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APPENDIX: PROOFS

Proof of Lemma 1

We first prove a technical lemma that bounds the `∞ norm of error vectors.

Lemma 4. For any x ∈ Rd and zi ∈ {±1}d, with probability 1−O(d−3) (conditioned on xt and zi)

∥∥∥∥∥
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i=1
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∞
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√
log d
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Proof. Let ξ̄i = ξi/δ ∼ N (0, σ2/δ2). Consider the following decomposition:

∥∥∥∥∥
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εizi

∥∥∥∥∥
∞
≤ 1

nδ
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+ δ · sup
1≤i≤n

∣∣z>i Ht(κi, zi)zi
∣∣ · ‖zi‖∞.

The second term on the right-hand side of the above inequality is upper bounded by O(Hδ) almost surely,
because ‖zi‖∞ ≤ 1 and |z>i Ht(κi, zi)zi| ≤ ‖Ht(κi, zi)‖1‖zi‖2∞ ≤ H. For the first term, because ξ̄i are centered
sub-Gaussian random variables independent of zi and ‖zi‖∞ ≤ 1, we have that 1/n·‖∑n

i=1 ξ̄izi‖∞ .
√
σ2 log d/n

with probability 1−O(d−3), by invoking standard sub-Gaussian concentration inequalities.

Now define θ̂ = (ĝt, µ̂t), θ0 = (gt, δ
−1f(xt)) and Z̄ = (z̄1, . . . , z̄n) where z̄i = (zi, 1) ∈ Rd+1. Define also that

Y = (ỹ1, . . . , ỹn). The estimator can then be written as θ̂ = arg minθ∈Rd+1
1
n‖Ỹ −Z̄θ‖22+λ‖θ‖1 where Ỹ = Z̄θ0+ε,

ε = (ε1, . . . , εn). We first establish a “basic inequality” type results that are essential in performance analysis of

Lasso type estimators. By optimality of θ̂, we have that

1

n
‖Y − Z̄θ̂‖22 + λ‖θ̂‖1 ≤

1

n
‖Y − Z̄θ0‖22 + λ‖θ0‖1 =

1

n
‖ε‖22 + λ‖θ0‖1.

Re-organizing terms we obtain

λ‖θ̂‖1 ≤ λ‖θ0‖1 +
2

n
(θ̂ − θ0)>Z̄>ε.

On the other hand, by Hölder’s inequality and Lemma 4 we have, with probability 1−O(d−2),

2

n
(θ̂ − θ0)>Z̄>ε ≤ 2‖θ̂ − θ0‖1 ·
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)
.

Subsequently, if λ ≤ c0(σδ−1
√

log d/n + Hδ) for some sufficiently small c0 > 0, we have that ‖θ̂‖1 ≤ ‖θ0‖1 +

1/2‖θ̂ − θ0‖1. Multiplying by 2 and adding ‖θ̂ − θ0‖1 on both sides of the inequality we obtain ‖θ̂ − θ0‖1 ≤
2(‖θ̂− θ0‖1 + ‖θ̂0‖1−‖θ̂‖1). Recall that θ0 is sparse and let S̄ = S ∪ {d+ 1} be the support of θ0. We then have

‖(θ̂− θ0)S̄c + ‖(θ0)S̄c‖1−‖θ̂S̄c‖1 = 0 and hence ‖(θ̂− θ0)S̄c‖1−‖(θ̂− θ0)S̄‖1 ≤ ‖θ̂− θ0‖1 ≤ 2‖(θ̂− θ0)S̄‖1. Thus,

‖(θ̂ − θ0)S̄c‖1 ≤ 3‖(θ̂ − θ0)S̄‖1. (8)

Now consider θ̂ that minimizes 1
n‖Y − Z̄θ‖22 + λ‖θ‖1. By KKT condition we have that

∥∥∥∥
1

n
Z̄>(Y − Z̄θ̂)

∥∥∥∥
∞
≤ λ

2
.

