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Abstract

Online portfolio selection research has so far fo-
cused mainly on minimizing regret defined in
terms of wealth growth. Practical financial de-
cision making, however, is deeply concerned with
both wealth and risk. We consider online learning
of portfolios of stocks whose prices are governed
by arbitrary (unknown) stationary and ergodic
processes, where the goal is to maximize wealth
while keeping the conditional value at risk (CVaR)
below a desired threshold. We characterize the
asymptomatically optimal risk-adjusted perfor-
mance and present an investment strategy whose
portfolios are guaranteed to achieve the asymp-
totic optimal solution while fulfilling the desired
risk constraint. We also numerically demonstrate
and validate the viability of our method on stan-
dard datasets.

1 Introduction

It has long been recognized that the value of any financial
investment should be quantified using both return and risk,
where risk is traditionally measured by the variance of the
return. A common quantification for risk-adjusted return is
the Sharpe ratio [42], which is essentially the (annualized)
mean return divided by the (annualized) standard deviation
of the return. Nevertheless, in online portfolio selection
[13], which has become a focal point in online learning
research, risk is rarely considered and the primary quantity
to be optimized is still the return alone. The creation of an
online learning technique that optimizes risk-adjusted return
is a longstanding goal and a major challenge [29].

In an adversarial (regret minimization) online learning set-
ting, risk-adjusted portfolio selection with no regret is
known to be an impossible goal [15, 39]. Recently, within
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an i.i.d. setting, Mahdavi et al. presented a framework that
can be utilized for achieving this goal [37], and Haskell et al.
considered risk-aware algorithms [22], but i.i.d. modeling
has been criticized for being unsuitable for modeling the
stock prices faithfully [33]. The problem with i.i.d. model-
ing is the lack of time dependencies between stock returns.
A substantially richer family of stochastic models is the
class of stationary and ergodic processes, which are suffi-
ciently expressive to model arbitrary dependencies among
stock prices. It is the place to note that in the literature there
exist other papers dealing with long term constraints (e.g.,
[24, 36]), however they are not suitable for our goal since
they assume that the constraint function is fully known a
priory (i.e. do not depend on time) which is obviously not
the case studied in this paper.

Many publications have considered stationary and ergodic
markets [3, 21, 20, 18, 30], and all these works consider
strategies that are oblivious to risk. All the learning strate-
gies they consider rely on non-parametric estimation tech-
niques (e.g., histogram, kernel, or nearest neighbors meth-
ods). Moreover, these strategies always use a countably
infinite set of experts, and the guarantees provided for these
strategies are always asymptotic. This is no coincidence,
as it is well known that finite sample guarantees for these
methods cannot be achieved without additional strong as-
sumptions on the source distribution [14, 35]. Similarly, it
is also known that non-parametric strategies in this context
must rely on infinitely many experts [17].

Approximate implementations of non-parametric strategies
(which apply only a finite set of experts), however, turn out
to work exceptionally well and, despite the inevitable ap-
proximation, are reported [21, 20, 18, 28, 29] to significantly
outperform strategies designed to work in an adversarial, no-
regret setting. For example, the nearest-neighbor investment
strategy of [21] is shown in [32, 29] to beat Cover’s univer-
sal portfolios (UP) [13], the exponentiated gradient (EG)
method [23], and the online Newton steps strategy of [1] on
most of the common datasets. We also note that practical
approximate use of asymptotic methods is prevalent in other
areas of machine learning such as (deep) reinforcement
learning with function approximation [6]).

For a market with n stocks, and within a stochastic online
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learning framework, we develop a novel online portfolio
selection strategy called CVaR-Adjusted Nearest Neighbor
(CANN), which guarantees the best possible asymptotic
performance while keeping the risk contained to a desired
threshold. This is done using a novel mechanism that facili-
tates the handling of multiple objectives. Rather than using
standard deviation to measure risk, we consider the well-
known CVaR, a coherent and widely-accepted risk measure,
which improves upon the traditional measure by appropri-
ately capturing the downside risk [41]. We prove the asymp-
totic optimality of our strategy for general stationary and
ergodic processes, thus allowing for arbitrary (unknown)
dependencies among stock prices. We also present numeri-
cal examples where we apply an approximate application
of our strategy (with a finite set of experts) that validates
the method and beautifully demonstrates how risk can be
controlled.

