APPENDIX: PROOFS

Proof of Lemma 1

We first prove a technical lemma that bounds the \(\ell_\infty \) norm of error vectors.

Lemma 4. For any \(x \in \mathbb{R}^d \) and \(z_i \in \{\pm 1\}^d \), with probability \(1 - O(d^{-3}) \) (conditioned on \(x_t \) and \(z_i \))

\[
\left\| \sum_{i=1}^{n} \varepsilon_i z_i \right\|_\infty \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}} + H\delta.
\]

Proof. Let \(\tilde{\xi}_i = \xi_i/\delta \sim \mathcal{N}(0, \sigma^2/\delta^2) \). Consider the following decomposition:

\[
\left\| \sum_{i=1}^{n} \varepsilon_i z_i \right\|_\infty \leq \frac{1}{n\delta} \left\| \sum_{i=1}^{n} \tilde{\xi}_i z_i \right\|_\infty + \delta \cdot \sup_{1 \leq i \leq n} \left| z_i^\top H_i(\kappa_i, z_i) \right| \cdot \|z_i\|_\infty.
\]

The second term on the right-hand side of the above inequality is upper bounded by \(O(H\delta) \) almost surely, because \(\|z_i\|_\infty \leq 1 \) and \(|z_i^\top H_i(\kappa_i, z_i)| \leq \|H_i(\kappa_i, z_i)\|_1 \cdot \|z_i\|_\infty \leq H \). For the first term, because \(\tilde{\xi}_i \) are centered sub-Gaussian random variables independent of \(z_i \) and \(\|z_i\|_\infty \leq 1 \), we have that \(1/n \cdot \sum_{i=1}^{n} \tilde{\xi}_i z_i \|_\infty \lesssim \sqrt{\sigma^2 \log d/n} \) with probability \(1 - O(d^{-3}) \), by invoking standard sub-Gaussian concentration inequalities. \qed

Now define \(\hat{\theta} = (\hat{y}_1, \hat{\mu}_1) \), \(\theta_0 = (y_0, \delta^{-1} f(x_t)) \) and \(\bar{Z} = (\tilde{z}_1, \ldots, \tilde{z}_n) \) where \(\tilde{z}_i = (z, 1) \in \mathbb{R}^{d+1} \). Define also that \(Y = (\bar{y}_1, \ldots, \bar{y}_n) \). The estimator can then be written as \(\hat{\theta} = \arg \min_{\theta \in \mathbb{R}^{d+1}} \frac{1}{2} \| \bar{Y} - \bar{Z} \theta \|_2^2 + \lambda \| \theta \|_1 \) where \(\bar{Y} = \bar{Z} \theta_0 + \varepsilon \), \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \). We first establish a “basic inequality” type results that are essential in performance analysis of Lasso type estimators. By optimality of \(\hat{\theta} \), we have that

\[
\frac{1}{n} \| Y - \bar{Z} \hat{\theta} \|_2^2 + \lambda \| \hat{\theta} \|_1 \leq \frac{1}{n} \| Y - \bar{Z} \theta_0 \|_2^2 + \lambda \| \theta_0 \|_1 = \frac{1}{n} \| \varepsilon \|_2^2 + \lambda \| \theta_0 \|_1.
\]

Re-organizing terms we obtain

\[
\lambda \| \hat{\theta} \|_1 \leq \lambda \| \theta_0 \|_1 + \frac{2}{n} \left(\| \hat{\theta} - \theta_0 \|_2 \bar{Z} \| \varepsilon \right) \| \varepsilon \|_2.
\]

On the other hand, by Hölder’s inequality and Lemma 4 we have, with probability \(1 - O(d^{-2}) \),

\[
\frac{2}{n} \left(\| \hat{\theta} - \theta_0 \|_2 \bar{Z} \| \varepsilon \right) \| \varepsilon \|_2 \leq 2 \| \hat{\theta} - \theta_0 \|_1 \cdot \left(\frac{1}{n} \| \bar{Z} \|_\infty \| \varepsilon \|_\infty \right) \lesssim \| \hat{\theta} - \theta_0 \|_1 \cdot \left(\frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}} + H\delta \right).
\]

Subsequently, if \(\lambda \leq c_0 (\sigma \delta^{-1} \sqrt{\log d/n} + H\delta) \) for some sufficiently small \(c_0 > 0 \), we have that \(\| \hat{\theta} \|_1 \leq \| \theta_0 \|_1 + 1/2 \| \hat{\theta} - \theta_0 \|_1 \). Multiplying by 2 and adding \(\| \hat{\theta} - \theta_0 \|_1 \) on both sides of the inequality we obtain \(\| \hat{\theta} - \theta_0 \|_1 \leq 2(\| \hat{\theta} - \theta_0 \|_1 + \| \theta_0 \|_1 - \| \hat{\theta} \|_1) \). Recall that \(\theta_0 \) is sparse and let \(\bar{S} = S \cup \{d + 1\} \) be the support of \(\theta_0 \). We then have \(\| (\hat{\theta} - \theta_0)_{\bar{S}} \|_1 + \| (\theta_0)_{\bar{S}} \|_1 - \| \theta_{\bar{S}} \|_1 = 0 \) and hence \(\| (\hat{\theta} - \theta_0)_{\bar{S}} \|_1 - \| (\theta - \theta_0)_{\bar{S}} \|_1 \leq \| \hat{\theta} - \theta_0 \|_1 \leq 2(\| \hat{\theta} - \theta_0 \|_S \|_{\bar{S}} \|_1 \). Thus,

\[
\| (\hat{\theta} - \theta_0)_{\bar{S}} \|_1 \leq 3(\| \hat{\theta} - \theta_0 \|_{\bar{S}} \|_{\bar{S}} \|_1.
\]