Define Σ̂ = 1
n Z̄
>Z̄ and recall that Y = Z̄θ0 + ε. Invoking Lemma 4 and the scaling of λ we have that, with

probability 1−O(d−2)

‖Σ̂(θ̂ − θ0)‖∞ ≤
λ

2
+
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δ
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log d

n
+ δH. (9)
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By definition of {z̄i}ni=1, we know that Σ̂jj = 1 for all j = 1, . . . , d+ 1 and E[Σ̂jk] = 0 for j 6= k. By Hoeffding’s

inequality [17] and union bound we have that with probability 1 − O(d−2), ‖Σ̂ − I(d+1)×(d+1)‖∞ .
√

log d/n,

where ‖·‖∞ denotes the maximum absolute value of matrix entries. Also note that θ̂−θ0 satisfies ‖(θ̂−θ0)S̄c‖1 ≤
3‖(θ̂ − θ0)S̄‖1 thanks to Eq. (8). Subsequently,

‖θ̂ − θ0‖∞ ≤ ‖Σ̂(θ̂ − θ0)‖∞ + ‖(Σ̂− I)(θ̂ − θ0)‖∞
≤ ‖Σ̂(θ̂ − θ0)‖∞ + ‖Σ̂− I‖∞‖θ̂ − θ0‖1
≤ ‖Σ̂(θ̂ − θ0)‖∞ + ‖Σ̂− I‖∞ · 4‖(θ̂ − θ0)S̄‖1
≤ ‖Σ̂(θ̂ − θ0)‖∞ + ‖Σ̂− I‖∞ · 4(s+ 1)‖θ̂ − θ0‖∞

. σ

δ

√
log d

n
+ δH +

√
s2 log d

n
· ‖θ̂ − θ0‖∞. (10)

Combining Eq. (10) together with the scaling n = Ω(s2 log d) we complete the proof of Lemma 1. Note that the

statement on the `1 error ‖θ̂ − θ0‖1 is a simple consequence of the basic inequality Eq. (8).

Proof of Theorem 1

The basis of our algorithm is the analysis of the finite-difference algorithm proposed by [13] under low dimensions.
In particular, applying the analysis in [2] for low-dimensional strongly smooth functions, we have for every epoch
t < s

E[f(xt)]− inf
x∈X̃ ,xŜc

t
=0
f(x) . poly(s, σ,H, ‖x∗

Ŝt
‖1) · T−1/3,

where xt is the solution point at the tth epoch in Algorithm 2 and poly(·) is any polynomial function of constant
degrees. Recall that ‖x∗

Ŝt
‖1 ≤ ‖x∗‖1 ≤ B by Assumption (A2). Using Markov’s inequality we have that with

probability 0.9,

f(xt)− inf
x∈X̃ ,xŜc

t
=0
f(x) . poly(s, σ,H, ‖x∗

Ŝt
‖1) · T−1/3, ∀t = 0, . . . , s. (11)

We are now ready to prove Theorem 1. Let Ŝ = Ŝt be the subset when Algorithm 2 terminates. In the rest of the
proof we assume the conclusions in Corollary 1 and Lemma 1 hold, which happens with probability 1−O(d−1).

Define ∆S = S\Ŝ, x∗ := infx∈X f(x) and x∗t = infx∈X̃ ,xŜc
t
=0 f(x). Assumption (A5) implies that x∗ can be

chosen such that x∗Sc = 0. Also, if ∆S = ∅ we know that x∗t = x∗ and Theorem 1 automatically holds due to
Eq. (11). Therefore in the rest of the proof we shall assume that ∆S 6= ∅.
Because ∆S 6= ∅ and |S| = s, we must have |Ŝt| < s. From the description of Algorithm 2, it can only happen

with Ŝt = Ŝt−1. We then have that

f(xT+1)− f(x∗) = f(x∗t−1)− f(x∗) + f(x̂t−1)− f(x∗t−1)

≤ f(x∗t−1)− f(x∗) + poly(s, σ,H, ‖x∗‖1) · T−1/3 (12)

≤ ∇f(x∗t−1)>(x∗t−1 − x∗) + poly(s, σ,H, ‖x∗‖1) · T−1/3, (13)

where Eq. (12) holds with probability at least 0.9, thanks to Eq. (11). Because x∗t−1 is the minimizer of f on

vectors in X̃ that are supported on Ŝ = Ŝt−1 = Ŝt, and that both x∗t−1 and x∗ truncated on Ŝ are feasible (i.e.,

in the restrained set X̃ ), it must hold that 〈[∇f(x∗t−1)]Ŝ , (x
∗
t−1 − x∗)Ŝ〉 ≤ 0 by first-order optimality conditions.