The problem of risk-adjusted prediction is, of course, not
limited only to online portfolio selection but to other areas
as well, and in recent years, there is a growing interest
in the risk accompanied by the prediction. In [15] it was
proved that in the expert setting one can not efficiently
trade off between return and risk (measured by the variance)
when the setting is adversarial. Other papers have tried to
incorporate a coherent risk measure (see Section 2) in their
predictive algorithms. For example, papers such as [11, 12]
have discussed risk sensitive algorithms within a Markov
decision process (MDP) framework and [22] incorporated
coherent risk measures in the i.i.d. setting.

2 Online Portfolio Selection

We consider the following standard online portfolio selec-
tion game (OPS) with short selling and leverage, as defined
by Györfi et al. [19]. The game is played through T days
over a market with n stocks. On each day t, the market
is represented by a market vector Xt of relative prices,
Xt , (xt1, x

t
2, ..., x

t
n), where for each i = 1, . . . , n, xti ≥ 0

is the relative price of stock i, defined to be the ratio of its
closing price on day t relative to its closing price on day
t − 1. A wealth allocation vector or portfolio for day t
is bt , (bt0, b

t
1, b

t
2, . . . , b

t
n), where bt0 is a cash allocation

(not invested in any stock), and for i > 0, bti is the wealth
allocation for stock i (i.e. the fraction of total wealth allo-
cated into the asset), where a positive component, bti > 0,
represents a long position in stock i, and a negative one,
bti < 0, is a short position in stock i. We also allow lever-
age; that is, the investor can borrow and invest additional
cash, so as to amplify her profits. For the borrowed cash,
the investor must pay a daily interest rate, r > 0, and we
assume that the investor receives the same interest r for
deposited cash (bt0). Consider a portfolio bt played at the
start of day t. After the market vector Xt is revealed, the
portfolio changes in response to changes in stock price, as
follows. For each portfolio component bi, if bti > 0 is a long

position, its revised value is btix
t
i. However, if bti < 0 is a

short position, then, after we take into account the interest
owed on borrowing the stock for the short sale, the revised
value of this position is bti(x

t
i−1 + r) (note that in this case,

the investor profits when the price drops and vice versa).
Clearly, short selling and leveraging are risky; for example,
a short position has unbounded potential loss that is further
amplified by leveraging. Following [19], we assume that
no stock can lose or gain more than B × 100% of its value
from one day to another, where B ∈ (0, 1). In other words,
for each i, t,

1−B ≤ xti ≤ 1 +B. (1)

Thus in order to preclude the possibility of bankruptcy (see,
e.g., [19], Chapter 4), the allowed leverage is

LB,r ,
B + 1

r + 1
.

Note that in order to avoid a degenerate market where the
best investment is the risk-free asset, it is reasonable to
assume that B > r, which results in LB,r > 1. Using the
notation

(b)+ , (max{b1, 0}, . . . ,max{bn, 0})

and
(b)− , (min{b1, 0}, . . . ,min{bn, 0}),

and considering the interest accredited for deposited cash,
the interest debited for borrowed stocks (short positions),
and the interest paid for leveraged wealth, we obtain, by the
end of the day, an overall daily return of

b0(1 + r) +
〈
(bt)

+,Xt

〉
+
〈
(bt)

−,Xt − 1 + r
〉

−(LB,r − 1)(1 + r). (2)

The investor chooses a portfolio from the following set,{
(b0, . . . , bn) ∈ Rn+1 |

n∑
i=0

|bi| = LB,r

}
, (3)

which is, unfortunately, not convex. We thus apply a simple
transformation proposed by Györfi et al. [19]: transform
the market vector Xt into a vector with 2n+ 1 entries (one
entry for cash, n entries for the long components, and n for
the short ones). Formally, we define the transformed market
vector as