Now consider \(\hat{\theta} \) that minimizes \(\frac{1}{n} \| Y - \bar{Z} \theta \|_2^2 + \lambda \| \theta \|_1 \). By KKT condition we have that

\[
\left\| \frac{1}{n} \bar{Z}^\top (Y - \bar{Z} \theta) \right\|_\infty \leq \frac{\lambda}{2}.
\]

Define \(\hat{\Sigma} = \frac{1}{n} \bar{Z}^\top \bar{Z} \) and recall that \(Y = \bar{Z} \theta_0 + \varepsilon \). Invoking Lemma 4 and the scaling of \(\lambda \) we have that, with probability \(1 - O(d^{-2}) \),

\[
\| \hat{\Sigma}(\hat{\theta} - \theta_0) \|_\infty \leq \frac{\lambda}{2} + \left\| \frac{1}{n} \bar{Z}^\top \varepsilon \right\|_\infty \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}} + \delta H.
\]
By definition of \(\{ z_i \}_{i=1}^n \), we know that \(\bar{\Sigma}_{jj} = 1 \) for all \(j = 1, \ldots, d+1 \) and \(E[\bar{\Sigma}_{jk}] = 0 \) for \(j \neq k \). By Hoeffding’s inequality [17] and union bound we have that with probability \(1 - O(d^{-2}) \), \(\| \bar{\Sigma} - I_{(d+1) \times (d+1)} \|_\infty \lesssim \sqrt{\log d/n} \), where \(\| \cdot \|_\infty \) denotes the maximum absolute value of matrix entries. Also note that \(\theta - \theta_0 \) satisfies \(\| (\theta - \theta_0)_{\mathbb{S}} \|_1 \leq 3\| (\theta - \theta_0)_{\mathbb{S}} \|_1 \) thanks to Eq. (8). Subsequently,

\[
\| \hat{\theta} - \theta_0 \|_\infty \leq \| \hat{\Sigma}(\hat{\theta} - \theta_0) \|_\infty + \| \hat{\Sigma} - I \|_\infty \| \hat{\theta} - \theta_0 \|_1 \\
\leq \| \hat{\Sigma}(\hat{\theta} - \theta_0) \|_\infty + \| \bar{\Sigma} - I \|_\infty \| \hat{\theta} - \theta_0 \|_1 \\
\leq \| \bar{\Sigma}(\hat{\theta} - \theta_0) \|_\infty + \| \bar{\Sigma} - I \|_\infty \cdot 4\| \hat{\theta} - \theta_0 \|_2 \\
\leq \| \bar{\Sigma}(\hat{\theta} - \theta_0) \|_\infty + \| \bar{\Sigma} - I \|_\infty \cdot 4(s+1)\| \hat{\theta} - \theta_0 \|_\infty \\
\leq \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}} + \delta H + \sqrt{\frac{s^2 \log d}{n}} \cdot \| \hat{\theta} - \theta_0 \|_\infty. \tag{10}
\]

Combining Eq. (10) together with the scaling \(n = \Omega(s^2 \log d) \) we complete the proof of Lemma 1. Note that the statement on the \(\ell_1 \) error \(\| \theta - \theta_0 \|_1 \) is a simple consequence of the basic inequality Eq. (8).

Proof of Theorem 1

The basis of our algorithm is the analysis of the finite-difference algorithm proposed by [13] under low dimensions. In particular, applying the analysis in [2] for low-dimensional strongly smooth functions, we have for every epoch \(t < s \)

\[
E[f(x_t)] - \inf_{x \in \bar{\mathcal{X}}, x_{\bar{S}} = 0} f(x) \lesssim \text{poly}(s, \sigma, H, \| x^*_0 \|_1) \cdot T^{-1/3},
\]

where \(x_t \) is the solution point at the \(t \)th epoch in Algorithm 2 and \(\text{poly}(\cdot) \) is any polynomial function of constant degrees. Recall that \(\| x^*_0 \|_1 \leq \| x^* \|_1 \leq B \) by Assumption (A2). Using Markov’s inequality we have that with probability 0.9,

\[
f(x_t) - \inf_{x \in \bar{\mathcal{X}}, x_{\bar{S}} = 0} f(x) \lesssim \text{poly}(s, \sigma, H, \| x^*_0 \|_1) \cdot T^{-1/3}, \quad \forall t = 0, \ldots, s. \tag{11}
\]

We are now ready to prove Theorem 1. Let \(\hat{S} = \hat{S}_t \) be the subset when Algorithm 2 terminates. In the rest of the proof we assume the conclusions in Corollary 1 and Lemma 1 hold, which happens with probability \(1 - O(d^{-1}) \). Define \(\Delta \hat{S} = \hat{S} \setminus \overline{S} \), \(x^* := \inf_{x \in \bar{\mathcal{X}}} f(x) \) and \(x^*_t := \inf_{x \in \bar{\mathcal{X}}, x_{\bar{S}} = 0} f(x) \). Assumption (A5) implies that \(x^* \) can be chosen such that \(x^*_{\mathbb{S}} = 0 \). Also, if \(\Delta \hat{S} = \emptyset \) we know that \(x^*_t = x^* \) and Theorem 1 automatically holds due to Eq. (11). Therefore in the rest of the proof we shall assume that \(\Delta \hat{S} \neq \emptyset \).