On the other hand, by Corollary 1 and the definition of Ŝt, we have that ‖[∇f(x∗t−1)∆S
]‖∞ ≤ 2η. Also note that

(x∗ − x∗t−1)Sc = 0 and [x∗t−1]∆S
= 0. Subsequently,

∇f(x∗t−1)>(x∗t−1 − x∗) ≤
∣∣〈∇f(x∗t−1)∆S

, x∗∆S
〉
∣∣ ≤ ‖[∇f(x∗t−1)]∆S

‖∞‖x∗∆S
‖1 ≤ 2η‖x∗‖1. (14)

Combining Eqs. (13,14) and the scalings of η, δ, λ and T ′ = T/2s we complete the proof of Theorem 1.
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Proof of Lemma 2

We use the “full-length” parameterization θ̃t = θ̂t+ 1
n Z̄
>
t (Ỹt− Z̄tθ̂t), where θ̂t, Z̄t and Ỹt are notations defined in

the proof of Lemma 1 (with subscripts t added to emphasize that both Zt and Ỹt are specific to the tth epoch in

Algorithm 3). Because Ỹt = Z̄tθ0t + εt (where θ0t = ∇f(xt) and ε = (εt1, . . . , εtn), with εti defined in Eq. (2)).
we have

θ̃t = θ̂t +
1

n
Z̄>t (Z̄tθ0t + εt − Z̄tθ̂t) = θ0t +

1

n
Z̄>t εt + (Σ̂− I(d+1)×(d+1))(θ̂t − θ0t),

where Σ̂ = 1
n Z̄
>
t Z̄t. Recall that εti = ξi/δ + δz>i Ht(κi, zi)zi. Define bi = z>i Ht(κi, zi)zi and b = (b1, . . . , bn).

Also note that the first d components of θ̃t are identical to g̃t defined in Eq. (5). Subsequently,

ĝt = gt +
1

nδ
Z>t ξ

︸ ︷︷ ︸
:=ζt

+
δ

n
Z>t b+

[
(Σ̂− I(d+1)×(d+1))(θ̂t − θ0t)

]
1:d︸ ︷︷ ︸

:=γt

. (15)

In Eq. (15) we divide ĝt− gt into two terms. We first consider the term ζt := 1
nδZ

>
t ξ. It is clear that E[ζt|xt] = 0

because E[ξ|xt, Zt] = 0. Now consider any d-dimensional vector a ∈ Rd, and to simplify notations all derivations
below are conditioned on xt. For any i ∈ [n], z>tia are i.i.d. sub-Gaussian random variables with common
parameter ν2 = ‖a‖22. Also, ξ̄i is a sub-Gaussian random variable with parameter σ2 and is independent of
z>tia. Thus, invoking Lemma 6 we have that ξiz

>
tia is a sub-exponential random variable with parameters

ν = α/
√

2 . σ‖a‖2. Consequently, 〈ζt, a〉 = 1
nδ

∑n
i=1 ξiz

>
tia is a centered sub-exponential random variable with

parameters ν =
√
n/2 · α . σ‖a‖2/δ

√
n.

We next consider the term γt = δ
nZ
>
t b + (Σ̂ − I)(θ̂t − θ0t). By Assumption (A3) we know that ‖b‖∞ ≤ δH.

Subsequently, by Hölder’s inequality we have that

‖γt‖∞ ≤
δ

n
‖Zt‖1,∞‖b‖∞ + ‖Σ̂− I‖∞‖θ̂t − θt0‖1

. Hδ +

√
log d

n

(
σs

δ

√
log d

n
+ sδH

)
.

where the second inequality holds with probability 1−O(d−2) thanks to Lemma 1.

Proof of Theorem 2

We first note that the cumulative regret RC
A(T ) can be upper bounded as

RC
A(T ) .


 1

T ′

T ′−1∑

t=0

f(xt)− f∗

+ sup

t
sup

z∈{±1}d

∣∣f(xt + δz)− f(xt)
∣∣.

