APPENDIX: PROOFS

Proof of Lemma 1

We first prove a technical lemma that bounds the ℓ_{∞} norm of error vectors.
Lemma 4. For any $x \in \mathbb{R}^{d}$ and $z_{i} \in\{ \pm 1\}^{d}$, with probability $1-\mathcal{O}\left(d^{-3}\right)$ (conditioned on x_{t} and z_{i})

$$
\left\|\sum_{i=1}^{n} \varepsilon_{i} z_{i}\right\|_{\infty} \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}}+H \delta
$$

Proof. Let $\bar{\xi}_{i}=\xi_{i} / \delta \sim \mathcal{N}\left(0, \sigma^{2} / \delta^{2}\right)$. Consider the following decomposition:

$$
\left\|\sum_{i=1}^{n} \varepsilon_{i} z_{i}\right\|_{\infty} \leq \frac{1}{n \delta}\left\|\sum_{i=1}^{n} \bar{\xi}_{i} z_{i}\right\|_{\infty}+\delta \cdot \sup _{1 \leq i \leq n}\left|z_{i}^{\top} H_{t}\left(\kappa_{i}, z_{i}\right) z_{i}\right| \cdot\left\|z_{i}\right\|_{\infty}
$$

The second term on the right-hand side of the above inequality is upper bounded by $\mathcal{O}(H \delta)$ almost surely, because $\left\|z_{i}\right\|_{\infty} \leq 1$ and $\left|z_{i}^{\top} H_{t}\left(\kappa_{i}, z_{i}\right) z_{i}\right| \leq\left\|H_{t}\left(\kappa_{i}, z_{i}\right)\right\|_{1}\left\|z_{i}\right\|_{\infty}^{2} \leq H$. For the first term, because $\bar{\xi}_{i}$ are centered sub-Gaussian random variables independent of z_{i} and $\left\|z_{i}\right\|_{\infty} \leq 1$, we have that $1 / n \cdot\left\|\sum_{i=1}^{n} \bar{\xi}_{i} z_{i}\right\|_{\infty} \lesssim \sqrt{\sigma^{2} \log d / n}$ with probability $1-\mathcal{O}\left(d^{-3}\right)$, by invoking standard sub-Gaussian concentration inequalities.

Now define $\widehat{\theta}=\left(\widehat{g}_{t}, \widehat{\mu}_{t}\right), \theta_{0}=\left(g_{t}, \delta^{-1} f\left(x_{t}\right)\right)$ and $\bar{Z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{n}\right)$ where $\bar{z}_{i}=\left(z_{i}, 1\right) \in \mathbb{R}^{d+1}$. Define also that $Y=\left(\widetilde{y}_{1}, \ldots, \widetilde{y}_{n}\right)$. The estimator can then be written as $\widehat{\theta}=\arg \min _{\theta \in \mathbb{R}^{d+1}} \frac{1}{n}\|\tilde{Y}-\bar{Z} \theta\|_{2}^{2}+\lambda\|\theta\|_{1}$ where $\widetilde{Y}=\bar{Z} \theta_{0}+\varepsilon$, $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. We first establish a "basic inequality" type results that are essential in performance analysis of Lasso type estimators. By optimality of $\widehat{\theta}$, we have that

$$
\frac{1}{n}\|Y-\bar{Z} \widehat{\theta}\|_{2}^{2}+\lambda\|\widehat{\theta}\|_{1} \leq \frac{1}{n}\left\|Y-\bar{Z} \theta_{0}\right\|_{2}^{2}+\lambda\left\|\theta_{0}\right\|_{1}=\frac{1}{n}\|\varepsilon\|_{2}^{2}+\lambda\left\|\theta_{0}\right\|_{1}
$$

Re-organizing terms we obtain

$$
\lambda\|\widehat{\theta}\|_{1} \leq \lambda\left\|\theta_{0}\right\|_{1}+\frac{2}{n}\left(\widehat{\theta}-\theta_{0}\right)^{\top} \bar{Z}^{\top} \varepsilon .
$$

On the other hand, by Hölder's inequality and Lemma 4 we have, with probability $1-\mathcal{O}\left(d^{-2}\right)$,

$$
\frac{2}{n}\left(\widehat{\theta}-\theta_{0}\right)^{\top} \bar{Z}^{\top} \varepsilon \leq 2\left\|\widehat{\theta}-\theta_{0}\right\|_{1} \cdot\left\|\frac{1}{n} \bar{Z}^{\top} \varepsilon\right\|_{\infty} \lesssim\left\|\widehat{\theta}-\theta_{0}\right\|_{1} \cdot\left(\frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}}+H \delta\right)
$$

Subsequently, if $\lambda \leq c_{0}\left(\sigma \delta^{-1} \sqrt{\log d / n}+H \delta\right)$ for some sufficiently small $c_{0}>0$, we have that $\|\widehat{\theta}\|_{1} \leq\left\|\theta_{0}\right\|_{1}+$ $1 / 2\left\|\widehat{\theta}-\theta_{0}\right\|_{1}$. Multiplying by 2 and adding $\left\|\widehat{\theta}-\theta_{0}\right\|_{1}$ on both sides of the inequality we obtain $\left\|\widehat{\theta}-\theta_{0}\right\|_{1} \leq$ $2\left(\left\|\widehat{\theta}-\theta_{0}\right\|_{1}+\left\|\widehat{\theta}_{0}\right\|_{1}-\|\widehat{\theta}\|_{1}\right)$. Recall that θ_{0} is sparse and let $\bar{S}=S \cup\{d+1\}$ be the support of θ_{0}. We then have $\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}^{c}}+\right\|\left(\theta_{0}\right)_{\bar{S}^{c}}\left\|_{1}-\right\| \widehat{\theta}_{\bar{S}^{c}} \|_{1}=0$ and hence $\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}^{c}}\right\|_{1}-\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}}\right\|_{1} \leq\left\|\widehat{\theta}-\theta_{0}\right\|_{1} \leq 2\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}}\right\|_{1}$. Thus,

$$
\begin{equation*}
\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}^{c}}\right\|_{1} \leq 3\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}}\right\|_{1} \tag{8}
\end{equation*}
$$