Because \(\Delta \hat{S} \neq \emptyset \) and \(|S| = s \), we must have \(|\hat{S}_t| < s \). From the description of Algorithm 2, it can only happen with \(\hat{S}_t = \hat{S}_{t-1} \). We then have that

\[
f(x_{T+1}) - f(x^*) = f(x^*_{t-1}) - f(x^*) + f(\bar{x}_{t-1}) - f(x^*_{t-1}) \\
\leq f(x^*_{t-1}) - f(x^*) + \text{poly}(s, \sigma, H, \| x^* \|_1) \cdot T^{-1/3} \\
\leq \nabla f(x^*_{t-1})^\top (x^*_{t-1} - x^*) + \text{poly}(s, \sigma, H, \| x^* \|_1) \cdot T^{-1/3}, \tag{12}
\]

where Eq. (12) holds with probability at least 0.9, thanks to Eq. (11). Because \(x^*_{t-1} \) is the minimizer of \(f \) on vectors in \(\bar{\mathcal{X}} \) that are supported on \(\hat{S} = \hat{S}_{t-1} = \hat{S}_t \), and that both \(x^*_{t-1} \) and \(x^* \) truncated on \(\hat{S} \) are feasible (i.e., in the restrained set \(\bar{\mathcal{X}} \)), it must hold that \(\| \nabla f(x^*_{t-1}) \|_{\Delta \hat{S}} \leq 0 \) by first-order optimality conditions. On the other hand, by Corollary 1 and the definition of \(\hat{S}_t \), we have that \(\| \nabla f(x^*_{t-1}) \|_{\Delta \hat{S}} \| \lesssim 2\eta \). Also note that \((x^* - x^*_{t-1})_{\mathbb{S}} = 0 \) and \(|x^*_{t-1} - x^*_{\mathbb{S}}| = 0 \). Subsequently,

\[
\nabla f(x^*_{t-1})^\top (x^*_{t-1} - x^*) \leq \| \nabla f(x^*_{t-1}) \|_{\Delta \hat{S}} \leq \| \nabla f(x^*_{t-1}) \|_{\Delta \hat{S}} \| x^*_{\mathbb{S}} \|_1 \leq 2\eta \|
\]

Combining Eqs. (13,14) and the scalings of \(\eta, \delta, \lambda \) and \(T' = T/2s \) we complete the proof of Theorem 1.
Proof of Lemma 2

We use the “full-length” parameterization \(\hat{\theta}_t = \tilde{\theta}_t + \frac{1}{n} Z_t^\top (\tilde{Y}_t - Z_t \tilde{\theta}_t) \), where \(\tilde{\theta}_t, Z_t \) and \(\tilde{Y}_t \) are notations defined in the proof of Lemma 1 (with subscripts \(t \) added to emphasize that both \(Z_t \) and \(\tilde{Y}_t \) are specific to the \(t \)th epoch in Algorithm 3). Because \(\tilde{Y}_t = Z_t \theta_{0t} + \varepsilon_t \) (where \(\theta_{0t} = \nabla f(x_t) \) and \(\varepsilon = (\varepsilon_{t1}, \ldots, \varepsilon_{tn}) \), with \(\varepsilon_{ti} \) defined in Eq. (2)). we have

\[
\tilde{\theta}_t = \hat{\theta}_t + \frac{1}{n} \sum_{i=1}^{n} Z_t^\top (Z_t \theta_{0t} + \varepsilon_t - \tilde{Z}_t \tilde{\theta}_t) = \theta_{0t} + \frac{1}{n} \sum_{i=1}^{n} \varepsilon_t + (\tilde{\Sigma} - I_{(d+1) \times (d+1)}) (\hat{\theta}_t - \theta_{0t}),
\]

where \(\tilde{\Sigma} = \frac{1}{n} \tilde{Z}_t^\top \tilde{Z}_t \). Recall that \(\varepsilon_{ti} = \xi_i / \delta + \delta z_i^\top H_i (\kappa_i, z_i) z_i \). Define \(b_i = z_i^\top H_i (\kappa_i, z_i) z_i \) and \(b = (b_1, \ldots, b_n) \).