Because ‖∇f(x)‖1 ≤ H for all x ∈ X and z ∈ {±1}d, using Hölder’s inequality we have that

∣∣f(xt + δz)− f(xt)
∣∣ ≤ δH . B

(
s log2 d

T

)1/4

,

which is a second-order term. Thus, to prove upper bounds on RC
A(T ) it suffices to consider only 1

T ′
∑T ′−1
t=0 f(xt)−

f∗.

We next cite the result in [22] that gives explicit cumulative regret bounds for mirror descent with approximate
gradients:

Lemma 5 ([22], Lemma 3). Let ‖ · ‖ψ and ‖ · ‖ψ∗ be a pair of conjugate norms, and let ∆ψ(·, ·) be a Bregman

divergence that is κ-strongly convex with respect to ‖ · ‖ψ. Suppose f is H̃-smooth with respect to ‖ · ‖ψ, meaning
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that f(y) ≤ f(x) + ∇f(x)>(y − x) + H̃
2 ‖x − y‖2ψ for all x, y ∈ X , and η < κ/H̃. Define gt = ∇f(xt), and let

x0, . . . , xT ′−1 be iterations in Algorithm 3. Then for every 0 ≤ t ≤ T ′ − 1 and any x∗ ∈ X̃ ,

η [f(xt+1)− f(x∗)] + ∆ψ(xt+1, x
∗) ≤ ∆ψ(xt, x

∗) + η〈g̃t − gt, x∗ − xt〉+
η2‖g̃t − gt‖2ψ∗

2(κ− H̃η)
. (16)

Adding both sides of Eq. (16) from t = 0 to t = T ′ − 1, telescoping and noting that ∆ψ(xT ′ , x
∗) ≥ 0, we obtain

1

T ′

T ′−1∑

t=0

f(xt)− f(x∗) ≤ ∆ψ(x0, x
∗)

ηT ′
+

1

T ′

T ′−1∑

t=0

〈g̃t − gt, xt − x∗〉+
η

2(κ−Hη)
· sup

0≤t<T ′
‖g̃t − gt‖2ψ∗ . (17)

Set ‖ · ‖ψ = ‖ · ‖a for a = 2 log d
2 log d−1 . It is easy to verify that under Assumption (A3), the function f satisfies

f(y) ≥ f(x) +∇f(x)>(y − x) +H‖y − x‖2∞
≥ f(x) +∇f(x)>(y − x) + H̃‖y − x‖2ψ

for all x, y ∈ X with H̃ ≤ eH, because ‖x− y‖21 ≤ d2(1−1/a)‖x− y‖2a ≤ d1/ log d‖x− y‖21 = e‖x− y‖21 by Hölder’s
inequality. In addition, by definition of Bregman divergence we have that

∆ψ(x0, x
∗) ≤ 1

2(a− 1)
‖x∗‖2a ≤

1

2(a− 1)
‖x∗‖21 ≤ ‖x∗‖21 log d ≤ B2 log d, (18)

where the first inequality holds because ψa(x0) = ψa(0) = 0 and ∇ψa(x0) = ∇ψa(0) = 0 for a > 1.

We next upper bound the 1
T ′
∑T ′−1
t=0 〈g̃t − gt, x∗ − xt〉 and ‖g̃t − gt‖2ψ∗ terms. By Lemma 2 and sub-exponential

concentration inequalities (e.g., Lemma 7), we have that with probability 1−O(d−1)

‖g̃t − gt‖∞ ≤ ‖ζt‖∞ + ‖γt‖∞ . σ

δ

(√
log d

n
+

log d

n

)
+Hδ +

σs log d

δn
. σ

δ

√
log d

n
+Hδ

uniformly over all t′ ∈ {0, . . . , T ′ − 1}, where the last inequality holds because n = Ω(s2 log d). Subsequently, by
Hölder’s inequality we have that

sup
0≤t<T ′

‖g̃t − gt‖2ψ∗ ≤ d2(a−1)/a · sup
0≤t<T ′

‖g̃t − gt‖2∞ . σ2 log d

δ2n
+H2δ2. (19)

