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APPENDIX: PROOFS

Proof of Lemma 1

We first prove a technical lemma that bounds the £,, norm of error vectors.

Lemma 4. For any x € R? and z; € {£1}%, with probability 1 — O(d~3) (conditioned on x; and z;)

Proof. Let & = &;/6 ~ N(0,0%/6%). Consider the following decomposition:

<

+46- sup ‘z Ht(liuzz)zz‘ ll2iloo-
1<i<n

i i zz

The second term on the right-hand side of the above inequality is upper bounded by O(H¢) almost surely,
because ||zil|oo < 1 and |27 Hy(ky, 2i)2i| < ||He(ki, 2i)|l1]|z:]|% < H. For the first term, because &; are centered
sub-Gaussian random variables independent of z; and ||z;||cc < 1, we have that 1/n-|| 21:1 €izilloo < /02 logd/n

with probability 1 — O(d~—3), by invoking standard sub—Gaussian concentration inequalities. O

Now define 8 = (Gi,7it), 0o = (g¢,6~ 1 f(z;)) and Z = (Z1,-.-,2n) where Z; = (2;,1) € € R4*1. Define also that
Y = (§1,. .., 5,). The estimator can then be written as § = arg mingepa+1 = |Y —Z6||2+ |6, where Y = Z6,+e¢,
e =(e1,...,&n). We first establish a “basic inequality” type results that are essential in performance analysis of
Lasso type estimators. By optimality of 57 we have that

1 . ~ 1 _ 1
Y = ZB13 + Ml < =Y — Z60l3 + Aol = = [l}3 + Aol

Re-organizing terms we obtain

M8l < Mifollr + = (9 bo)" Z"e.

On the other hand, by Hélder’s inequality and Lemma 4 we have, with probability 1 — O(d~2),

~ o [logd
§||0—eo||1~<5 §+H5>.

Subsequently, if A < co(06~1\/logd/n + H6) for some sufficiently small ¢o > 0, we have that [|8]; < ||6o]l1 +
1/2||6 — 6o|;. Multiplying by 2 and adding ||@ — 6o||; on both sides of the inequality we obtain ||§ — 6o|; <
2(||§— Ooll1 + H%Hl — ||§||1) Recall that 6 is sparse and let S = SU{d+ 1} be the support of 5. We then have
16— 00) 5 +1|(Bo)se I — 103 ]lr = 0 and hence [[(8 — bo)se [l — [[(0 — o)/l < 16— ol < 2[[(0 — bo)s]l1- Thus,

2@ 00)T 27 <26~ ol le%
n n

16 — 00) gl < 3/1(8 — 6o) 51 (8)

Now consider 6 that minimizes LIy — Z0||3 + A||6]|1. By KKT condition we have that

l\D\y

12w - Z@)H <
n

Define & = %ZTZ and recall that Y = Z6y + ¢. Invoking Lemma 4 and the scaling of A we have that, with

probability 1 — O(d~2)
1
‘N = el | 5. 9)

~ ~ A 1
B o0l <5 + 527
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By definition of {z;}7_,, we know that £;; = 1 for all j = 1,...,d + 1 and E[S;;] = 0 for j # k. By Hoeffding’s
inequality [17] and union bound we have that with probability 1 — O(d~2), ||S — Ia1yx(d+1)lloe S V/logd/n,
where ||-||oo denotes the maximum absolute value of matrix entries. Also note that 6 — 6, satisfies || (8 —¢)g. |1 <
3||(§f 00)g/l1 thanks to Eq. (8). Subsequently,

16— Bolloe < 15(6 — 00) oo + [I(E — 1)(0 — B0)|oo
<1200 = 00) oo + IIZ = Iloc 16 — bollx
< IS0 = 00)lse + 12 = Iloe - 4/1(8 — 60) 511
< [IB(0 = 00)loe + 1= = Tloo - 4(s + 1)[10 — bl
<2 Jlo8d sy 2108 g o (10)
1) n n

Combining Eq. (10) together with the scaling n = Q(s? log d) we complete the proof of Lemma 1. Note that the
statement on the ¢ error ||@ — 6p||1 is a simple consequence of the basic inequality Eq. (8).