Now consider $\widehat{\theta}$ that minimizes $\frac{1}{n}\|Y-\bar{Z} \theta\|_{2}^{2}+\lambda\|\theta\|_{1}$. By KKT condition we have that

$$
\left\|\frac{1}{n} \bar{Z}^{\top}(Y-\bar{Z} \widehat{\theta})\right\|_{\infty} \leq \frac{\lambda}{2}
$$

Define $\widehat{\Sigma}=\frac{1}{n} \bar{Z}^{\top} \bar{Z}$ and recall that $Y=\bar{Z} \theta_{0}+\varepsilon$. Invoking Lemma 4 and the scaling of λ we have that, with probability $1-\mathcal{O}\left(d^{-2}\right)$

$$
\begin{equation*}
\left\|\widehat{\Sigma}\left(\widehat{\theta}-\theta_{0}\right)\right\|_{\infty} \leq \frac{\lambda}{2}+\left\|\frac{1}{n} \bar{Z}^{\top} \varepsilon\right\| \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}}+\delta H \tag{9}
\end{equation*}
$$

By definition of $\left\{\bar{z}_{i}\right\}_{i=1}^{n}$, we know that $\widehat{\Sigma}_{j j}=1$ for all $j=1, \ldots, d+1$ and $\mathbb{E}\left[\widehat{\Sigma}_{j k}\right]=0$ for $j \neq k$. By Hoeffding's inequality [17] and union bound we have that with probability $1-\mathcal{O}\left(d^{-2}\right),\left\|\widehat{\Sigma}-I_{(d+1) \times(d+1)}\right\|_{\infty} \lesssim \sqrt{\log d / n}$, where $\|\cdot\|_{\infty}$ denotes the maximum absolute value of matrix entries. Also note that $\widehat{\theta}-\theta_{0}$ satisfies $\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}^{c}}\right\|_{1} \leq$ $3\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}}\right\|_{1}$ thanks to Eq. (8). Subsequently,

$$
\begin{align*}
\left\|\widehat{\theta}-\theta_{0}\right\|_{\infty} & \leq\left\|\widehat{\Sigma}\left(\widehat{\theta}-\theta_{0}\right)\right\|_{\infty}+\left\|(\widehat{\Sigma}-I)\left(\widehat{\theta}-\theta_{0}\right)\right\|_{\infty} \\
& \leq\left\|\widehat{\Sigma}\left(\widehat{\theta}-\theta_{0}\right)\right\|_{\infty}+\|\widehat{\Sigma}-I\|_{\infty}\left\|\widehat{\theta}-\theta_{0}\right\|_{1} \\
& \leq\left\|\widehat{\Sigma}\left(\widehat{\theta}-\theta_{0}\right)\right\|_{\infty}+\|\widehat{\Sigma}-I\|_{\infty} \cdot 4\left\|\left(\widehat{\theta}-\theta_{0}\right)_{\bar{S}}\right\|_{1} \\
& \leq\left\|\widehat{\Sigma}\left(\widehat{\theta}-\theta_{0}\right)\right\|_{\infty}+\|\widehat{\Sigma}-I\|_{\infty} \cdot 4(s+1)\left\|\widehat{\theta}-\theta_{0}\right\|_{\infty} \\
& \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}}+\delta H+\sqrt{\frac{s^{2} \log d}{n}} \cdot\left\|\widehat{\theta}-\theta_{0}\right\|_{\infty} \tag{10}
\end{align*}
$$

Combining Eq. (10) together with the scaling $n=\Omega\left(s^{2} \log d\right)$ we complete the proof of Lemma 1 . Note that the statement on the ℓ_{1} error $\left\|\widehat{\theta}-\theta_{0}\right\|_{1}$ is a simple consequence of the basic inequality Eq. (8).

Proof of Theorem 1

The basis of our algorithm is the analysis of the finite-difference algorithm proposed by [13] under low dimensions. In particular, applying the analysis in [2] for low-dimensional strongly smooth functions, we have for every epoch $t<s$

$$
\mathbb{E}\left[f\left(x_{t}\right)\right]-\inf _{x \in \widetilde{\mathcal{X}}, x_{\widehat{S}_{t}^{c}}=0} f(x) \lesssim \operatorname{poly}\left(s, \sigma, H,\left\|x_{\widehat{S}_{t}}^{*}\right\|_{1}\right) \cdot T^{-1 / 3}
$$

where x_{t} is the solution point at the t th epoch in Algorithm 2 and poly (\cdot) is any polynomial function of constant degrees. Recall that $\left\|x_{\widehat{S}_{t}}^{*}\right\|_{1} \leq\left\|x^{*}\right\|_{1} \leq B$ by Assumption (A2). Using Markov's inequality we have that with probability 0.9 ,

$$
\begin{equation*}
f\left(x_{t}\right)-\inf _{x \in \widetilde{\mathcal{X}}, x_{\widehat{S}_{t}^{c}}=0} f(x) \lesssim \operatorname{poly}\left(s, \sigma, H,\left\|x_{\widehat{S}_{t}}^{*}\right\|_{1}\right) \cdot T^{-1 / 3}, \quad \forall t=0, \ldots, s \tag{11}
\end{equation*}
$$

We are now ready to prove Theorem 1. Let $\widehat{S}=\widehat{S}_{t}$ be the subset when Algorithm 2 terminates. In the rest of the proof we assume the conclusions in Corollary 1 and Lemma 1 hold, which happens with probability $1-\mathcal{O}\left(d^{-1}\right)$. Define $\Delta S=S \backslash \widehat{S}, x^{*}:=\inf _{x \in \mathcal{X}} f(x)$ and $x_{t}^{*}=\inf _{x \in \widetilde{\mathcal{X}}, x_{\widehat{S}}^{t}}=0$. Assumption (A5) implies that x^{*} can be chosen such that $x_{S^{c}}^{*}=0$. Also, if $\Delta_{S}=\emptyset$ we know that $x_{t}^{*}=x^{*}$ and Theorem 1 automatically holds due to Eq. (11). Therefore in the rest of the proof we shall assume that $\Delta_{S} \neq \emptyset$.