We now consider the first term 1
T ′
∑T ′−1
t=0 〈g̃t− gt, x∗−xt〉 ≤ 1

T ′
∑T ′−1
t=0 Xt+ sup0≤t≤T ′−1 ‖γt‖∞‖x∗−xt‖1, where

Xt := 〈ζt, x∗ − xt〉. By Lemma 2, we know that Xt|X1, . . . , Xt−1 is a centered sub-exponential random variable
with parameters ν =

√
n/2 · α . σ‖x∗ − xt‖2/δ

√
n . σ‖x∗‖1/δ

√
n. Invoking concentration inequalities for

sub-exponential martingales ([40], also phrased as Lemma 8 for a simplified version in the appendix) and the
definition that T ′ = T/n, we have with probability 1−O(d−1)

∣∣∣∣
1

T ′

T ′−1∑

t=0

〈ζt, x∗ − xt〉
∣∣∣∣ .

σ‖x∗‖1
δ

(√
log d

T
+

log d

T

)
. σ‖x∗‖1

δ

√
log d

T
,

where the last inequality holds because T ≥ n = Ω(s2 log d). Thus,

∣∣∣∣
1

T ′

T ′−1∑

t=0

〈g̃t − gt, x∗ − xt〉
∣∣∣∣ .

σ‖x∗‖1
δ

√
log d

T
+ ‖x∗‖1

(
Hδ +

σs log d

δn

)
. (20)

Combining Eqs. (18,19,20) with Eq. (17) and taking x∗ to be a minimizer of f on X that satisfies ‖x∗‖1 ≤ B,
we obtain

1

T ′

T ′−1∑

t=0

f(xt)− f(x∗) . ‖x
∗‖21 log d

η

n

T
+
σ‖x∗‖1
δ

√
log d

T
+ ‖x∗‖1

(
Hδ +

σs log d

δn

)
+ η

(
σ2 log d

δ2n
+H2δ2

)
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≤ B2 log d

η

n

T
+
σB

δ

√
log d

T
+B

(
Hδ +

σs log d

δn

)
+ η

(
σ2 log d

δ2n
+H2δ2

)
(21)

with probability 1−O(d−1), provided that η < κ/2H = 1/2H.

We are now ready to prove Theorem 2. By the conditions we impose on T and the choices of η and n, it is easy
to verify that η < 1/2H, n = Ω(s2 log d) and n = O(T ). Subsequently,

1

T ′

T ′−1∑

t=0

f(xt)− f(x∗) . B

√
n log d

T
+ σB

√
n

sT
+B(σ +H)

√
s log d

n
+B

√
n log d

T

(
σ2

s
+ Õ(n−1)

)

. B

(
(1 +H)2s log2 d

T

)1/4

+
σB
√

(1 +H)

s1/4T 1/4
+
B(σ +H)√

1 +H

(
s log2 d

T

)1/4

+B

(
(1 +H)2s log d

T

)1/4(
σ2

s
+ Õ(T−1/2)

)

.
(
B
√

log d+
σB√
s

+
σ2B

s

)[
(1 +H)2s

T

]1/4

+B(σ +
√
H)
√

log d
[ s
T

]1/4
+ Õ(T−1/2)

. (1 + σ + σ2/s)B
√

log d

[
(1 +H)2s

T

]1/4

+ Õ(T−1/2).

Proof of Lemma 3

Using the model Eq. (2) we can decompose g̃t(δ)− gt as

g̃t(δ)− gt =
δ

2
E
[
(z>Htz)z

]
+

1

nδ
Z>t ξ

︸ ︷︷ ︸
:=ζ̃t(δ)

+
δ

2n

n∑

i=1

(z>i Htzi)zi − E[(z>Htz)z]

︸ ︷︷ ︸
:=β̃t(δ)

+
δ

2n

n∑

i=1

(z>i (Ht(δzi)−Ht)zi)zi +
[
(Σ̂− I)(θ̂t − θ0t)

]
1:d

︸ ︷︷ ︸
:=γ̃t(δ)

,

where Σ̂, θ̂t and θ0t are similarly defined as in the proof of Lemma 2. The sub-exponentiality of 〈ζ̃t(δ), a〉 for any

a ∈ Rd is established in Lemma 2. We next consider β̃t(δ). For any a ∈ Rd consider 〈β̃t(δ), a〉 = δ
2n

