
Beilun Wang, Arshdeep Sekhon, Yanjun Qi 11

A Appendix of Method

A.1 Backward mapping for Exponential
Families

The solution of vanilla graphical model MLE can be ex-
pressed as a backward mapping[29] for an exponential
family distribution. It estimates the model parameters
(canonical parameter!) from certain (sample) moments.
We provide detailed explanations about backward map-
ping of exponential families, backward mapping for
Gaussian special case and backward mapping for dif-
ferential network of GGM in this section.

Backward mapping: Essentially the vanilla graphical
model MLE can be expressed as a backward mapping
that computes the model parameters corresponding
to some given moments in an exponential family dis-
tribution. For instance, in the case of learning GGM
with vanilla MLE, the backward mapping is !! ! 1 that
estimates" from the sample covariance (moment)!! .

Suppose a random variableX ! Rp follows the expo-
nential family distribution:

P(X ; !) = h(X)exp{ < !, " (!) > " A(!)} (A.1)
Where ! ! # # Rd is the canonical parameter to be
estimated and # denotes the parameter space." (X)
denotes the su!cient statistics as a feature mapping
function " : Rp $ Rd, and A(!) is the log-partition
function. We then deÞne mean parametersv as the
expectation of " (X): v(!) := E[" (X)], which can be
the Þrst and second moments of the su!cient statistics
" (X) under the exponential family distribution. The
set of all possible moments by the moment polytope:

M = { v|%p is a distribution s.t. Ep[" (X)] = v}
(A.2)

Mostly, the graphical model inference involves the task
of computing momentsv(!) ! M given the canonical
parameters ! ! H . We denote this computing as
forward mapping :

A : H $ M (A.3)

The learning/estimation of graphical models involves
the task of the reverse computing of the forward map-
ping, the so-calledbackward mapping [29]. We de-
note the interior of M as M 0. backward mapping
is deÞned as:

A " : M 0 $ H (A.4)
which does not need to be unique. For the exponential
family distribution,

A " : v(!) $! = & A" (v(!)) . (A.5)
Where A" (v(!)) = sup

! # H
< !, v (!) > " A(!).

Backward Mapping: Gaussian Case If a random
variable X ! Rp follows the Gaussian Distribution
N (µ, !) . then ! = (! ! 1µ, " 1

2 ! ! 1). The su!cient
statistics " (X) = (X, XX T), h(x) = (2 #)! k

2 , and the

log-partition function

A(!) =
1
2

µT ! ! 1µ +
1
2

log(|! |) (A.6)

When performing the inference of Gaussian Graphical
Models, it is easy to estimate the mean vectorv(!),
since it equals toE[X, XX T].

When learning the GGM, we estimate its canonical
parameter ! through vanilla MLE. Because ! ! 1 is one
entry of ! we can use the backward mapping to estimate
! ! 1.

! = (! ! 1µ, "
1
2

! ! 1) = A " (v) = & A" (v)

= ((E! [XX T] " E! [X]E! [X]T)! 1E! [X],

"
1
2

(E! [XX T] " E! [X]E! [X]T)! 1).

(A.7)

By plugging in Eq. (A.6) into Eq. (A.5), we get the back-
ward mapping of " as(E! [XX T]" E! [X]E! [X]T)! 1) =
!! ! 1, easily computable from the sample covariance ma-
trix.

A.1.1 Backward Mapping for Di!erential
Network of Two GGMs

When the random variables X c, X d ! Rp follows the
Gaussian Distribution N (µc, ! c) and N (µd, ! d), their
density ratio (deÞned by [17]) essentially is a distribu-
tion in exponential families:

r (x, $) =
pd(x)
pc(x)

=

"
det(! c) exp

#
" 1

2 (x " µd)T ! ! 1
d (x " µd)

$

"
det(! d) exp

#
" 1

2 (x " µc)T ! ! 1
c (x " µc)

$

= exp("
1
2

(x " µd)T ! ! 1
d (x " µd)

+
1
2

(x " µc)T ! ! 1
c (x " µc)

"
1
2

(log(det(! d)) " log(det(! c))))

= exp
%

"
1
2

$ x2 + µ! x " A(µ! , $)
&

(A.8)
Here $ = ! ! 1

d " ! ! 1
c and µ! = ! ! 1

d µd " ! ! 1
c µc.