Also note that the first \(d \) components of \(\tilde{\theta}_t \) are identical to \(g_t \) defined in Eq. (5). Subsequently,

\[
\tilde{g}_t = g_t + \frac{1}{n \delta} \sum_{i=1}^{n} Z_t^\top (Z_t \theta_{0t} + \varepsilon_t - \tilde{Z}_t \tilde{\theta}_t) = \theta_{0t} + \frac{1}{n \delta} \sum_{i=1}^{n} \varepsilon_t + (\tilde{\Sigma} - I_{(d+1) \times (d+1)}) (\hat{\theta}_t - \theta_{0t}),
\]

In Eq. (15) we divide \(\tilde{g}_t - g_t \) into two terms. We first consider the term \(\zeta_t := \frac{1}{n \delta} \sum_{i=1}^{n} Z_t^\top \xi_i \). It is clear that \(E[\zeta_t | x_t] = 0 \) because \(E[\xi_t | x_t, Z_t] = 0 \). Now consider any \(d \)-dimensional vector \(a \in \mathbb{R}^d \), and to simplify notations all derivations below are conditioned on \(x_t \). For any \(i \in [n] \), \(z_{ti} a \) are i.i.d. sub-Gaussian random variables with common parameter \(\nu^2 = ||a||_2^2 \). Also, \(\xi_t \) is a sub-Gaussian random variable with parameter \(\sigma^2 \) and is independent of \(z_{ti} a \). Thus, invoking Lemma 6 we have that \(\zeta_t z_{ti} a \) is a sub-exponential random variable with parameters \(\nu = \alpha / \sqrt{2} \leq \sigma ||a||_2 \). Consequently, \(\langle \zeta_t, a \rangle = \frac{1}{n \delta} \sum_{i=1}^{n} \xi_t z_{ti} a \) is a centered sub-exponential random variable with parameters \(\nu = \sqrt{n \delta / 2} \cdot \alpha \leq \sigma ||a||_2 / \sqrt{n} \).

We next consider the term \(\gamma_t = \frac{1}{n \delta} \sum_{i=1}^{n} \xi_t z_{ti} a + (\tilde{\Sigma} - I) (\hat{\theta}_t - \theta_{0t}) \). By Assumption (A3) we know that \(||b||_\infty \leq \delta H \).

Subsequently, by Hölder’s inequality we have that

\[
||\gamma_t|| \leq \frac{\delta}{n} ||Z_t||_{1, \infty} ||b||_{\infty} + ||\tilde{\Sigma} - I||_{\infty} ||\hat{\theta}_t - \theta_{0t}||_1 \leq H \delta + \sqrt{\frac{\log d}{n}} \left(\frac{\sigma}{\delta} \sqrt{\frac{\log d}{n} + s \delta H} \right).
\]

where the second inequality holds with probability \(1 - O(d^{-2}) \) thanks to Lemma 1.

Proof of Theorem 2

We first note that the cumulative regret \(R^C_A(T) \) can be upper bounded as

\[
R^C_A(T) \leq \left[\frac{1}{T} \sum_{t=0}^{T-1} f(x_t) - f^* \right] + \sup_t \sup_{z \in \{-1,1\}^d} \left| f(x_t + \delta z) - f(x_t) \right|.
\]

Because \(|| \nabla f(x) ||_1 \leq H \) for all \(x \in \mathcal{X} \) and \(z \in \{-1,1\}^d \), using Hölder’s inequality we have that

\[
\left| f(x_t + \delta z) - f(x_t) \right| \leq \delta H \leq B \left(\frac{s \log^2 d}{T} \right)^{1/4},
\]

which is a second-order term. Thus, to prove upper bounds on \(R^C_A(T) \) it suffices to consider only \(\frac{1}{T} \sum_{t=0}^{T-1} f(x_t) - f^* \).

We next cite the result in [22] that gives explicit cumulative regret bounds for mirror descent with approximate gradients:

Lemma 5 ([22], Lemma 3). Let \(|| \cdot \|_\psi \) and \(|| \cdot \|_{\psi'} \) be a pair of conjugate norms, and let \(\Delta_\psi(\cdot, \cdot) \) be a Bregman divergence that is \(\kappa \)-strongly convex with respect to \(|| \cdot \|_\psi \). Suppose \(f \) is \(H \)-smooth with respect to \(|| \cdot \|_\psi \), meaning
that \(f(y) \leq f(x) + \nabla f(x)^	op (y - x) + \frac{\tilde{H}}{2} \|x - y\|_\psi^2 \) for all \(x, y \in \mathcal{X} \), and \(\eta < \kappa/\tilde{H} \). Define \(g_t = \nabla f(x_t) \), and let \(x_0, \ldots, x_{T-1} \) be iterations in Algorithm 3. Then for every \(0 \leq t \leq T' - 1 \) and any \(x^* \in \mathcal{X} \),

\[
\eta [f(x_{t+1}) - f(x^*)] + \Delta_\psi(x_{t+1}, x^*) \leq \Delta_\psi(x_t, x^*) + \eta \langle \tilde{g}_t - g_t, x^* - x_t \rangle + \eta \frac{\|\tilde{g}_t - g_t\|_\psi^2}{2(\kappa - H \eta)}. \tag{16}
\]

Adding both sides of Eq. (16) from \(t = 0 \) to \(t = T' - 1 \), telescoping and noting that \(\Delta_\psi(x_{T'}, x^*) \geq 0 \), we obtain

\[
\frac{1}{T'} \sum_{t=0}^{T'-1} f(x_t) - f(x^*) \leq \frac{\Delta_\psi(x_0, x^*)}{\eta T'} + \frac{1}{T'} \sum_{t=0}^{T'-1} \langle \tilde{g}_t - g_t, x_t - x^* \rangle + \frac{\eta}{2(\kappa - H \eta)} \sup_{0 \leq t < T'} \|\tilde{g}_t - g_t\|_\psi^2. \tag{17}
\]