Proof of Theorem 1

The basis of our algorithm is the analysis of the finite-difference algorithm proposed by [13] under low dimensions.
In particular, applying the analysis in [2] for low-dimensional strongly smooth functions, we have for every epoch
t<s

E[f(z)] = inf  f(x) S poly(s, o H, |lag 1) - T,
zGX,acgtc:O

where z; is the solution point at the tth epoch in Algorithm 2 and poly(-) is any polynomial function of constant

degrees. Recall that Hx’é i < |lz*]l1 < B by Assumption (A2). Using Markov’s inequality we have that with
t

probability 0.9,

fle) = inf  f(z) Spoly(s,o H, |lag 1) -T2, Vi=0,....s. (11)
zEX,zgg =0

We are now ready to prove Theorem 1. Let S = §t be the subset when Algorithm 2 terminates. In the rest of the

proof we assume the conclusions in Corollary 1 and Lemma 1 hold, which happens with probability 1 — O(d~1).

Define AS = S\S, z* := infex f(z) and 2} = inf 5 _ f(z). Assumption (A5) implies that z* can be
y Sf(’i

chosen such that 2. = 0. Also, if Ag = ) we know that 2} = z* and Theorem 1 automatically holds due to

Eq. (11). Therefore in the rest of the proof we shall assume that Ag # ().

Because Ag # @ and |S| = s, we must have |§t| < s. From the description of Algorithm 2, it can only happen
with S; = S;_1. We then have that

ferg) = f(@7) = f(ziy) — f(&7) + f(@e1) — flai1)
< flai_y) = f(a®) +poly(s, o, H, ||z*|1) - T~/ (12)
< Vf(eiy) (@i — 2%) + poly(s, o, H, |la*|1) - T/, (13)

where Eq. (12) holds with probablhty at least 0.9, thanks to Eq. (11). Because z;_; is the minimizer of f on
vectors in X that are supported on § = 5;_1 = 8, and that both x;_; and z* truncated on S are feasible (i.e.,
in the restrained set X), it must hold that ([Vf(z}_,)]s g (x7_y —2%)g) < 0 by first-order optimality condltlons.

On the other hand, by Corollary 1 and the definition of S, we have that IV f(xi_1)ag]lleo < 2n. Also note that
(x* —x7_1)se = 0 and [x]_;]as = 0. Subsequently,

V(i) (@i = 2) S [(VF@i)as #ag)] < NV )]aslsllzaglh < 2nlle*[l. (14)

Combining Eqs. (13,14) and the scalings of 7, , A and T" = T//2s we complete the proof of Theorem 1.
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Proof of Lemma 2

We use the “full-length” parameterization @ = HAt + %Zt—r (17} — Z@), where 0} Z, and fft are notations defined in
the proof of Lemma 1 (With subscripts t added to emphasize that both Z; and Y; are specific to the tth epoch in

Algorithm 3). Because Yt Zi0o + ¢ (where 0o = Vf(x;) and € = (41,...,En), With &4 defined in Eq. (2)).
we have

O . 1- . N
O =0 + EZtT(ZtGOt +et — Z40:) = Oot + ﬁZtT&: + (X = Las1)x(a+1)) (0t — Oot),

where 3 = lZTZ Recall that g4 = fi/d + 5ZTHt(/<;i,zi)zi. Define b; = zTHt(m,zi)zi and b = (by,...,b,).
Also note that the first d components of Ht are identical to g; defined in Eq. (5). Subsequently,

1 .
Gt —gt+ ZT§+ ZTb‘i' (B = Las1)x (d+1) )(0: _HOt)} - (15)
R/—/ -
=C¢ =t

In Eq. (15) we divide g; — g; into two terms. We first consider the term ¢, := =Z7¢. It is clear that E[¢;|z¢] =0
because E[¢|z¢, Z;] = 0. Now consider any d-dimensional vector a € R, and to simplify notations all derivations
below are conditioned on x;. For any i € [n], za are i.i.d. sub-Gaussian random variables with common
parameter v? = |la||3. Also, & is a sub-Gaussian random variable with parameter o and is independent of
zt—za. Thus, invoking Lemma 6 we have that fiz;'; a is a sub-exponential random variable with parameters

v =a/V2 S olalls. Consequently, ((;,a) = 3" | &z a is a centered sub-exponential random variable with
parameters v = y/n/2 - a < ollal|2/dv/n.