The log-partition function

A(µ! , $) =
1
2

µT
d ! ! 1

d µd "
1
2

µT
c ! ! 1

c µc+

1
2

log(det(! d)) "
1
2

log(det(! c))
(A.9)

The canonical parameter

! =
%

! ! 1
d µd " ! ! 1

c µc, "
1
2

(! ! 1
d " ! ! 1

c)
&

=
%

! ! 1
d µd " ! ! 1

c µc, "
1
2

($)
& (A.10)

The su!cient statistics " ([X c, X d]) and the log-

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure 12

partition function A(!):
" ([X c, X d]) = ([X c, X d], [X cX T

c , X dX T
d])

A(!) =
1
2

µT
d ! ! 1

d µd "
1
2

µT
c ! ! 1

c µc+

1
2

log(det(! d)) "
1
2

log(det(! c))

(A.11)

And h(x) = 1 .

Now we can estimate this exponential distribution
(!) through vanilla MLE. By plugging Eq. (A.11)
into Eq. (A.5), we get the following backward mapping
via the conjugate of the log-partition function:

! =
%

! ! 1
d µd " ! ! 1

c µc, "
1
2

(! ! 1
d " ! ! 1

c)
&

= A " (v) = & A" (v)
(A.12)

The mean parameter vector v(!) includes the mo-
ments of the su!cient statistics " () under the exponen-
tial distribution. It can be easily estimated through
E[([X c, X d], [X cX T

c , X dX T
d])].

Therefore the backward mapping of! becomes,
!! =(((E! [X dX T

d] " E! [X d]E! [X d]T)! 1E! [X d]

" (E! [X cX T
c] " E! [X c]E! [X c]T)! 1E! [X c]),

"
1
2

((E! [X dX T
d] " E! [X d]E! [X d]T)! 1"

(E! [X cX T
c] " E! [X c]E! [X c]T)! 1)) .

(A.13)

Because the second entry of the canonical parameter!
is (! ! 1

d " ! ! 1
c), we get the backward mapping of$ as

((E! [X dX T
d] " E! [X d]E! [X d]T)! 1

" (E! [X cX T
c] " E! [X c]E! [X c]T)! 1)

= !! ! 1
d " !! ! 1

c

(A.14)

This can be easily inferred from two sample covariance
matrices !! d and !! c (Att: when under low-dimensional
settings).

A.2 Appendix:Proof

A.2.1 Derivation of Theorem (2.1)

DIFFEE formulation Eq. (2.11) and EE-sGGM
Eq. (2.3) are special cases of the following generic
formulation:

argmin
!

R(!)

subject to:R " (! " !! n) ' $n

(A.15)

Where R " (á) is the dual norm of R(á),

R " (v) := sup
u$=0

< u, v >
R(u)

= sup
R (u)%1

< u, v > . (A.16)

Connecting Eq. (2.11) and Eq. (A.15), R() is the
%1 norm, R " () is the %& -norm, and %& -norm is the
dual norm of %1-norm. !! n represents a backward map-
ping (or proxy backward mapping well-deÞned in high-
dimensional settings) of! , which is a close approxima-
tion of ! " .

Following the uniÞed framework [20], we Þrst decom-

pose the parameter space into a subspace pair(M , øM '),
where øM is the closure ofM . Here øM ' := { v ! Rp| <
u, v > = 0 , (u ! øM} . M is the model subspace that
typically has a much lower dimension than the orig-
inal high-dimensional space. øM ' is the perturba-
tion subspace of parameters. For further proofs, we
assume the regularization function in Eq. (A.15) is
decomposable w.r.t the subspace pair (M , øM ').

(C1) R(u + v) = R(u) + R(v), (u ! M , (v ! øM ' .