Set \(\| \cdot \| = \| \cdot \|_a \) for \(a = \frac{2 \log d}{2 \log d - 1} \). It is easy to verify that under Assumption (A3), the function \(f \) satisfies

\[
f(y) \geq f(x) + \nabla f(x)^	op (y - x) + H \|y - x\|_\infty^2,
\]

\[
\geq f(x) + \nabla f(x)^	op (y - x) + \tilde{H} \|y - x\|_\psi^2
\]

for all \(x, y \in \mathcal{X} \) with \(\tilde{H} \leq eH \), because \(\|y - x\|_\psi^2 \leq d^{(1-1/a)} \|y - x\|_a^2 \leq d^{1/\log d} \|y - x\|_1^2 = e \|y - x\|_1^2 \) by Hölder’s inequality. In addition, by definition of Bregman divergence we have that

\[
\Delta_\psi(x_0, x^*) \leq \frac{1}{2(a - 1)} \|x^\ast\|_\infty^2 \leq \frac{1}{2(a - 1)} \|x^\ast\|_2^2 \leq \|x^\ast\|_2^2 \log d \leq B^2 \log d,
\]

(18)

where the first inequality holds because \(\psi_a(x_0) = \psi_a(0) = 0 \) and \(\nabla \psi_a(x_0) = \nabla \psi_a(0) = 0 \) for \(a > 1 \).

We next upper bound the \(\frac{1}{T'} \sum_{t=0}^{T'-1} \langle \tilde{g}_t - g_t, x^* - x_t \rangle \) and \(\|\tilde{g}_t - g_t\|_\psi^2 \), terms. By Lemma 2 and sub-exponential concentration inequalities (e.g., Lemma 7), we have that with probability \(1 - O(d^{-1}) \)

\[
\|\tilde{g}_t - g_t\|_\psi^2 \leq \|\zeta_t\|_\infty + \|\gamma_t\|_\infty \lesssim \frac{\sigma}{\delta} \left(\frac{\log d}{T} + \frac{\log d}{n} \right) + H \delta + \frac{\sigma s \log d}{\delta n} \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}} + H \delta
\]

uniformly over all \(t' \in \{0, \ldots, T'-1\} \), the last inequality holds because \(n = \Omega(s^2 \log d) \). Subsequently, by Hölder’s inequality we have that

\[
\sup_{0 \leq t < T'} \|\tilde{g}_t - g_t\|_\psi^2 \lesssim d^{(2a-1)/a} \sup_{0 \leq t < T'} \|\tilde{g}_t - g_t\|_2^2 \lesssim \frac{\sigma^2 \log d}{\delta^2 n} + H^2 \sigma^2. \tag{19}
\]

We now consider the first term \(\frac{1}{T'} \sum_{t=0}^{T'-1} \langle \zeta_t, x^* - x_t \rangle \leq \frac{1}{T'} \sum_{t=0}^{T'-1} X_t + \sup_{0 \leq t < T'-1} \|\gamma^\ast\|_\infty \|x^\ast - x_t\|_1 \), where \(X_t := \langle \zeta_t, x^\ast - x_t \rangle \). By Lemma 2, we know that \(X_1, X_1, \ldots, X_{T-1} \) is a centered sub-exponential random variable with parameters \(\nu = \sqrt{n}/2 \cdot \alpha \lesssim \sigma \|x^\ast - x_t\|_2/\delta \sqrt{n} \lesssim \sigma \|x^\ast\|_1/\delta \sqrt{n} \). Invoking concentration inequalities for sub-exponential martingales ([40], also phrased as Lemma 8 for a simplified version in the appendix) and the definition that \(T' = T/n \), we have with probability \(1 - O(d^{-1}) \)

\[
\left| \frac{1}{T'} \sum_{t=0}^{T'-1} \langle \zeta_t, x^* - x_t \rangle \right| \lesssim \frac{\sigma \|x^\ast\|_1}{\delta} \left(\sqrt{\frac{\log d}{T'}} + \frac{\log d}{T} \right) \lesssim \frac{\sigma \|x^\ast\|_1}{\delta} \sqrt{\frac{\log d}{T}},
\]

where the last inequality holds because \(T \geq n = \Omega(s^2 \log d) \). Thus,

\[
\left| \frac{1}{T'} \sum_{t=0}^{T'-1} \langle \tilde{g}_t - g_t, x^* - x_t \rangle \right| \lesssim \frac{\sigma \|x^\ast\|_1}{\delta} \sqrt{\frac{\log d}{T'}} + \frac{\log d}{T} \left(H \delta + \frac{\sigma s \log d}{\delta n} \right). \tag{20}
\]