Because $\Delta_{S} \neq \emptyset$ and $|S|=s$, we must have $\left|\widehat{S}_{t}\right|<s$. From the description of Algorithm 2, it can only happen with $\widehat{S}_{t}=\widehat{S}_{t-1}$. We then have that

$$
\begin{align*}
f\left(x_{T+1}\right)-f\left(x^{*}\right) & =f\left(x_{t-1}^{*}\right)-f\left(x^{*}\right)+f\left(\widehat{x}_{t-1}\right)-f\left(x_{t-1}^{*}\right) \\
& \leq f\left(x_{t-1}^{*}\right)-f\left(x^{*}\right)+\operatorname{poly}\left(s, \sigma, H,\left\|x^{*}\right\|_{1}\right) \cdot T^{-1 / 3} \tag{12}\\
& \leq \nabla f\left(x_{t-1}^{*}\right)^{\top}\left(x_{t-1}^{*}-x^{*}\right)+\operatorname{poly}\left(s, \sigma, H,\left\|x^{*}\right\|_{1}\right) \cdot T^{-1 / 3} \tag{13}
\end{align*}
$$

where Eq. (12) holds with probability at least 0.9 , thanks to Eq. (11). Because x_{t-1}^{*} is the minimizer of f on vectors in $\widetilde{\mathcal{X}}$ that are supported on $\widehat{S}=\widehat{S}_{t-1}=\widehat{S}_{t}$, and that both x_{t-1}^{*} and x^{*} truncated on \widehat{S} are feasible (i.e., in the restrained set $\widetilde{\mathcal{X}})$, it must hold that $\left\langle\left[\nabla f\left(x_{t-1}^{*}\right)\right]_{\widehat{S}},\left(x_{t-1}^{*}-x^{*}\right)_{\widehat{S}}\right\rangle \leq 0$ by first-order optimality conditions. On the other hand, by Corollary 1 and the definition of \widehat{S}_{t}, we have that $\left\|\left[\nabla f\left(x_{t-1}^{*}\right)_{\Delta_{S}}\right]\right\|_{\infty} \leq 2 \eta$. Also note that $\left(x^{*}-x_{t-1}^{*}\right)_{S^{c}}=0$ and $\left[x_{t-1}^{*}\right]_{\Delta_{S}}=0$. Subsequently,

$$
\begin{equation*}
\nabla f\left(x_{t-1}^{*}\right)^{\top}\left(x_{t-1}^{*}-x^{*}\right) \leq\left|\left\langle\nabla f\left(x_{t-1}^{*}\right)_{\Delta_{S}}, x_{\Delta_{S}}^{*}\right\rangle\right| \leq\left\|\left[\nabla f\left(x_{t-1}^{*}\right)\right]_{\Delta_{S}}\right\|_{\infty}\left\|x_{\Delta_{S}}^{*}\right\|_{1} \leq 2 \eta\left\|x^{*}\right\|_{1} \tag{14}
\end{equation*}
$$

Combining Eqs. $(13,14)$ and the scalings of η, δ, λ and $T^{\prime}=T / 2 s$ we complete the proof of Theorem 1.

Proof of Lemma 2

We use the "full-length" parameterization $\widetilde{\theta}_{t}=\widehat{\theta}_{t}+\frac{1}{n} \bar{Z}_{t}^{\top}\left(\widetilde{Y}_{t}-\bar{Z}_{t} \widehat{\theta}_{t}\right)$, where $\widehat{\theta}_{t}, \bar{Z}_{t}$ and \widetilde{Y}_{t} are notations defined in the proof of Lemma 1 (with subscripts t added to emphasize that both Z_{t} and \widetilde{Y}_{t} are specific to the t th epoch in Algorithm 3). Because $\widetilde{Y}_{t}=\bar{Z}_{t} \theta_{0 t}+\varepsilon_{t}$ (where $\theta_{0 t}=\nabla f\left(x_{t}\right)$ and $\varepsilon=\left(\varepsilon_{t 1}, \ldots, \varepsilon_{t n}\right)$, with $\varepsilon_{t i}$ defined in Eq. (2)). we have

$$
\widetilde{\theta}_{t}=\widehat{\theta}_{t}+\frac{1}{n} \bar{Z}_{t}^{\top}\left(\bar{Z}_{t} \theta_{0 t}+\varepsilon_{t}-\bar{Z}_{t} \widehat{\theta}_{t}\right)=\theta_{0 t}+\frac{1}{n} \bar{Z}_{t}^{\top} \varepsilon_{t}+\left(\widehat{\Sigma}-I_{(d+1) \times(d+1)}\right)\left(\widehat{\theta}_{t}-\theta_{0 t}\right)
$$

where $\widehat{\Sigma}=\frac{1}{n} \bar{Z}_{t}^{\top} \bar{Z}_{t}$. Recall that $\varepsilon_{t i}=\xi_{i} / \delta+\delta z_{i}^{\top} H_{t}\left(\kappa_{i}, z_{i}\right) z_{i}$. Define $b_{i}=z_{i}^{\top} H_{t}\left(\kappa_{i}, z_{i}\right) z_{i}$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. Also note that the first d components of $\widetilde{\theta}_{t}$ are identical to \widetilde{g}_{t} defined in Eq. (5). Subsequently,

$$
\begin{equation*}
\widehat{g}_{t}=g_{t}+\underbrace{\frac{1}{n \delta} Z_{t}^{\top} \xi}_{:=\zeta_{t}}+\underbrace{\frac{\delta}{n} Z_{t}^{\top} b+\left[\left(\widehat{\Sigma}-I_{(d+1) \times(d+1)}\right)\left(\widehat{\theta}_{t}-\theta_{0 t}\right)\right]_{1: d}}_{:=\gamma_{t}} . \tag{15}
\end{equation*}
$$