∑n
i=1Xi(a)

where Xi(a) = (z>i Htzi)(z
>
i a) − E[(z>i Htzi)(z

>
i a)] are centered i.i.d. random variables conditioned on Ht and

xt. In addition, |Xi(a)| ≤ 2‖Ht‖1‖zi‖2∞ · ‖a‖1‖zi‖∞ . H‖a‖1 almost surely. Therefore, Xi(a) is a sub-Gaussian

random variable with parameter ν = H‖a‖1, and hence 〈β̃t(δ), a〉 is a sub-Gaussian random variable with
parameter ν = δH‖a‖1/

√
n. Finally, for the deterministic term γ̃t(δ), we have that

‖γ̃t(δ)‖∞ ≤
δ

2
sup

z∈{±1}d
‖Ht(δz)−Ht‖1‖z‖2∞ + ‖(Σ̂− I)(θ̂t − θ0t)‖∞

≤ δ

2
sup

z∈{±1}d
L · ‖δz‖∞‖z‖2∞ + ‖Σ̂− I‖max‖θ̂t − θ0t‖∞

. Lδ2 +

√
log d

n

(
σs

δ

√
log d

n
+ sδH

)

. Lδ2 +
σs log d

nδ
+ sδH

√
log d

n
.

Proof of Theorem 3

Because f is convex, RS
A(T ) = f(xT+1) − f∗ ≤ 1

T ′
∑T ′−1
t=0 f(xt)− f∗. Thus it suffices to upper bound

1
T ′
∑T ′−1
t=0 f(xt)− f(x∗), where x∗ ∈ X , ‖x∗‖1 ≤ B is a minimizer of f over X . Using the strategy in the proof of

Theorem 2, this amounts to upper bound (with high probability) ‖g̃twt − gt‖2ψ∗ and 1
T ′
∑T ′−1
t=0 〈g̃twt − gt, x∗ − xt〉.



Stochastic Zeroth-order Optimization in High Dimensions

For the first term, using sub-exponentiality of ζ̃t and sub-gaussianity of β̃t, we have with probability 1−O(d−1)
uniformly over all t ∈ {0, . . . , T ′ − 1},

‖g̃twt − gt‖∞ ≤ ‖ζ̃t‖∞ + ‖β̃t‖∞ + ‖γ̃t‖∞

. σ

δ

(√
log d

n
+

log d

n

)
+ δH

√
log d

n
+ Lδ2 +Hδ

√
s2 log d

n
+
σs log d

δn

.
(σ
δ

+ sδH
)√ log d

n
+ Lδ2,

where the last inequality holds because n = Ω(s2 log d). Subsequently, with probability 1−O(d−1)

sup
0≤t≤T ′−1

‖g̃twt − gt‖2ψ∗ .
(
σ2

δ2
+ s2δ2H2

)
log d

n
+ L2δ4. (22)

For the other term 1
T ′
∑T ′−1
t=0 〈g̃twt − gt, x∗ − xt〉, again using concentration inequalities of sub-exponential/sub-

Gaussian martingales and noting that ‖x∗ − xt‖2 ≤ ‖x∗ − xt‖1 ≤ 2B, we have

1

T ′

T ′−1∑

t=0

〈g̃twt − gt, x∗ − xt〉 =
1

T ′

T ′−1∑

t=0

〈ζ̃t + β̃t + γ̃t, x
∗ − xt〉

.
(σ
δ

+ sδH
)
B

√
log d

T
+B

(
Lδ2 +

σs log d

δn
+ sδH

√
log d

n

)
. (23)

Subsequently, combining Eqs. (22,23) with Eq. (17) we have

1

T ′

T ′−1∑

t=0

f(xt)− f(x∗) . B2 log d

η

n

T
+
(σ
δ

+ sδH
)
B

√
log d

T
+ (B + η)

(
Lδ2 +

σs log d

δn
+ sδH

√
log d

n

)

+ η

(
σ2

δ2
+ s2δ2H2

)
log d

n
+ ηL2δ4. (24)