X′t , (1 + r, xt1, 2− xt1 + r, . . . , xtn, 2− xtn + r),

which is uniquely defined as a function of the original mar-
ket vector. The transformed portfolio set is now defined
as

B′ ,

{(b0, . . . , b2n) ∈ R2n+1 | bi ≥ 0,

2n∑
i=0

bi = LB,r}, (4)
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which is an unnormalized simplex. With this transformed
market vector and portfolio set, at the start of each trading
day t, the player chooses a portfolio bt ∈ B′ based on the
previous market sequences. It can easily be shown [19] that
by the end of day t, the player’s daily multiplicative return
is simplified to

〈bt,X′t〉 − (LB,r − 1)(1 + r). (5)

With respect to a fixed stationary and ergodic process, we de-
note by X , {Xt}∞−∞1 the induced sequence of stationary
and ergodic market vectors, and define the player’s invest-
ment strategy, denoted by S, as a sequence of portfolios
b1,b2, . . .. Then, assuming initial wealth of $1, we obtain
after T days the following cumulative wealth,

RT (S,X) ,
T∏
t=1

(〈bt,X′t〉 − (LB,r − 1)(1 + r)) . (6)

Defining the average growth rate,

WT (S) ,

1

T

T∑
t=1

log (〈bt,X′t〉 − (LB,r − 1)(1 + r)) , (7)

we have

RT (S,X) =

T∏
t=1

(〈bt,X′t〉 − (LB,r − 1)(1 + r)) =

e
∑T

t=1 log(〈bt,X
′
t〉−(LB,r−1)(1+r)) = eTWT (S).

Notice that maximizing WT (S) is equivalent to maximizing
RT (S,X). In Section 4 , we denote the summand ofWT (S)
(7) by

ω(bt,Xt) ,

− log (〈bt,X′t〉 − (LB,r − 1)(1 + r)) .

3 Introducing Risk

The traditional quantity for measuring financial risk is the
variance (standard deviation) of the return. This measure,
however, is criticized for being inadequate to measure risk.
One of the reasons is its inability to distinguish between
downside risk and upside risk (which corresponds to a de-
sirable behavior). Various alternative measures have been
proposed, such as the maximum drawdown, and value at
risk (VaR). An axiomatic approach proposed by Artzner et
al. [4] identifies coherent risk measures, which satisfy the
proposed axioms. Accordingly, the most popular coherent
risk measure is conditional value at risk (CVaR). For any

1By Kolmogorov’s extension theorem [10], the stationary and
ergodic process (Xn)

∞
1 can be extended to (Xn)

∞
−∞ such that the

ergodicity holds for both n→∞ and n→ −∞.

parameter α ∈ (0, 1), CVaRα is essentially the average loss
that the investor suffers on the (1− α)% worst returns. For
a continuous, bounded mean random variable Z the CVaRα
is defined as

Definition 1 (CVaRα). Let Z be a continuous random vari-
able representing loss. Given a parameter 0 < α < 1, the
CVaRα of Z is

CVaRα(Z) = E[Z | Z ≥ min{c | PZ(Z ≤ c) ≥ α}].

Assuming that we already know the distribution of returns, a
direct calculation of CVaR from the above formula requires
a calculation of the α% quantile followed by averaging over
the right tail of the loss distribution. Alternatively, it was
shown in [41] that CVaRα can be computed by solving the
following convex optimization problem. Define

φ(b, c) , c+
1

1− α
E
[
(ω(b,X)− c)+

]
, (8)

where we overload the previously defined (·)+ for vectors,
and define for any scalar x, (x)+ , max{0, x}.
Theorem 1 ([41]). The function φ(b, c) is convex and con-
tinuously differentiable. Moreover, the CVaRα of the loss
associated with any portfolio b is

CVaRα(b) = min
c∈R

φ(b, c). (9)

Theorem 1 is essential to the development and analysis of
our strategy. By our market boundedness assumption (1),
it follows that ω(b, X) is contained in [−M,M ] for some
M > 0. Thus, any c that minimizes Equation (9) must
reside in [−M,M ]. For a complete proof of this simple fact,
see [22]. In Section 4, we require the following definition,

B , B′ × [−M,M ].