In Eq. (15) we divide $\widehat{g}_{t}-g_{t}$ into two terms. We first consider the term $\zeta_{t}:=\frac{1}{n \delta} Z_{t}^{\top} \xi$. It is clear that $\mathbb{E}\left[\zeta_{t} \mid x_{t}\right]=0$ because $\mathbb{E}\left[\xi \mid x_{t}, Z_{t}\right]=0$. Now consider any d-dimensional vector $a \in \mathbb{R}^{d}$, and to simplify notations all derivations below are conditioned on x_{t}. For any $i \in[n], z_{t i}^{\top} a$ are i.i.d. sub-Gaussian random variables with common parameter $\nu^{2}=\|a\|_{2}^{2}$. Also, $\bar{\xi}_{i}$ is a sub-Gaussian random variable with parameter σ^{2} and is independent of $z_{t i}^{\top} a$. Thus, invoking Lemma 6 we have that $\xi_{i} z_{t i}^{\top} a$ is a sub-exponential random variable with parameters $\nu=\alpha / \sqrt{2} \lesssim \sigma\|a\|_{2}$. Consequently, $\left\langle\zeta_{t}, a\right\rangle=\frac{1}{n \delta} \sum_{i=1}^{n} \xi_{i} z_{t i}^{\top} a$ is a centered sub-exponential random variable with parameters $\nu=\sqrt{n / 2} \cdot \alpha \lesssim \sigma\|a\|_{2} / \delta \sqrt{n}$.
We next consider the term $\gamma_{t}=\frac{\delta}{n} Z_{t}^{\top} b+(\widehat{\Sigma}-I)\left(\widehat{\theta}_{t}-\theta_{0 t}\right)$. By Assumption (A3) we know that $\|b\|_{\infty} \leq \delta H$. Subsequently, by Hölder's inequality we have that

$$
\begin{aligned}
\left\|\gamma_{t}\right\|_{\infty} & \leq \frac{\delta}{n}\left\|Z_{t}\right\|_{1, \infty}\|b\|_{\infty}+\|\widehat{\Sigma}-I\|_{\infty}\left\|\widehat{\theta}_{t}-\theta_{t 0}\right\|_{1} \\
& \lesssim H \delta+\sqrt{\frac{\log d}{n}}\left(\frac{\sigma s}{\delta} \sqrt{\frac{\log d}{n}}+s \delta H\right)
\end{aligned}
$$

where the second inequality holds with probability $1-\mathcal{O}\left(d^{-2}\right)$ thanks to Lemma 1.

Proof of Theorem 2

We first note that the cumulative regret $R_{\mathcal{A}}^{\mathrm{C}}(T)$ can be upper bounded as

$$
R_{\mathcal{A}}^{\mathrm{C}}(T) \lesssim\left[\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f^{*}\right]+\sup _{t} \sup _{z \in\{ \pm 1\}^{d}}\left|f\left(x_{t}+\delta z\right)-f\left(x_{t}\right)\right|
$$

Because $\|\nabla f(x)\|_{1} \leq H$ for all $x \in \mathcal{X}$ and $z \in\{ \pm 1\}^{d}$, using Hölder's inequality we have that

$$
\left|f\left(x_{t}+\delta z\right)-f\left(x_{t}\right)\right| \leq \delta H \lesssim B\left(\frac{s \log ^{2} d}{T}\right)^{1 / 4}
$$

which is a second-order term. Thus, to prove upper bounds on $R_{\mathcal{A}}^{\mathrm{C}}(T)$ it suffices to consider only $\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-$ f^{*}.

We next cite the result in [22] that gives explicit cumulative regret bounds for mirror descent with approximate gradients:
Lemma 5 ([22], Lemma 3). Let $\|\cdot\|_{\psi}$ and $\|\cdot\|_{\psi^{*}}$ be a pair of conjugate norms, and let $\Delta_{\psi}(\cdot, \cdot)$ be a Bregman divergence that is κ-strongly convex with respect to $\|\cdot\|_{\psi}$. Suppose f is \widetilde{H}-smooth with respect to $\|\cdot\|_{\psi}$, meaning
that $f(y) \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{\widetilde{H}}{2}\|x-y\|_{\psi}^{2}$ for all $x, y \in \mathcal{X}$, and $\eta<\kappa / \widetilde{H}$. Define $g_{t}=\nabla f\left(x_{t}\right)$, and let $x_{0}, \ldots, x_{T^{\prime}-1}$ be iterations in Algorithm 3. Then for every $0 \leq t \leq T^{\prime}-1$ and any $x^{*} \in \widetilde{\mathcal{X}}$,

$$
\begin{equation*}
\eta\left[f\left(x_{t+1}\right)-f\left(x^{*}\right)\right]+\Delta_{\psi}\left(x_{t+1}, x^{*}\right) \leq \Delta_{\psi}\left(x_{t}, x^{*}\right)+\eta\left\langle\widetilde{g}_{t}-g_{t}, x^{*}-x_{t}\right\rangle+\frac{\eta^{2}\left\|\widetilde{g}_{t}-g_{t}\right\|_{\psi^{*}}^{2}}{2(\kappa-\widetilde{H} \eta)} \tag{16}
\end{equation*}
$$

Adding both sides of Eq. (16) from $t=0$ to $t=T^{\prime}-1$, telescoping and noting that $\Delta_{\psi}\left(x_{T^{\prime}}, x^{*}\right) \geq 0$, we obtain

$$
\begin{equation*}
\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f\left(x^{*}\right) \leq \frac{\Delta_{\psi}\left(x_{0}, x^{*}\right)}{\eta T^{\prime}}+\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}-g_{t}, x_{t}-x^{*}\right\rangle+\frac{\eta}{2(\kappa-H \eta)} \cdot \sup _{0 \leq t<T^{\prime}}\left\|\widetilde{g}_{t}-g_{t}\right\|_{\psi^{*}}^{2} \tag{17}
\end{equation*}
$$