We are now ready to prove Theorem 3. It is easy to verify that with the condition imposed on T and the selection
of η and n, it holds that η < 1/2H, n = Ω(s2 log d) and n ≤ T/10. Subsequently,

1

T ′

T ′−1∑

t=0

f(xt)− f(x∗)

. Bn1/3

√
log d

T
+

[
σ

(
n

s log d

)1/3

+ Õ(n−1/3)

]
B

√
log d

T
+

(
B + Õ

(
n2/3

√
T

))[
(L+ σ)

(
s log d

n

)2/3

+ Õ(n−5/6)

]

+Bn2/3

√
log d

T

(
σ2

(
n

s log d

)2/3

+ Õ(n−2/3)

)
log d

n
+Bn2/3

√
log d

T
L2

(
s log d

n

)4/3

. Bn1/3

√
log d

T
+ σB

(
n

s log d

)1/3
√

log d

T
+B(L+ σ)

(
s log d

n

)2/3

+ σ2B

(
n

s2 log2 d

)1/3
√

log d

T
+ Õ(T−5/12)

.
(
B
√

log d+
σB
√

log d

s1/3
+
σ2B
√

log d

s2/3

)[
(1 + L)s2/3

T

]1/3

+
B(L+ σ)

(1 + L)2/3

(
s2/3 log d

T

)1/3

+ Õ(T−5/12)

.
(
B
√

log d+
σB
√

log d

s1/3
+
σ2B
√

log d

s2/3

)[
(1 + L)s2/3

T

]1/3

+Bσ
√

log d

(
(1 + L)s2/3

T

)1/3

+ Õ(T−5/12)

. (1 + σ + σ2/s2/3)B
√

log d

(
(1 + L)s2/3

T

)1/3

+ Õ(T−5/12).



Yining Wang Simon S. Du Sivaraman Balakrishnan Aarti Singh

Additional tail inequalities

Lemma 6. Suppose X and Y are centered sub-Gaussian random variables with parameters ν2
1 and ν2

2 , respec-
tively. Then XY is a centered sub-exponential random variable with parameter ν =

√
2v and α = 2v, where

v = 2e2/e+1ν1ν2.

Proof. XY is clearly centered because EXY = EX ·EY = 0, thanks to independence. We next bound E[|XY |k]
for k ≥ 3 (i.e., verification of the Bernstein’s condition). Because X and Y are independent, we have that
E[|XY |k] = E|X|k · E|Y |k. In addition, because X is a centered sub-Gaussian random variable with parameter
ν2

1 , it holds that (E|X|k)1/k ≤ ν1e
1/e
√
k. Similarly, (E|X|k)1/k ≤ ν2e

1/e
√
k. Subsequently,

E|XY |k ≤
(
e2/eν1ν2

)k
· kk ≤

(
e2/eν1ν2

)k
· ekk! ≤ 1

2
k! ·
(

2e2/e+1ν1ν2

)k
.

where in the second inequality we use the Stirling’s approximation inequality that
√

2πkkke−k ≤ k!. The
sub-exponential parameter of XY can then be determined.

Lemma 7 (Bernstein’s inequality). Suppose X is a sub-exponential random variable with parameters ν and α.

Pr
[∣∣X − EX

∣∣ > t
]
≤
{

2 exp
{
−t2/2ν2

}
, 0 < t ≤ ν2/α;

2 exp {−t/2α} , t > ν2/α.

The following lemma is a simplified version of Theorem 1.2A in [40] (note that the original form in [40] is
one-sided; the two-sided version below can be trivially obtained by considering −X1, . . . ,−Xn and applying the
union bound).

Lemma 8 (Bernstein’s inequality for martingales). Suppose X1, . . . , Xn are random variables such that
E[Xj |X1, . . . , Xj−1] = 0 and E[X2

j |X1, . . . , Xj−1] ≤ σ2 for all t = 1, . . . , n. Further assume that

E[|Xj |k|X1, . . . , Xj−1] ≤ 1
2k!σ2bk−2 for all integers k ≥ 3. Then for all t > 0,

Pr



∣∣∣∣
n∑

j=1

Xj

∣∣∣∣ ≥ t


 ≤ 2 exp

{
− t2

2(nσ2 + bt)

}
.