Combining Eqs. (18,19,20) with Eq. (17) and taking \(x^\ast \) to be a minimizer of \(f \) on \(\mathcal{X} \) that satisfies \(\|x^\ast\|_1 \leq B \), we obtain

\[
\frac{1}{T'} \sum_{t=0}^{T'-1} f(x_t) - f(x^*) \lesssim \frac{\|x^\ast\|_1^2 \log d}{\eta T} + \frac{\sigma \|x^\ast\|_1}{\delta} \sqrt{\frac{\log d}{T'}} + \frac{\|x^\ast\|_1}{T} \left(H \delta + \frac{\sigma s \log d}{\delta n} \right) + \eta \left(\frac{\sigma^2 \log d}{\delta^2 n} + H^2 \sigma^2 \right)
\]
\[\frac{1}{T'} \sum_{t=0}^{T'-1} f(x_t) - f(x^*) \leq B \left(\frac{n \log d}{T} + \frac{\sigma B}{\sqrt{n}} + \frac{B(\sigma + H)}{\sqrt{T}} \right) \]

with probability \(1 - \mathcal{O}(d^{-1}) \), provided that \(\eta < \kappa / 2H = 1/2H \).

We are now ready to prove Theorem 2. By the conditions we impose on \(T \) and the choices of \(\eta \) and \(n \), it is easy to verify that \(\eta < 1/2H, n = \Omega(s^2 \log d) \) and \(n = \mathcal{O}(T) \). Subsequently,

\[
\begin{align*}
\frac{1}{T'} \sum_{t=0}^{T'-1} f(x_t) - f(x^*) &\leq B \left(\frac{n \log d}{T} + \frac{\sigma B}{\sqrt{n}} + \frac{B(\sigma + H)}{\sqrt{T}} \right) \\
&\leq B \left(\frac{(1 + H)^2 \log d}{T} \right)^{1/4} + \frac{\sigma B}{\sqrt{T}} \left(\frac{s \log d}{T} \right)^{1/4} + \frac{B(\sigma + H)}{\sqrt{T}} \left(\frac{s \log d}{T} \right)^{1/4} + \mathcal{O}(T^{-1/2}) \\
&\leq \left(B \sqrt{\log d} + \frac{\sigma B}{\sqrt{s}} + \frac{\sigma^2 B}{s} \right)^{1/4} + B(\sigma + H) \sqrt{\log d} \left(\frac{s \log d}{T} \right)^{1/4} + \mathcal{O}(T^{-1/2}) \\
&\leq (1 + \sigma + \sigma^2 / s) B \sqrt{\log d} \left(\frac{(1 + H)^2 s}{T} \right)^{1/4} + \mathcal{O}(T^{-1/2}).
\end{align*}
\]

Proof of Lemma 3

Using the model Eq. (2) we can decompose \(\tilde{g}_t(\delta) - g_t \) as

\[
\begin{align*}
\tilde{g}_t(\delta) - g_t &= \frac{\delta}{2} \mathbb{E} \left[(z^T H_t z) \right] + \frac{\delta}{2n} \sum_{i=1}^{n} (z_i^T H_t z_i) z_i - \mathbb{E} \left[(z^T H_t z) \right] \\
&+ \frac{\delta}{2n} \sum_{i=1}^{n} (z_i^T (H_t (\delta z_i) - H_t) z_i) z_i + \left[\left(\tilde{\Sigma} - I \right) (\tilde{\theta}_t - \theta_t) \right]_{1:d},
\end{align*}
\]

where \(\tilde{\Sigma}, \tilde{\theta}_t \) and \(\theta_t \) are similarly defined as in the proof of Lemma 2. The sub-exponentiality of \(\langle \tilde{\xi}_t(\delta), a \rangle \) for any \(a \in \mathbb{R}^d \) is established in Lemma 2. We next consider \(\tilde{\beta}_t(\delta) \). For any \(a \in \mathbb{R}^d \) consider \(\tilde{\beta}_t(\delta), a = \sum_{i=1}^{n} X_i(a) \) where \(X_i(a) = (z_i^T H_t z_i)(z_i^T a) - \mathbb{E} [(z_i^T H_t z_i)(z_i^T a)] \) are centered i.i.d. random variables conditioned on \(H_t \) and \(x_t \). In addition, \(|X_i(a)| \leq 2 \|H_t\|_1 \|z_i\|_{\infty} \cdot \|a\|_1 \|z_i\|_{\infty} \leq H \|a\|_1 \) almost surely. Therefore, \(X_i(a) \) is a sub-Gaussian random variable with parameter \(\nu = H \|a\|_1 \), and hence \(\langle \tilde{\beta}_t(\delta), a \rangle \) is a sub-Gaussian random variable with parameter \(\nu = \delta H \|a\|_1 / \sqrt{n} \). Finally, for the deterministic term \(\gamma_t(\delta) \), we have that

\[
\|\gamma_t(\delta)\|_\infty \leq \frac{\delta}{2} \sup_{\delta_{z} \in \{\pm 1\}^d} \|H_t(\delta z) - H_t\|_1 \|z\|_\infty^2 + ||(\tilde{\Sigma} - I)(\tilde{\theta}_t - \theta_t)\|_\infty
\]

\[
\leq \frac{\delta}{2} \sup_{\|\delta z\|_\infty \leq L \cdot \|\delta z\|_\infty} \|\delta z\|_\infty \|z\|_\infty^2 + ||(\tilde{\Sigma} - I)\|_{\text{max}} \|\tilde{\theta}_t - \theta_t\|_{\infty}
\]

\[
\leq L \delta^2 + \sqrt{\frac{\log d}{n}} \left(\frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}} + s \delta H \right)
\]

\[
\leq L \delta^2 + \frac{\sigma s \log d}{n \delta} + s \delta H \sqrt{\frac{\log d}{n}}.
\]