Set $\|\cdot\|_{\psi}=\|\cdot\|_{a}$ for $a=\frac{2 \log d}{2 \log d-1}$. It is easy to verify that under Assumption (A3), the function f satisfies

$$
\begin{aligned}
f(y) & \geq f(x)+\nabla f(x)^{\top}(y-x)+H\|y-x\|_{\infty}^{2} \\
& \geq f(x)+\nabla f(x)^{\top}(y-x)+\widetilde{H}\|y-x\|_{\psi}^{2}
\end{aligned}
$$

for all $x, y \in \mathcal{X}$ with $\widetilde{H} \leq e H$, because $\|x-y\|_{1}^{2} \leq d^{2(1-1 / a)}\|x-y\|_{a}^{2} \leq d^{1 / \log d}\|x-y\|_{1}^{2}=e\|x-y\|_{1}^{2}$ by Hölder's inequality. In addition, by definition of Bregman divergence we have that

$$
\begin{equation*}
\Delta_{\psi}\left(x_{0}, x^{*}\right) \leq \frac{1}{2(a-1)}\left\|x^{*}\right\|_{a}^{2} \leq \frac{1}{2(a-1)}\left\|x^{*}\right\|_{1}^{2} \leq\left\|x^{*}\right\|_{1}^{2} \log d \leq B^{2} \log d \tag{18}
\end{equation*}
$$

where the first inequality holds because $\psi_{a}\left(x_{0}\right)=\psi_{a}(0)=0$ and $\nabla \psi_{a}\left(x_{0}\right)=\nabla \psi_{a}(0)=0$ for $a>1$.
We next upper bound the $\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}-g_{t}, x^{*}-x_{t}\right\rangle$ and $\left\|\widetilde{g}_{t}-g_{t}\right\|_{\psi^{*}}^{2}$ terms. By Lemma 2 and sub-exponential concentration inequalities (e.g., Lemma 7), we have that with probability $1-\mathcal{O}\left(d^{-1}\right)$

$$
\left\|\widetilde{g}_{t}-g_{t}\right\|_{\infty} \leq\left\|\zeta_{t}\right\|_{\infty}+\left\|\gamma_{t}\right\|_{\infty} \lesssim \frac{\sigma}{\delta}\left(\sqrt{\frac{\log d}{n}}+\frac{\log d}{n}\right)+H \delta+\frac{\sigma s \log d}{\delta n} \lesssim \frac{\sigma}{\delta} \sqrt{\frac{\log d}{n}}+H \delta
$$

uniformly over all $t^{\prime} \in\left\{0, \ldots, T^{\prime}-1\right\}$, where the last inequality holds because $n=\Omega\left(s^{2} \log d\right)$. Subsequently, by Hölder's inequality we have that

$$
\begin{equation*}
\sup _{0 \leq t<T^{\prime}}\left\|\widetilde{g}_{t}-g_{t}\right\|_{\psi^{*}}^{2} \leq d^{2(a-1) / a} \cdot \sup _{0 \leq t<T^{\prime}}\left\|\widetilde{g}_{t}-g_{t}\right\|_{\infty}^{2} \lesssim \frac{\sigma^{2} \log d}{\delta^{2} n}+H^{2} \delta^{2} \tag{19}
\end{equation*}
$$

We now consider the first term $\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}-g_{t}, x^{*}-x_{t}\right\rangle \leq \frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} X_{t}+\sup _{0 \leq t \leq T^{\prime}-1}\left\|\gamma_{t}\right\|_{\infty}\left\|x^{*}-x_{t}\right\|_{1}$, where $X_{t}:=\left\langle\zeta_{t}, x^{*}-x_{t}\right\rangle$. By Lemma 2, we know that $X_{t} \mid X_{1}, \ldots, X_{t-1}$ is a centered sub-exponential random variable with parameters $\nu=\sqrt{n / 2} \cdot \alpha \lesssim \sigma\left\|x^{*}-x_{t}\right\|_{2} / \delta \sqrt{n} \lesssim \sigma\left\|x^{*}\right\|_{1} / \delta \sqrt{n}$. Invoking concentration inequalities for sub-exponential martingales ([40], also phrased as Lemma 8 for a simplified version in the appendix) and the definition that $T^{\prime}=T / n$, we have with probability $1-\mathcal{O}\left(d^{-1}\right)$

$$
\left|\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\zeta_{t}, x^{*}-x_{t}\right\rangle\right| \lesssim \frac{\sigma\left\|x^{*}\right\|_{1}}{\delta}\left(\sqrt{\frac{\log d}{T}}+\frac{\log d}{T}\right) \lesssim \frac{\sigma\left\|x^{*}\right\|_{1}}{\delta} \sqrt{\frac{\log d}{T}}
$$

where the last inequality holds because $T \geq n=\Omega\left(s^{2} \log d\right)$. Thus,

$$
\begin{equation*}
\left|\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}-g_{t}, x^{*}-x_{t}\right\rangle\right| \lesssim \frac{\sigma\left\|x^{*}\right\|_{1}}{\delta} \sqrt{\frac{\log d}{T}}+\left\|x^{*}\right\|_{1}\left(H \delta+\frac{\sigma s \log d}{\delta n}\right) . \tag{20}
\end{equation*}
$$