4 Optimality ofW∗

Let F∞ be the σ-algebra generated by the infinite past
X−1, X−2, . . ., and let P∞, be the induced regular con-
ditional probability distribution of X0 given the infinite
past. Thus, all expectations w.r.t. X0 are conditional given
the infinite past. A well-known result appearing in [3, 2]
proves the following upper bound on the asymptotic average
growth rate of any investment strategy S under stationary
and ergodic markets:

lim sup
T→∞

WT (S) ≤ E
[

max
b∈B′()

EP∞ [−ω(b,X0)]

]
, (10)

where B′() denotes the F∞-measurable functions. Over the
years, several algorithms achieving this asymptotic bound
were proposed [20, 18, 21] (for the case of long-only port-
folios).
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Our goal is to achieve the optimal asymptotic average
growth rate while keeping the CVaR bounded. By The-
orem 1, the desired growth for a given risk threshold γ > 0
rate is given by the solution to the following minimization
problem,

minimize
(b,c)∈B()

E[ω(b,X0)]

subject to φ(b, c) ≤ γ,
(11)

Optimization problem (11) motivates a definition of a γ-
bounded strategy, whose long-term average CVaR, calcu-
lated according to the available information at the beginning
of each round, is bounded by γ.
Definition 2 (γ-bounded strategy). An investment strategy
S will be called γ-bounded if, almost surely,

lim sup
T→∞

1

T

T∑
i=1

min
c∈R

(
c+

1

1− αEP
Xi|X

i−1
0

[
(ω(bt,Xt)− c)+

])
≤ γ,

where bi is portfolio chosen by S at day i. The set of all
γ-bounded strategies is denoted Sγ .

Clearly, there is always a solution to optimization problem
(11), and therefore, Sγ 6= ∅. For example, the vacuous
strategy that always invests everything in cash is γ-bounded
for any γ > 0. Let (b∗∞, c

∗
∞) be a solution to (11). Define

the γ-feasible optimal value as

W∗ , E [ω(b∗∞, X0)] a.s.

Optimization problem (11) is equivalent to finding the
saddle-point of the Lagrangian function [34], namely,

min
(b,c)∈B()

max
λ∈R+

L((b, c), λ), (12)

where the Lagrangian is

L((b, c), λ) , E [ω(b, X0)] + λ (φ(b, c)− γ) . (13)

Let λ∗∞ be the value of γ optimizing (12), and assume it
is unique and that it is possible to identify a constant λmax

such that λmax > λ∗∞ [37]. With this constant available, we
set Λ , [0, λmax].

Our first result is thatW∗ bounds the performance of any
strategy in Sγ . This result, as stated in Theorem 2, is a
generalization of the well-known result of [2] regarding
the best possible performance for wealth alone (without
constraints).

Theorem 2 (Optimality ofW∗). For any investment strat-
egy S ∈ Sγ whose portfolios are b1,b2, . . ., the following
holds a.s.

lim inf
T→∞

1

T

T∑
i=1

ω(bi, Xi) ≥ W∗.

From Theorem 2 it follows that an investment strategy, S ∈
Sγ , is optimal if, for any bounded, stationary and ergodic
process {Xi}∞−∞,

lim
T→∞

1

T

T∑
i=1

ω(bi, Xi) =W∗ a.s. (14)

A γ-bounded investment strategy whose asymptotic average
growth rate isW∗ will be called γ-universal , By the above
theorem its asymptotic average growth rate is not worse than
any other γ-bounded strategy. We find just such a strategy
in Section 5.