Proof of Theorem 3

Because \(f \) is convex, \(R_{\mathcal{A}}(T) = f(x_{T+1}) - f^* \leq \frac{1}{T} \sum_{t=0}^{T-1} f(x_t) - f^* \). Thus it suffices to upper bound \(\frac{1}{T} \sum_{t=0}^{T-1} f(x_t) - f(x^*) \), where \(x^* \in \mathcal{X}, \|x^*\|_1 \leq B \) is a minimizer of \(f \) over \(\mathcal{X} \). Using the strategy in the proof of Theorem 2, this amounts to upper bound (with high probability) \(\|\tilde{g}_t(w) - g_t\|_{\psi^*}^2 \) and \(\frac{1}{T} \sum_{t=0}^{T-1} (\tilde{g}_t(w) - g_t, x^* - x_t) \).
For the first term, using sub-exponentiality of $\tilde{\zeta}_t$ and sub-gaussianity of $\tilde{\beta}_t$, we have with probability $1 - O(d^{-1})$ uniformly over all $t \in \{0, \ldots, T' - 1\}$,
\[
\|\tilde{g}_t^w - g_t\|_\infty \leq \|\tilde{\zeta}_t\|_\infty + \|\tilde{\beta}_t\|_\infty + |\tilde{\gamma}_t|_\infty \\
\lesssim \frac{\sigma}{\delta} \left(\sqrt{\frac{\log d}{n} + \frac{\log d}{n}} \right) + \delta H \sqrt{\frac{\log d}{n} + L \delta^2} + H \delta \sqrt{\frac{s^2 \log d}{n} + \frac{\sigma s \log d}{\delta n}} \\
\lesssim \left(\frac{\sigma}{\delta} + s \delta H \right) \sqrt{\frac{\log d}{n} + L \delta^2},
\]
where the last inequality holds because $n = \Omega(s^2 \log d)$. Subsequently, with probability $1 - O(d^{-1})$
\[
\sup_{0 \leq t \leq T' - 1} \|\tilde{g}_t^w - g_t\|^2_{\psi^s} \lesssim \left(\frac{\sigma^2}{\delta^2} + s^2 \delta^2 H^2 \right) \frac{\log d}{n} + L^2 \delta^4.
\] (22)

For the other term $\frac{1}{T'} \sum_{t=0}^{T'-1} \langle \tilde{g}_t^w - g_t, x^* - x_t \rangle$, again using concentration inequalities of sub-exponential/sub-Gaussian martingales and noting that $\|x^* - x_t\|_2 \leq \|x^* - x_t\|_1 \leq 2B$, we have
\[
\frac{1}{T'} \sum_{t=0}^{T'-1} \langle \tilde{g}_t^w - g_t, x^* - x_t \rangle = \frac{1}{T'} \sum_{t=0}^{T'-1} (\tilde{\zeta}_t + \tilde{\beta}_t + \tilde{\gamma}_t, x^* - x_t) \\
\lesssim \left(\frac{\sigma}{\delta} + s \delta H \right) B \sqrt{\frac{\log d}{T}} + B \left(L \delta^2 + \frac{\sigma s \log d}{\delta n} + s \delta H \sqrt{\frac{\log d}{n}} \right).
\] (23)

Subsequently, combining Eqs. (22,23) with Eq. (17) we have
\[
\frac{1}{T'} \sum_{t=0}^{T'-1} f(x_t) - f(x^*) \lesssim \frac{B^2 \log d}{\eta} \frac{n}{T} + \left(\frac{\sigma}{\delta} + s \delta H \right) \frac{\log d}{T} + \left(B + \eta \right) \left(L \delta^2 + \frac{\sigma s \log d}{\delta n} + s \delta H \sqrt{\frac{\log d}{n}} \right) \\
+ \eta \left(\frac{\sigma^2}{\delta^2} + s^2 \delta^2 H^2 \right) \frac{\log d}{n} + \eta L^2 \delta^4.
\] (24)