Combining Eqs. $(18,19,20)$ with Eq. (17) and taking x^{*} to be a minimizer of f on \mathcal{X} that satisfies $\left\|x^{*}\right\|_{1} \leq B$, we obtain

$$
\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f\left(x^{*}\right) \lesssim \frac{\left\|x^{*}\right\|_{1}^{2} \log d}{\eta} \frac{n}{T}+\frac{\sigma\left\|x^{*}\right\|_{1}}{\delta} \sqrt{\frac{\log d}{T}}+\left\|x^{*}\right\|_{1}\left(H \delta+\frac{\sigma s \log d}{\delta n}\right)+\eta\left(\frac{\sigma^{2} \log d}{\delta^{2} n}+H^{2} \delta^{2}\right)
$$

$$
\begin{equation*}
\leq \frac{B^{2} \log d}{\eta} \frac{n}{T}+\frac{\sigma B}{\delta} \sqrt{\frac{\log d}{T}}+B\left(H \delta+\frac{\sigma s \log d}{\delta n}\right)+\eta\left(\frac{\sigma^{2} \log d}{\delta^{2} n}+H^{2} \delta^{2}\right) \tag{21}
\end{equation*}
$$

with probability $1-\mathcal{O}\left(d^{-1}\right)$, provided that $\eta<\kappa / 2 H=1 / 2 H$.
We are now ready to prove Theorem 2. By the conditions we impose on T and the choices of η and n, it is easy to verify that $\eta<1 / 2 H, n=\Omega\left(s^{2} \log d\right)$ and $n=\mathcal{O}(T)$. Subsequently,

$$
\begin{aligned}
\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f\left(x^{*}\right) & \lesssim B \sqrt{\frac{n \log d}{T}}+\sigma B \sqrt{\frac{n}{s T}}+B(\sigma+H) \sqrt{\frac{s \log d}{n}}+B \sqrt{\frac{n \log d}{T}}\left(\frac{\sigma^{2}}{s}+\widetilde{\mathcal{O}}\left(n^{-1}\right)\right) \\
& \lesssim B\left(\frac{(1+H)^{2} s \log ^{2} d}{T}\right)^{1 / 4}+\frac{\sigma B \sqrt{(1+H)}}{s^{1 / 4} T^{1 / 4}}+\frac{B(\sigma+H)}{\sqrt{1+H}}\left(\frac{s \log ^{2} d}{T}\right)^{1 / 4} \\
& +B\left(\frac{(1+H)^{2} s \log d}{T}\right)^{1 / 4}\left(\frac{\sigma^{2}}{s}+\widetilde{\mathcal{O}}\left(T^{-1 / 2}\right)\right) \\
& \lesssim\left(B \sqrt{\log d}+\frac{\sigma B}{\sqrt{s}}+\frac{\sigma^{2} B}{s}\right)\left[\frac{(1+H)^{2} s}{T}\right]^{1 / 4}+B(\sigma+\sqrt{H}) \sqrt{\log d}\left[\frac{s}{T}\right]^{1 / 4}+\widetilde{\mathcal{O}}\left(T^{-1 / 2}\right) \\
& \lesssim\left(1+\sigma+\sigma^{2} / s\right) B \sqrt{\log d}\left[\frac{(1+H)^{2} s}{T}\right]^{1 / 4}+\widetilde{\mathcal{O}}\left(T^{-1 / 2}\right)
\end{aligned}
$$

Proof of Lemma 3

Using the model Eq. (2) we can decompose $\widetilde{g}_{t}(\delta)-g_{t}$ as

$$
\begin{aligned}
\widetilde{g}_{t}(\delta)-g_{t} & =\frac{\delta}{2} \mathbb{E}\left[\left(z^{\top} H_{t} z\right) z\right]+\underbrace{\frac{1}{n \delta} Z_{t}^{\top} \xi}_{:=\widetilde{\zeta}_{t}(\delta)}+\underbrace{\frac{\delta}{2 n} \sum_{i=1}^{n}\left(z_{i}^{\top} H_{t} z_{i}\right) z_{i}-\mathbb{E}\left[\left(z^{\top} H_{t} z\right) z\right]}_{:=\widetilde{\beta}_{t}(\delta)} \\
& +\underbrace{\frac{\delta}{2 n} \sum_{i=1}^{n}\left(z_{i}^{\top}\left(H_{t}\left(\delta z_{i}\right)-H_{t}\right) z_{i}\right) z_{i}+\left[(\widehat{\Sigma}-I)\left(\widehat{\theta}_{t}-\theta_{0 t}\right)\right]_{1: d}}_{:=\widetilde{\gamma}_{t}(\delta)}
\end{aligned}
$$

where $\widehat{\Sigma}, \widehat{\theta}_{t}$ and $\theta_{0 t}$ are similarly defined as in the proof of Lemma 2. The sub-exponentiality of $\left\langle\widetilde{\zeta}_{t}(\delta), a\right\rangle$ for any $a \in \mathbb{R}^{d}$ is established in Lemma 2. We next consider $\widetilde{\beta}_{t}(\delta)$. For any $a \in \mathbb{R}^{d}$ consider $\left\langle\widetilde{\beta}_{t}(\delta), a\right\rangle=\frac{\delta}{2 n} \sum_{i=1}^{n} X_{i}(a)$ where $X_{i}(a)=\left(z_{i}^{\top} H_{t} z_{i}\right)\left(z_{i}^{\top} a\right)-\mathbb{E}\left[\left(z_{i}^{\top} H_{t} z_{i}\right)\left(z_{i}^{\top} a\right)\right]$ are centered i.i.d. random variables conditioned on H_{t} and x_{t}. In addition, $\left|X_{i}(a)\right| \leq 2\left\|H_{t}\right\|_{1}\left\|z_{i}\right\|_{\infty}^{2} \cdot\|a\|_{1}\left\|z_{i}\right\|_{\infty} \lesssim H\|a\|_{1}$ almost surely. Therefore, $X_{i}(a)$ is a sub-Gaussian random variable with parameter $\nu=H\|a\|_{1}$, and hence $\left\langle\widetilde{\beta}_{t}(\delta), a\right\rangle$ is a sub-Gaussian random variable with parameter $\nu=\delta H\|a\|_{1} / \sqrt{n}$. Finally, for the deterministic term $\widetilde{\gamma}_{t}(\delta)$, we have that

$$
\begin{aligned}
\left\|\widetilde{\gamma}_{t}(\delta)\right\|_{\infty} & \leq \frac{\delta}{2} \sup _{z \in\{ \pm 1\}^{d}}\left\|H_{t}(\delta z)-H_{t}\right\|_{1}\|z\|_{\infty}^{2}+\left\|(\widehat{\Sigma}-I)\left(\widehat{\theta}_{t}-\theta_{0 t}\right)\right\|_{\infty} \\
& \leq \frac{\delta}{2} \sup _{z \in\{ \pm 1\}^{d}} L \cdot\|\delta z\|_{\infty}\|z\|_{\infty}^{2}+\|\widehat{\Sigma}-I\|_{\max }\left\|\widehat{\theta}_{t}-\theta_{0 t}\right\|_{\infty} \\
& \lesssim L \delta^{2}+\sqrt{\frac{\log d}{n}}\left(\frac{\sigma s}{\delta} \sqrt{\frac{\log d}{n}}+s \delta H\right) \\
& \lesssim L \delta^{2}+\frac{\sigma s \log d}{n \delta}+s \delta H \sqrt{\frac{\log d}{n}}
\end{aligned}
$$