5 CVaR-Adjusted Nearest Neighbor
Investment Strategy

In this section we present an investment strategy in S ∈ Sγ
that satisfies (14). The strategy, which we call CVaR-
Adjusted Nearest Neighbor, henceforth CANN, is summa-
rized in the pseudo-code in Algorithm 1. To define the
strategy we require the following definition of the instanta-
neous Lagrangian:

l(b, c, λ, x) ,

ω(b, x) + λ

(
c+

1

1− α
(ω(b, x)− c)+ − γ

)
. (15)

The strategy maintains a countable array of experts {Hk,l},
where on each day t an expert Hk,l outputs a triplet
(btk,l, c

t
k,l, λ

t
k,l) ∈ B × Λ, defined to be the minimax solu-

tion corresponding to an empirical distribution using nearest
neighbor estimates (see details below). We prove that, as
t grows, those empirical estimates converge (weakly) to
P∞ and thus converge toW∗. Each day t, CANN outputs
a prediction (bt, ct, λt) ∈ B × Λ. The sequence of pre-
dictions (b1, c1), (b2, c2), . . . output by CANN is designed
to minimize the average loss, 1

T

∑T
i=1 l(b, c, λi, xi). Simi-

larly, the sequence of predictions λ1, λ2, . . . is designed to
maximize the average loss, 1

T

∑T
i=1 l(bi, ci, λ, xi). Each

of (bi, ci) and λi is generated by aggregating the experts’
predictions (b, c)

i
k,l and λik,l, k, l = 1, 2, . . . , respectively.

In order to ensure that CANN will perform as well as any
other expert for both the (b, c) and λ predictions, we apply,
twice alternately, the Weak Aggregating Algorithm (WAA)
of [43], and [26].2 It will also ensure that the average loss
of the strategy will converge a.s. toW∗.

We now turn to defining the countable set of experts {Hk,h}:
For each h = 1, 2, . . ., we choose ph ∈ (0, 1) such
that for the sequence {ph}∞h=1, limh→∞ ph = 0. Setting
ĥ = btphc, for expert Hk,h we define, for a fixed (k × n)-

2In [43] it was proved that the WAA is capable of dealing with
countable number of experts.
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Algorithm 1 CVaR-Adjusted Nearest Neighbor Investment
Strategy (CANN)

Input: Countable set of experts {Hk,h}, α > 0
(b0, c0) ∈ B λ0 ∈ Λ, initial probability {βk,h},
For t = 0 to∞

Play bt, ct, λt.
Nature reveals market vector Xt

Suffer loss l(bt, ct, λt, xt).
Update the cumulative loss of the experts

lk,h(b,c),t ,
t∑
i=0

l(bik,h, c
i
k,h, λi, xi)

lk,hλ,t ,
t∑
i=0

l(bi, ci, λ
i
k,h, xi)

Update experts’ weights

w
(k,h)
t+1,(b,c) , βk,h exp

(
− 1√

t
lk,h(b,c),t

)

p
(k,h)
t+1,(b,c) ,

w
(k,h)
t+1,(b,c)∑∞

h=1

∑∞
k=1 w

(k,h)
t+1,(b,c)

Update experts’ weights wλ,(k,h)
n+1

w
(k,h)
t+1,λ , βk,h exp

(
1√
t
lk,hλ,t

)
p

(k,h)
t+1,λ ,

w
(k,h)
t+1,λ∑∞

h=1

∑∞
k=1 w

(k,h)
t+1,λ

Choose bt+1, ct+1 and λt+1 as follows

bt+1 =
∑
k,h

p
(k,h)
t+1,(b,c)b

t+1
k,h

ct+1 =
∑
k,h

p
(k,h)
t+1,(b,c)c

t+1
k,h

λt+1 =
∑
k,h

p
(k,h)
t+1,λλ

t+1
k,h

End For

dimensional vector, denoted w, the following set,

B
w,(1,t)
k,h , {xi | k + 1 ≤ i ≤ t,Xi−1

i−k is among the ĥ

nearest neighbors of w among Xk
1 , . . . , X

t−1
t−k},

where
Xj+k
j , (Xj , . . . ,Xj+k) ∈ Rk×n.

