 784
sido0 12678 4932
tis 13375 927

Table 1: Dataset specifications

For both methods (RS and SRS), a single extra-tree is
build at each iteration. The randomization parameter
of the extra-tree is set to its maximal value (ie., all
features). For the tree-based ensemble methods, we
consider different values for the randomization parame-
ter. This parameter reduces the ability to consider the
whole dataset in once and in that it relates in a way
to the size of the memory of SRS. We choose for that
parameter values of 0.01, 0.1 and 1 corresponding to
considering respectively 1%, 10%, 100% of all features
at each node.

Sutera, Chatel, Louppe, Wehenkel and Geurts

SRS Tree-based ensemble methods

9=0.01 4—0.05 a—0.1 RF ET

(o] Randomization parameter K

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.01 0.1 1 0.01 0.1 1

arcene 0.743 0.717 0.717 0.743 0.743 0.743 0.732 0.732 0.732 0.717 0.706 0.678 0.739 0.729 0.701
breast2 0.649 0.647 0.647 0.651 0.651 0.650 0.654 0.654 0.654 0.646 0.649 0.649 0.650 0.654 0.651
cina0 0.755 0.755 0.777 0.809 0.929 0.873 0.931 0.933 0.921 0.933 0.939 0.939 0.931 0.934 0.934
isolet 0.906 0.899 0.336 0.944 0.945 0.766 0.949 0.950 0.817 0.936 0.940 0.912 0.943 0.951 0.943
madelon 0.558 0.689 0.745 0.639 0.858 0.861 0.673 0.845 0.845 0.620 0.700 0.754 0.608 0.690 0.815
marti0 0.881 0.881 0.881 0.874 0.874 0.874 0.870 0.870 0.870 0.878 0.870 0.866 0.879 0.868 0.854
reged0 0.880 0.966 0.939 0.885 0.974 0.974 0.898 0.974 0.974 0.882 0.963 0.960 0.881 0.948 0.978
secom 0.935 0.935 0.930 0.935 0.931 0.931 0.934 0.932 0.932 0.935 0.933 0.929 0.935 0.930 0.928
mnist 0.564 0.823 0.525 0.959 0.966 0.905 0.968 0.970 0.938 0.964 0.966 0.953 0.966 0.971 0.968
mnist3v8 0.910 0.941 0.828 0.980 0.986 0.958 0.987 0.989 0.975 0.980 0.985 0.978 0.981 0.988 0.987
mnist4v9 0.889 0.957 0.848 0.981 0.986 0.960 0.986 0.988 0.974 0.983 0.984 0.974* 0.985 0.987 0.984%*
sido0 0.970 0.972 0.953 0.973 0.968 0.968 0.974 0.969 0.969 0.972 0.973 0.973* 0.973 0.974 0.960%*
tis 0.751 0.751 0.757 0.753 0.887 0.888 0.844 0.917 0.915 0.854 0.916 0.913* 0.856 0.906 0.914%*

Table 2: Average accuracy scores for all methods with specified parameters on original datasets. SRS and RS
were computed with 10000 iterations and RF/ET with 10000 trees.

Table 3: Pairwise t-test (with a significance level of 0.05) comparisons :

RS SRS ET RS SRS
q=0.1 q=0.1 q=0.1 k=0.1 k=1.0 q =0.01 qg =0.01 qg =0.01
q=20.1 a=0.5 a=1.0 q = 0.01 a = 0.5 a = 1.0
RS — 1/5/7 6/4/3 7/2/4 6/3/4 RS — 2/2/9 5/2/6
SRSa=0.5 7/5/1 - 5/8/0 9/2/2 10/2/1 SRSq=0.5 9/2/2 - 7/3/3
SRSa=1.0 3/4/6 0/8/5 — 5/2/6 6/2/5 SRSa=1.0 6/2/5 3/3/7 —
(a) g=0.1xp (b) g=0.01 xp

each element on line ¢ and column j

of the table in terms of Win/Draw /Loss is the result of the comparison for method ¢ vs. method j: the tree
values indicate respectively on how many datasets method ¢ is significantly better / not significantly different /
significantly worse than method j. All methods were computed with 10000 iterations or trees on all 14 datasets
(from Table [I) with parameters specified on columns. In bold when the first value is greater than other values.

References

Moshe Lichman. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/mll

http://archive.ics.uci.edu/ml

	Proof of Theorem 2
	Convergence analysis
	Simplifying assumptions
	Average times
	Markov chain interpretation

	Details for Section 5
	On the use of a random probe to distinguish relevant features from irrelevant features.
	On the datasets and on the protocol
	Detailed results