Proof of Theorem 3

Because f is convex, $R_{\mathcal{A}}^{\mathrm{S}}(T)=f\left(x_{T+1}\right)-f^{*} \leq \frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f^{*}$. Thus it suffices to upper bound $\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f\left(x^{*}\right)$, where $x^{*} \in \mathcal{X},\left\|x^{*}\right\|_{1} \leq B$ is a minimizer of f over \mathcal{X}. Using the strategy in the proof of Theorem 2, this amounts to upper bound (with high probability) $\left\|\widetilde{g}_{t}^{\text {tw }}-g_{t}\right\|_{\psi^{*}}^{2}$ and $\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}^{\text {tw }}-g_{t}, x^{*}-x_{t}\right\rangle$.

For the first term, using sub-exponentiality of $\widetilde{\zeta}_{t}$ and sub-gaussianity of $\widetilde{\beta}_{t}$, we have with probability $1-\mathcal{O}\left(d^{-1}\right)$ uniformly over all $t \in\left\{0, \ldots, T^{\prime}-1\right\}$,

$$
\left.\begin{array}{rl}
\left\|\widetilde{g}_{t}^{\mathrm{tw}}-g_{t}\right\|_{\infty} & \leq\left\|\widetilde{\zeta}_{t}\right\|_{\infty}+\left\|\widetilde{\beta}_{t}\right\|_{\infty}+\left\|\widetilde{\gamma}_{t}\right\|_{\infty} \\
& \lesssim \frac{\sigma}{\delta}\left(\sqrt{\frac{\log d}{n}}+\frac{\log d}{n}\right.
\end{array}\right)+\delta H \sqrt{\frac{\log d}{n}}+L \delta^{2}+H \delta \sqrt{\frac{s^{2} \log d}{n}}+\frac{\sigma s \log d}{\delta n} .
$$

where the last inequality holds because $n=\Omega\left(s^{2} \log d\right)$. Subsequently, with probability $1-\mathcal{O}\left(d^{-1}\right)$

$$
\begin{equation*}
\sup _{0 \leq t \leq T^{\prime}-1}\left\|\widetilde{g}_{t}^{\mathrm{tw}}-g_{t}\right\|_{\psi^{*}}^{2} \lesssim\left(\frac{\sigma^{2}}{\delta^{2}}+s^{2} \delta^{2} H^{2}\right) \frac{\log d}{n}+L^{2} \delta^{4} \tag{22}
\end{equation*}
$$

For the other term $\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}^{\mathrm{tw}}-g_{t}, x^{*}-x_{t}\right\rangle$, again using concentration inequalities of sub-exponential/subGaussian martingales and noting that $\left\|x^{*}-x_{t}\right\|_{2} \leq\left\|x^{*}-x_{t}\right\|_{1} \leq 2 B$, we have

$$
\begin{align*}
\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{g}_{t}^{\mathrm{tw}}-g_{t}, x^{*}-x_{t}\right\rangle & =\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1}\left\langle\widetilde{\zeta}_{t}+\widetilde{\beta}_{t}+\widetilde{\gamma}_{t}, x^{*}-x_{t}\right\rangle \\
& \lesssim\left(\frac{\sigma}{\delta}+s \delta H\right) B \sqrt{\frac{\log d}{T}}+B\left(L \delta^{2}+\frac{\sigma s \log d}{\delta n}+s \delta H \sqrt{\frac{\log d}{n}}\right) \tag{23}
\end{align*}
$$

Subsequently, combining Eqs. $(22,23)$ with Eq. (17) we have

$$
\begin{align*}
\frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f\left(x^{*}\right) & \lesssim \frac{B^{2} \log d}{\eta} \frac{n}{T}+\left(\frac{\sigma}{\delta}+s \delta H\right) B \sqrt{\frac{\log d}{T}}+(B+\eta)\left(L \delta^{2}+\frac{\sigma s \log d}{\delta n}+s \delta H \sqrt{\frac{\log d}{n}}\right) \\
& +\eta\left(\frac{\sigma^{2}}{\delta^{2}}+s^{2} \delta^{2} H^{2}\right) \frac{\log d}{n}+\eta L^{2} \delta^{4} \tag{24}
\end{align*}
$$

We are now ready to prove Theorem 3. It is easy to verify that with the condition imposed on T and the selection of η and n, it holds that $\eta<1 / 2 H, n=\Omega\left(s^{2} \log d\right)$ and $n \leq T / 10$. Subsequently,