Thus, expert Hk,h has a window of length k and it looks
for the ĥ euclidean nearest-neighbors of w in the past. This
results in a set of market vectors Bw,(1,t)k,h . This set can

also be seen as a conditional probability over the space of
possible market vectors. Then, each expert recommends the
actions (b, c) ∈ B and λ ∈ Λ, which are the corresponding
minimax solution. More formally, we define

h
(b,c)
k,h (Xt−1

1 , w) ,

arg min
(b,c)∈B

max
λ∈Λ

1

|Bw,(1,t)k,h |

∑
xi∈Bw,(1,t)

k,h

lk,l,t(b, c, λ, xi)


and

hλk,h(Xt−1
1 , w) ,

arg max
λ∈Λ

 min
(b,c)∈B

1

|Bw,(1,t)k,h |

∑
xi∈Bw,(1,t)

k,h

lk,l,t(b, c, λ, xi)


for

lk,h,t(b, c, λ, xi) ,

l(b, c, λ, xi) +
(
||(b, c)||2 − ||λ||2

)(1

t
+

1

h
+

1

k

)
,

Using the above, we define the predictions of Hk,h to be:

H
(b,c)
k,h (Xt−1

1 ) = h
(b,c)
k,h (Xt−1

1 , Xt−1
t−k), (16)

t = 1, 2, 3, . . .

Hλ
k,h(Xt−1

1 ) = hλk,h(Xt−1
1 , Xt−1

t−k), (17)

t = 1, 2, 3, . . .

Note that lk,h,t(b, c, λ, x) is an approximation of
l(b, c, λ, x), which guarantees that the minimax solution
of every expert is unique. This technicality is used in the
proof of Theorem 3.

Theorem 3 below states that the CANN strategy, applied on
the experts defined above, is γ-universal. We note that the
theorem utilizes a standard assumption (see, e.g., [7, 21]).

Theorem 3 (γ-universality). Assume that for any vector
w ∈ Rn×k the random variable ||Xk

1−w|| has a continuous
distribution. Then, for any γ > 0 and for any bounded
process {Xi}∞−∞, CANN is γ-universal.

The full proof of this theorem appears in the supplementary
material. The main idea is to show first that the minimax
(12) value of the Lagrangian (13) is continuous with respect
to the probability measure. Then, we prove that the minimax
measurable selection (which gives the optimal actions) is
also continuous and every accumulation point of induced
sequence of optimal actions is optimal. This is formulated
in the following lemmas:

Lemma 1 (Continuity and Minimax). Let B,Λ,X be com-
pact real spaces. l : B ×Λ×X → R be a continuous func-
tion. Denote by P(X ) the space of all probability measures
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on X (equipped with the topology of weak-convergence).
Then the following function L∗ : P(X )→ R is continuous

L∗(Q) = inf
(b,c)∈B

sup
λ∈Λ

EQ [l((b, c), λ, x)] . (18)

Moreover, for any Q ∈ P(X ),

inf
(b,c)∈B

sup
λ∈Λ

EQ [l((b, c), λ, x)] =

sup
λ∈Λ

inf
(b,c)∈B

EQ [l((b, c), λ, x)] .

Lemma 2 (Continuity of the optimal selection). LetB,Λ,X
be compact real spaces. Then, there exist two measurable
selection functions hX ,hλ such that

h(b,c)(Q) ∈ arg min
(b,c)∈B

(
max
λ∈Λ

EQ [l((b, c), λ, x)]

)
,

hλ(Q) ∈ arg max
λ∈Λ

(
min

(b,c)∈B
EQ [l((b, c), λ, x)]

)
for any Q ∈ P(X ). Moreover, let L∗ be as defined in
Equation (18). Then, the set

Gr(L∗) ,

{(u∗, v∗,Q) | u∗ ∈ h(b,c)(Q), v∗ ∈ hλ(Q),Q ∈ P(X )},

is closed in B × Λ× P(X ).