We next consider the term ~; = 5ZTb + ( — I)(@t — 6ot). By Assumption (A3) we know that ||bljcc < §H.
Subsequently, by Holder’s inequahty we have that

5 ~ .
1elloo < —l1Zell1,00[[blloc + 1% = IlloollOs = Or0llx

log d log d
< Hé+ OfL <U; OfL +55H>.

where the second inequality holds with probability 1 — O(d~?) thanks to Lemma 1.

Proof of Theorem 2
We first note that the cumulative regret Ri(T) can be upper bounded as

T'—1

RS < flzy) = f*| +sup sup |f(ze+02) — f(zy)].
A T/ Z t . ze{i]}d| ( t ) ( t)|

Because ||V f(z)||1 < H for all x € X and z € {£1}¢, using Holder’s inequality we have that
log?d\ "
o +89) - S < 01 5 5 (V1)

which is a second-order term. Thus, to prove upper bounds on RS () it suffices to consider only EtT:/gl flze)—
fr

We next cite the result in [22] that gives explicit cumulative regret bounds for mirror descent with approximate
gradients:

Lemma 5 ([22], Lemma 3). Let | - || and || - ||y~ be a pair of conjugate norms, and let Ay(-,-) be a Bregman
divergence that is k-strongly convex with respect to || - ||y. Suppose f is H-smooth with respect to || - ||, meaning
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that f(y) < f(z) + Vf(z) (y —z) + %Hx —yll3, for all z,y € X, and n < k/H. Define go = Vf(x;), and let
xo, ..., _1 be iterations in Algorithm 3. Then for every 0 <t < T’ —1 and any z* € X,
n?1g: — gt”i*

- 16
2(rk — Hn) 10

n[f(@epn) = @) + Ay (@i, 27) < Ay, 27) +0(Ge — g1, 27 — 1) +

Adding both sides of Eq. (16) from ¢t =0 to t = T" — 1, telescoping and noting that Ay (z7/,z*) > 0, we obtain

T'-1
1 Ay(zo, ") | 1 - U ~ 2
— @) — fla*) < ——— + — — g, — ")+ ———— - sup — . 17
T ; fxe) — f(z¥) T’ T tz:; (9t — ¢, x4 ) 3=y 0oL, 1g¢ — g¢ll (17)
Set || ly = |la for a = 21201;’52. It is easy to verify that under Assumption (A3), the function f satisfies

Fy) = f(2) + V(@) (y —2) + Hlly — z[|%
> f(z) + Vf(x) " (y —2) + Hlly — |,
for all z,y € X with H < eH, because ||z — y||? < d20-Y) ||z — y||2 < d¥/084||z — y||2 = e||lz — y||? by Holder’s

inequality. In addition, by definition of Bregman divergence we have that

Ay(zo,27) < Iz} < l|l=*[|F log d < B*logd, (18)

"2 < 5
3 ey
where the first inequality holds because 1, (o) = 14(0) = 0 and V), (x0) = Vip,(0) = 0 for a > 1.

We next upper bound the 2 ZtT:,gl@t — g, x* —x) and |G — g
concentration inequalities (e.g., Lemma 7), we have that with probability 1 — O(d~1)

12b* terms. By Lemma 2 and sub-exponential

oslog d 1og d

H
on ~5 +Hs

+

logd logd
n

19t — gtlloo < ICtlloo + [[Velloe < 3 < ) + Ho +

uniformly over all ' € {0,...,T" — 1}, where the last inequality holds because n = Q(s?logd). Subsequently, by
Holder’s inequality we have that

2
~ o logd
sup ||9t gt| e S arle=n/a. sup |[|g: —9t||c2>o S

—— + H?6”. (19)
0<t<T 0<t<T’ o

We now consider the first term -, Zthlal@t —gnat—x) < & ZtTZ,al Xt +supgcy<rr—1 [|Velloo |2 — 2¢][1, where
X := (¢, x* — 24). By Lemma 2, we know that X;|Xy,..., Xy is a centered sub-exponential random variable
with parameters v = \/n/2 - a < o||z* — 2¢]|2/0v/n < o|lx*||1/dv/n. Invoking concentration inequalities for
sub-exponential martingales ([40], also phrased as Lemma 8 for a simplified version in the appendix) and the
definition that 7" = T'/n, we have with probability 1 — O(d1)