$$
\begin{aligned}
& \frac{1}{T^{\prime}} \sum_{t=0}^{T^{\prime}-1} f\left(x_{t}\right)-f\left(x^{*}\right) \\
& \lesssim B n^{1 / 3} \sqrt{\frac{\log d}{T}}+\left[\sigma\left(\frac{n}{s \log d}\right)^{1 / 3}+\widetilde{\mathcal{O}}\left(n^{-1 / 3}\right)\right] B \sqrt{\frac{\log d}{T}}+\left(B+\widetilde{\mathcal{O}}\left(\frac{n^{2 / 3}}{\sqrt{T}}\right)\right)\left[(L+\sigma)\left(\frac{s \log d}{n}\right)^{2 / 3}+\widetilde{\mathcal{O}}\left(n^{-5 / 6}\right)\right] \\
& +B n^{2 / 3} \sqrt{\frac{\log d}{T}}\left(\sigma^{2}\left(\frac{n}{s \log d}\right)^{2 / 3}+\widetilde{\mathcal{O}}\left(n^{-2 / 3}\right)\right) \frac{\log d}{n}+B n^{2 / 3} \sqrt{\frac{\log d}{T}} L^{2}\left(\frac{s \log d}{n}\right)^{4 / 3} \\
& \lesssim B n^{1 / 3} \sqrt{\frac{\log d}{T}}+\sigma B\left(\frac{n}{s \log d}\right)^{1 / 3} \sqrt{\frac{\log d}{T}}+B(L+\sigma)\left(\frac{s \log d}{n}\right)^{2 / 3}+\sigma^{2} B\left(\frac{n}{s^{2} \log ^{2} d}\right)^{1 / 3} \sqrt{\frac{\log d}{T}}+\widetilde{\mathcal{O}}\left(T^{-5 / 12}\right) \\
& \lesssim\left(B \sqrt{\log d}+\frac{\sigma B \sqrt{\log d}}{s^{1 / 3}}+\frac{\sigma^{2} B \sqrt{\log d}}{s^{2 / 3}}\right)\left[\frac{(1+L) s^{2 / 3}}{T}\right]^{1 / 3}+\frac{B(L+\sigma)}{(1+L)^{2 / 3}}\left(\frac{s^{2 / 3} \log d}{T}\right)^{1 / 3}+\widetilde{\mathcal{O}}\left(T^{-5 / 12}\right) \\
& \lesssim\left(B \sqrt{\log d}+\frac{\sigma B \sqrt{\log d}}{s^{1 / 3}}+\frac{\sigma^{2} B \sqrt{\log d}}{s^{2 / 3}}\right)\left[\frac{(1+L) s^{2 / 3}}{T}\right]^{1 / 3}+B \sigma \sqrt{\log d}\left(\frac{(1+L) s^{2 / 3}}{T}\right)^{1 / 3}+\widetilde{\mathcal{O}}\left(T^{-5 / 12}\right) \\
& \lesssim\left(1+\sigma+\sigma^{2} / s^{2 / 3}\right) B \sqrt{\log d}\left(\frac{(1+L) s^{2 / 3}}{T}\right)^{1 / 3}+\widetilde{\mathcal{O}}\left(T^{-5 / 12}\right) .
\end{aligned}
$$

Additional tail inequalities

Lemma 6. Suppose X and Y are centered sub-Gaussian random variables with parameters ν_{1}^{2} and ν_{2}^{2}, respectively. Then $X Y$ is a centered sub-exponential random variable with parameter $\nu=\sqrt{2} v$ and $\alpha=2 v$, where $v=2 e^{2 / e+1} \nu_{1} \nu_{2}$.

Proof. $X Y$ is clearly centered because $\mathbb{E} X Y=\mathbb{E} X \cdot \mathbb{E} Y=0$, thanks to independence. We next bound $\mathbb{E}\left[|X Y|^{k}\right]$ for $k \geq 3$ (i.e., verification of the Bernstein's condition). Because X and Y are independent, we have that $\mathbb{E}\left[|X Y|^{k}\right]=\mathbb{E}|X|^{k} \cdot \mathbb{E}|Y|^{k}$. In addition, because X is a centered sub-Gaussian random variable with parameter ν_{1}^{2}, it holds that $\left(\mathbb{E}|X|^{k}\right)^{1 / k} \leq \nu_{1} e^{1 / e} \sqrt{k}$. Similarly, $\left(\mathbb{E}|X|^{k}\right)^{1 / k} \leq \nu_{2} e^{1 / e} \sqrt{k}$. Subsequently,

$$
\mathbb{E}|X Y|^{k} \leq\left(e^{2 / e} \nu_{1} \nu_{2}\right)^{k} \cdot k^{k} \leq\left(e^{2 / e} \nu_{1} \nu_{2}\right)^{k} \cdot e^{k} k!\leq \frac{1}{2} k!\cdot\left(2 e^{2 / e+1} \nu_{1} \nu_{2}\right)^{k}
$$

where in the second inequality we use the Stirling's approximation inequality that $\sqrt{2 \pi k} k^{k} e^{-k} \leq k!$. The sub-exponential parameter of $X Y$ can then be determined.

Lemma 7 (Bernstein's inequality). Suppose X is a sub-exponential random variable with parameters ν and α.

$$
\operatorname{Pr}[|X-\mathbb{E} X|>t] \leq \begin{cases}2 \exp \left\{-t^{2} / 2 \nu^{2}\right\}, & 0<t \leq \nu^{2} / \alpha \\ 2 \exp \{-t / 2 \alpha\}, & t>\nu^{2} / \alpha\end{cases}
$$

The following lemma is a simplified version of Theorem 1.2A in [40] (note that the original form in [40] is one-sided; the two-sided version below can be trivially obtained by considering $-X_{1}, \ldots,-X_{n}$ and applying the union bound).
Lemma 8 (Bernstein's inequality for martingales). Suppose X_{1}, \ldots, X_{n} are random variables such that $\mathbb{E}\left[X_{j} \mid X_{1}, \ldots, X_{j-1}\right]=0$ and $\mathbb{E}\left[X_{j}^{2} \mid X_{1}, \ldots, X_{j-1}\right] \leq \sigma^{2}$ for all $t=1, \ldots, n$. Further assume that $\mathbb{E}\left[\left|X_{j}\right|^{k} \mid X_{1}, \ldots, X_{j-1}\right] \leq \frac{1}{2} k!\sigma^{2} b^{k-2}$ for all integers $k \geq 3$. Then for all $t>0$,

$$
\operatorname{Pr}\left[\left|\sum_{j=1}^{n} X_{j}\right| \geq t\right] \leq 2 \exp \left\{-\frac{t^{2}}{2\left(n \sigma^{2}+b t\right)}\right\}
$$