Those lemmas are helpful since the empirical measures gen-
erated by the experts will converge weakly, using the ergodic
theorem [9] and the properties of the nearest neighbors es-
timates [14], to P∞. Thus, we will get that the asymptotic
average growth rate of the experts isW∗, and by the guaran-
tee of WAA, the asymptotic average growth rate of CANN
will also beW∗.

Table 1: Datasets

DATASET STARTING DAY # DAYS # STOCKS

NYSE-N 1/1/1983 2250 23
MSCI 4/1/2006 1043 24

6 Empirical results

To apply the CANN strategy, we implemented it with a finite
set of experts, and in this section we present our empirical
results on some standard datasets. One objective of our
experiments is to examine how well CANN maintains the
CVaR constraints. Another objective is to compare it to
several well-known adversarial no-regret portfolio selection
algorithms and to stochastically universal strategies. The
benchmark algorithms we tested are:

• Best Constant Rebalancing Portfolio (BCRP) [13]:
Constant rebalancing portfolio (CRP) is a strategy
which uses the same wealth allocation at each round.
The BCRP is the optimal strategy among the class of
CRP strategies. Clearly, the BCRP is calculated in
hindsight and it only stands as a benchmark strategy.
It was shown in [13] that the BCRP is the optimal
strategy whenever market sequences are i.i.d.

• Cover’s Universal Portfolios (UP) [13]: This algorithm
invests a fraction of the wealth in every CRP, where the
updates ensures that well preforming CRPs will get an
higher fraction. The algorithm guarantees logarithmic
regret w.r.t the wealth achieved by the BCRP.

• Exponentiated Gradient (EG) [23]: This well known
no-regret algorithm can be applied to the problem of
OPS by looking at every stock as an individual expert.
This algorithm ensures a square-root regret.

• Online Newton Steps (ONS) [1]: This algorithm ex-
ploits the exp-concavity property of the loss function in
order to guarantee logarithmic regret w.r.t. the wealth
achieved by BCRP.

• The nearest-neighbor based strategy (long-only and
non-leveraged) of Györfi et al. (BNN ) [21]: BNN ,
which is a (stochastically) universal strategy whose
asymptotic growth rate is optimal when the market
follows a stationary and ergodic process.

• The nearest-neighbor based strategy (with short and
leveraged): BLNN : A variant of BNN which allows
short and leveraged investment. This variant was de-
scribed in [19]

The experiments were conducted on two datasets that were
used in many previous works (see, e.g., [28, 29, 8]). The first
is the NYSE dataset, which consists of 23 stocks between
the years 1985-1995. The second is the MSCI dataset, which
consists of 24 stocks between the years 2006-2010. The
statistics of these two datasets are summarized in Table 1

Following [19, 25], for both datasets we used a daily interest
rate of r = 0.000245 and set B = 0.4, which implies
that LB,r = 2.49. This interest rate is suitable for the
NYSE dataset and is higher than the true rate that was at
the time of the MSCI dataset. However, this high choice
of interest only reduces the returns of our algorithm, which
rarely deposits cash and must pay a lot for short selling
and loans. Similarly to the implementation of BNN [21],
our implementation of CANN took the following experts,
k = 1, . . . , 5 h = 1, . . . , 10, for a total of 50 experts, and
we set pl = 1

20 + h−1
18 . The initial expert prior was set to

be uniform and we chose the typical value of α = 0.95
for the calculation of CVaR. The hyper-parameters for the
benchmark algorithms were according to [31].
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Table 2: Wealth of CANN and benchmark algorithms.

Dataset BCRP UP EG ONS BNN BLNN CANN.05

NYSE 12.53 5.05 5.03 5.83 39.56 1054 58.8
MSCI 1.51 0.92 0.93 0.86 13.47 6.32E+05 6.06E+03

Table 3: CVaR0.95 of CANN with different values of γ.