We are now ready to prove Theorem 3. It is easy to verify that with the condition imposed on T and the selection of η and n, it holds that $\eta < 1/2H$, $n = \Omega(s^2 \log d)$ and $n \leq T/10$. Subsequently,
\[
\frac{1}{T'} \sum_{t=0}^{T'-1} f(x_t) - f(x^*) \\
\lesssim B n^{1/3} \sqrt{\frac{\log d}{T}} + \left[\sigma \left(\frac{n}{s \log d} \right)^{1/3} + \tilde{O}(n^{-1/3}) \right] B \sqrt{\frac{\log d}{T}} + \left(B + \tilde{O} \left(\frac{n^{2/3}}{\sqrt{T}} \right) \right) \left[(L + \sigma) \left(\frac{s \log d}{n} \right)^{2/3} + \tilde{O}(n^{-5/6}) \right] \\
+ B n^{2/3} \sqrt{\frac{\log d}{T}} \left(\frac{s^2 \log d}{n} \right)^{2/3} + \tilde{O}(n^{-2/3}) \frac{\log d}{n} + B n^{2/3} \sqrt{\frac{\log d}{T}} \left(\frac{s^2 \log d}{n} \right)^{4/3} \\
\lesssim B n^{1/3} \sqrt{\frac{\log d}{T}} + \sigma B \left(\frac{n}{s \log d} \right)^{1/3} \sqrt{\frac{\log d}{T}} + B (L + \sigma) \left(\frac{s \log d}{n} \right)^{2/3} + \sigma^2 B \left(\frac{n}{s^2 \log^2 d} \right)^{1/3} \sqrt{\frac{\log d}{T}} + \tilde{O}(T^{-5/12}) \\
\lesssim \left(B \sqrt{\frac{\log d}{T}} + \frac{\sigma B \sqrt{\log d}}{s^{1/3}} + \frac{\sigma^2 B \sqrt{\log d}}{s^{2/3}} \right) \left(\frac{(1 + L)s^{2/3}}{T} \right)^{1/3} + B (L + \sigma) \left(\frac{s^{2/3} \log d}{T} \right)^{1/3} + \tilde{O}(T^{-5/12}) \\
\lesssim \left(B \sqrt{\frac{\log d}{T}} + \frac{\sigma B \sqrt{\log d}}{s^{1/3}} + \frac{\sigma^2 B \sqrt{\log d}}{s^{2/3}} \right) \left(\frac{(1 + L)s^{2/3}}{T} \right)^{1/3} + B \sigma \sqrt{\log d} \left(\frac{(1 + L)s^{2/3}}{T} \right)^{1/3} + \tilde{O}(T^{-5/12}) \\
\lesssim (1 + \sigma + \sigma^2 / s^{2/3}) B \sqrt{\log d} \left(\frac{(1 + L)s^{2/3}}{T} \right)^{1/3} + \tilde{O}(T^{-5/12}).
Additional tail inequalities

Lemma 6. Suppose X and Y are centered sub-Gaussian random variables with parameters ν_1^2 and ν_2^2, respectively. Then XY is a centered sub-exponential random variable with parameter $\nu = \sqrt{2}v$ and $\alpha = 2v$, where $v = 2e^{2/e} + 1 \nu_1 \nu_2$.

Proof. XY is clearly centered because $\mathbb{E}XY = \mathbb{E}X \cdot \mathbb{E}Y = 0$, thanks to independence. We next bound $\mathbb{E}(|XY|^k)$ for $k \geq 3$ (i.e., verification of the Bernstein’s condition). Because X and Y are independent, we have that $\mathbb{E}(|XY|^k) = \mathbb{E}|X|^k \cdot \mathbb{E}|Y|^k$. In addition, because X is a centered sub-Gaussian random variable with parameter ν_1^2, it holds that $(\mathbb{E}|X|^k)^{1/k} \leq \nu_1 e^{1/e} \sqrt{k}$. Similarly, $(\mathbb{E}|X|^k)^{1/k} \leq \nu_2 e^{1/e} \sqrt{k}$. Subsequently,

$$
\mathbb{E}|XY|^k \leq \left(e^{2/e} \nu_1 \nu_2\right)^k \cdot \left(e^{2/e} \nu_1 \nu_2\right)^k \cdot e^{k!} \leq \frac{1}{2} k! \cdot \left(2e^{2/e} + 1 \nu_1 \nu_2\right)^k .
$$

where in the second inequality we use the Stirling’s approximation inequality that $\sqrt{2\pi}k^{k}e^{-k} \leq k!$. The sub-exponential parameter of XY can then be determined.

Lemma 7 (Bernstein’s inequality). Suppose X is a sub-exponential random variable with parameters ν and α.

$$
\Pr[|X - \mathbb{E}X| > t] \leq \begin{cases}
2 \exp\left\{-t^2/2\nu^2\right\} , & 0 < t \leq \nu^2/\alpha; \\
2 \exp\left\{-t/2\alpha\right\} , & t > \nu^2/\alpha.
\end{cases}
$$

The following lemma is a simplified version of Theorem 1.2A in [40] (note that the original form in [40] is one-sided; the two-sided version below can be trivially obtained by considering $-X_1, \ldots, -X_n$ and applying the union bound).

Lemma 8 (Bernstein’s inequality for martingales). Suppose X_1, \ldots, X_n are random variables such that $\mathbb{E}[X_j | X_1, \ldots, X_{j-1}] = 0$ and $\mathbb{E}[X_j^2 | X_1, \ldots, X_{j-1}] \leq \sigma^2$ for all $t = 1, \ldots, n$. Further assume that $\mathbb{E}|X_j|^k | X_1, \ldots, X_{j-1} | \leq \frac{1}{2} k! k^2 \sigma^{2k-2}$ for all integers $k \geq 3$. Then for all $t > 0$,

$$
\Pr\left[\sum_{j=1}^n X_j \geq t \right] \leq 2 \exp \left\{ - \frac{t^2}{2(n\sigma^2 + bt)} \right\} .
$$