T7'-1
1 olla*| logd logd ollz*||y [logd
—_ * < <
T tho (G xt>‘~ 5 A R T

where the last inequality holds because T' > n = Q(s%logd). Thus,

allz*|l1 [logd
< 2
< Al flog (20)

T'—1 ‘

1 ~ *
T Z (Gt — g, a" — x4)

+ [Jz* 1 (H(S +
t=0

oslogd
on '

Combining Eqgs. (18,19,20) with Eq. (17) and taking z* to be a minimizer of f on X that satisfies ||z*||; < B,
we obtain

T -1

|lz*|2logd n  o|z*||1 [logd oslogd o?logd 29
< = \/ i ( H H=)
T Zf 73 7 TJr ) T * "l * on +n %n *
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B?logdn oB [logd oslogd o?logd
< — 4+ = B(HS H?5? 21
- n T + ) T + < + on > o ( 5%n + > (21)

with probability 1 — O(d~1), provided that n < x/2H = 1/2H.

We are now ready to prove Theorem 2. By the conditions we impose on T" and the choices of 1 and n, it is easy
to verify that n < 1/2H, n = Q(s?logd) and n = O(T). Subsequently,

T -1
nlogd n slogd nlogd (o? ~
fot B\l = B,/ST+B(0—+H) B\ | 00

B( slog d)1/4 oB\/A+H) Blo+H) (slog2d>1/4

SATE AT T
/4 , 2
LB ((1+H) slogd) <U+O(T_l/2)>
s

AN

T

1

< (pvioga+ 224 B) [T U Bl s VA ioga [2] 4 Gy

1+ H)?

1/4
< (1+0+0?/s)By/logd {(T)S] +O(T1/?).

Proof of Lemma 3

Using the model Eq. (2) we can decompose g:(d) — g+ as

~ g 1 §
G(0) =9 = SB[(zTHi2)z] + =276+ 5 3 (2] Hiz)z — El(27 Hiz)2]
N—— 1=1
::Ct(‘S) 3:Et(6)
0~ ot o
+ o ; (= (H(62) = Ho)z)z + (€ = 1B — b00)|
=5:(3)

where E 0, and fo¢ are similarly defined as in the proof of Lemma 2. The sub-exponentiality of <§t( ), a) for any
a € R? is established in Lemma 2. We next consider Bt( ). For any a € R consider (ﬁt( ),a) = ZZ 1 Xi(a)
where X;(a) = (2] H;z) (2 a) — E[(2] H;z;) (2 a)] are centered i.i.d. random variables condltloned on H; and
z¢. In addition, | X;(a)] < 2||He||l1||zill% - llalli]|zilleo < H|lal|1 almost surely. Therefore, X;(a) is a sub-Gaussian
random variable with parameter v = H|la|;, and hence (B(6),a) is a sub-Gaussian random variable with
parameter v = 6H||a||1/+/n. Finally, for the deterministic term 7;(d), we have that

~ d a ~
Fe(@)lloe < 5 sup [ Hi(02) = Hellall2ll% + (2 = D)(0r = Bor) oo
ze{£1}d
) ~ ~
<5 swp L 0z]leoll2% + 1% = Illmax/|6: — 6ol
ze{£1}4
1 1
< Lo? 4/ o8d (US Ogd+séH>
n 1) n
§L62+0810gd+s5H logd.
n n

Proof of Theorem 3

Because f is convex, Ri(T) = flzps1) — fF < %Zth,al f(xy) — f*. Thus it suffices to upper bound

7 ZtT:/al f(ze) — f(x*), where z* € X, ||z*||1 < B is a minimizer of f over X'. Using the strategy in the proof of

T —

Theorem 2, this amounts to upper bound (with high probability) ||gi* — g¢| 12/) and 2 >, <gt — g, T — xy).
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For the first term, using sub-exponentiality of Zt and sub-gaussianity of Bt, we have with probability 1 — O(d™1)
uniformly over all ¢t € {0,..., 7" — 1},