Dataset BLNN CANN.07 CANN.06 CANN.05 CANN.04 CANN.03 CANN.02 CANN.01

NYSE 6.3% 4.9% 3.82% 3.2% 2.9% 2.46% 1.86% 1.24%
MSCI 7.76% 5.49% 5.15% 4.44% 3.81% 2.98% 2.27% 1.59%

Table 2 presents the total wealth of all the algorithms, where
CANN was applied with γ = 0.05, denoted by CANN.05.
It is evident that the stochastically universal algorithms are
superior to all the worst-case universal algorithms. It is
also evident that allowing margin and short trading is ben-
eficial in terms of final wealth. Another phenomenon we
can observe is that the final wealth of the our risk-adjusted
algorithm is less compare to the risk-oblivious algorithm
BLNN , this of-course should not be surprising.

We conducted another experiment where we applied CANN
with different choices of γ in the range [0.01, 0.07]. The
results are presented in Table 3, where the CVaR0.95 is
presented. it is evident that CANN indeed enjoys lower
CVaR0.95 rates compares to BLNN . We can also observe
that by lowering the choice of γ we can adjust the CVaR
resulting in less risky strategies. In Figure 1, we present
the mean-CVaR tradoff where the y-axis shows the average
return and the x-axis shows the CVaR0.95. The concave
shape suggests that by choosing an appropriate γ, one may
achieve a better mean-CVaR trade-off.

In Figure 2 we present the smoothed PDF of the returns of
the daily returns of both BLNN (red curve) and CANN (grenn
curve) on the NYSE and the MSCI datasets. The left tails of
these PDFs show that our algorithm effectively decreases the
risk accompanied with the investment. Another interesting
aspect of our strategy is its lower variance.

In Figure 3 we plot the log-returns of the above instances
on both datasets where it can be seen that the performance
of our algorithm is consistent during different investment
periods.

7 Concluding Remarks

In this paper we introduced the CVaR-adjusted nearest-
neighbor portfolio selection strategy, which is the first CVaR-
adjusted universal portfolio selection strategy when the un-
derlying market process is stationary and ergodic. It should
be noted that it is possible to revise our method to work with
other modern measures of risk such as the optimized cer-

tainty equivalent [5], distortion risk measures (mixture of
CVaR) [16, 27], and law-invariant coherent risk measures
[27], in a straight forward manner since all of the above can
be calculated by solving a convex minimization problem as
was done for CVaR.

Early works in modern finance assumed that markets are
stochastic and very simple (e.g., the returns are normally
distributed) [40, 38]. This modeling assumption was later
found to be too simplistic [33]. At the other extreme, Cover
initiated the study of adversarial portfolio selection whereby
stock prices are controlled by an adversary. Neither extreme
led to overly effective strategies. It appears that a more
sophisticated stochastic modeling, as we pursue here, can
lead to effective strategies. However, despite the empirical
success of these methods, there are two caveats, the first one
is that the obtained bounds are asymptotic and the second is
the computational deficiency of the method. To overcome
those barriers, additional, and possibly strong, assumptions
on the market process will be required. Moreover, it is not
entirely clear whether such goals can be pursued without
harming the empirical success of the methods. In the future,
we wish to pursue those goals while not over-committing to
dubious assumptions.

Another interesting future direction is designing a metric
which is suitable for the problem of potfolio selection. In our
paper and in [21] the euclidean metric was used. However,
it was demonstrated in [30] that the Euclidean metric may
not be suitable for OPS since it ignores profitable phenome-
nas such as mean-reversion. A careful design of similarity
measure might lead to significant improvement in terms of
final wealth.

A final caveat would be that the OPS framework ignores
several factors which are essential for real paper trading
(e.g., transaction costs, implementation shortfall and market
impact). Incorporating and considering those factors is a
difficult task and still considered to be an open problem. We
leave those issues for future work.
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Figure 1: Mean-CVaR trade-off
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Figure 2: The smoothed PDF
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Figure 3: The log-returns of CANN applied with different choices of γ.
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