195 = gelloo < IGelloo + [1Btlloo + [Felloo

2
~5< logd 1ogd> s /log L8 4 HS [s logd aslogd
o logd 9
< (=
N<5+35H)1/ 5%+ Lo,

where the last inequality holds because n = Q(s? logd). Subsequently, with probability 1 — O(d~1)

2
< (02 252H2> log d 4 L2654,
0 n

sup (198" — g3
0<t<T’—1

(22)

For the other term % 23“281@?,\, — g, " +), again using concentration inequalities of sub-exponential /sub-
Gaussian martingales and noting that ||2* — z¢|]2 < ||z* — 2¢][1 < 2B, we have

1 T'—-1 1 -1
T > @ =gt — ) = T D e+ B+ At — )
t=0 t=0
o logd 5 0oslogd log d
< (=
N<5+56H)B : +B<L5+ AT (23)
Subsequently, combining Eqs. (22,23) with Eq. (17) we have
T'-1
1 B?logdn logd 5 oslogd log d
— - so0H B L 0H
7 2 S~ ) S = T+ (5 +s0H) By 25+ ( +n>< + TR s H [ =
2 logd
+71<52 +3252H2) og + L35t (24)

We are now ready to prove Theorem 3. It is easy to verify that with the condition imposed on 1" and the selection
of n and n, it holds that n < 1/2H, n = (s*logd) and n < T//10. Subsequently,

1/3 2/3 2/3
n 5n-1/3| B logd gia(™ I slogd i —5/6
a(slogd) +0(n=77) 7t + 0 T (L+o0) - + O(n™°%)
2/3 4/3
4 Bn?/3 /log d 2 n +5(n_2/3) logd+Bn2/3 /logclL2 slogd
T slogd n

n
log d n 1/3 log d slogd 2/3 n 1/3 logd ~
< Bn'/3 —5 toB (slogd) - T B(L+0) ( - > +a2B< 5 ) + O(T~5/12)

s2log”d T
o2 $2/371/3
< (B Togd + UB\/logd+ B+/logd ) [(1+L) ] N B(L + o) <

2/3 1/3
S /;Ogd) +6(T_5/12)

51/3 $2/3 (1+L)2/3

ByIogd o2ByIogd 1—|—L 2/371/3 1+ D)2\ %
g(Bx/logd—i—U sl/gg + 82/30g) ] +Bm/1ogd((T)5> + BT

: (1+L)s*3
S(+o+02/s%)B logd( +1L)s ) T-5/12),
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Additional tail inequalities

Lemma 6. Suppose X and Y are centered sub-Gaussian random variables with parameters v and v3, respec-
tively. Then XY is a centered sub-exponential random variable with parameter v = v/2v and o = 2v, where
v =2e2/ety by,

Proof. XY is clearly centered because EXY = EX -EY = 0, thanks to independence. We next bound E[| XY |¥]
for k > 3 (i.e., verification of the Bernstein’s condition). Because X and Y are independent, we have that
E[|XY|¥] = E|X|¥ - E|Y|*. In addition, because X is a centered sub-Gaussian random variable with parameter
v?, it holds that (E|X|*)Y/* < vyel/eV/k. Similarly, (E|X|*)'/* < vyel/¢VE. Subsequently,

2 k 1 k
IE|XY|k < (62/61/11/2> kR < (62/61/11/2) cefEl < ik! . (262/€+1V1V2> .
where in the second inequality we use the Stirling’s approximation inequality that v/27kkFe™* < k!. The

sub-exponential parameter of XY can then be determined. O

Lemma 7 (Bernstein’s inequality). Suppose X is a sub-exponential random variable with parameters v and o.

2exp {—t?/20%}, 0<t<1?/oy

Pr[|X7EX|>t] S{ 2exp{—t/2a}, t>1/2/04.

The following lemma is a simplified version of Theorem 1.2A in [40] (note that the original form in [40] is
one-sided; the two-sided version below can be trivially obtained by considering — X3, ..., —X,, and applying the
union bound).

Lemma 8 (Bernstein’s inequality for martingales). Suppose Xi,...,X, are random variables such that
E[X;|X1,...,X;1] = 0 and E[X?|Xy,...,X;4] < o? for all t = 1,...,n. Further assume that
E[|X; % X1, ..., X;-1] < 3klo?bF=2 for all integers k > 3. Then for all t > 0,

n

>oX

=1

Pr

t2