[20] showed that most regularization norms are decom-
posable corresponding to a certain subspace pair.

DeÞnition A.1. Subspace Compatibility Con-
stant
Subspace compatibility constant is deÞned as%(M , | á
|) := sup

u#M\{ 0}

R (u)
|u | which captures the relative value be-

tween the error norm |á|and the regularization function
R(á).

For simplicity, we assume there exists a true param-
eter ! " which has the exact structure w.r.t a certain
subspace pair. Concretely:

(C2) %a subspace pair(M , øM ') such that the true
parameter satisÞes projM ! (! ") = 0

Then we have the following theorem.

Theorem A.2. Suppose the regularization function in
Eq. (A.15) satisÞes condition(C1) , the true parameter
of Eq. (A.15) satisÞes condition(C2) , and $n satisÞes
that $n) R " (!! n " ! "). Then, the optimal solution !!
of Eq. (A.15) satisÞes:

R " (!! " ! ") ' 2$n (A.17)

|| !! " ! " ||2 ' 4$n %(øM) (A.18)

R(!! " ! ") ' 8$n %(øM)2 (A.19)

For the proposed DIFFEE model, R = || á ||1. Based
on the results in[20], %(øM) =

*
k, where k is the total

number of nonzero entries in$. Using R = || á ||1
in Theorem (A.2), we have the following theorem (the
same as Theorem (2.1)),

Theorem A.3. Suppose thatR = || á ||1 and the
true parameter $ " satisfy the conditions (C1)(C2)
and $n) R " (!$ " $ "), then the optimal point !$
of Eq. (2.11) has the following error bounds:|| !$ "
$ " ||& ' 2$n , || !$ " $ " ||2 ' 4

*
k$n , and || !$ " $ " ||1 '

8k$n

Beilun Wang, Arshdeep Sekhon, Yanjun Qi 13

A.2.2 Proof of Theorem (A.2)

Proof. Let &:= !! " ! " be the error vector that we are
interested in.

R " (!! " ! ") = R " (!! " !! n + !! n " ! ")

' R " (!! n " !!) + R " (!! n " ! ") ' 2$n

(A.20)

By the fact that ! "
M ! = 0 , and the decomposability of

R with respect to (M , øM ')

R(! ")

= R(! ") + R[& øM ! (&)] " R [& øM ! (&)]

= R[! " + & øM ! (&)] " R [& øM ! (&)]

' R [! " + & øM ! (&) + & øM (&)] + R[& øM (&)]

" R [& øM ! (&)]

= R[! " + &] + R[& øM (&)] " R [& øM ! (&)]

(A.21)

Here, the inequality holds by the triangle inequality
of norm. Since Eq. (A.15) minimizesR(!!), we have
R(! " + $) = R(!!) ' R (! "). Combining this inequality
with Eq. (A.21), we have:

R[& øM ! (&)] ' R [& øM (&)] (A.22)

Moreover, by HšlderÕs inequality and the decompos-
ability of R(á), we have:

||$ ||22 = +&, &, ' R " (&)R(&) ' 2$n R(&)

= 2$n [R(& øM (&)) + R(& øM ! (&))] ' 4$n R(& øM (&))

' 4$n %(øM)||& øM (&)||2
(A.23)

where %(øM) is a simple notation for %(øM , || á ||2).

Since the projection operator is deÞned in terms of
|| á ||2 norm, it is non-expansive: ||& øM ($) ||2 ' || $ ||2.
Therefore, by Eq. (A.23), we have:

||& øM (&)||2 ' 4$n %(øM), (A.24)

and plugging it back to Eq. (A.23) yields the error
bound Eq. (A.18).

Finally, Eq. (A.19) is straightforward from Eq. (A.22)
and Eq. (A.24).

R(&) ' 2R(& øM (&))

' 2%(øM)||& øM (&)||2 ' 8$n %(øM)2.
(A.25)

A.2.3 Useful lemma(s)

Lemma A.4. (Theorem 1 of [26]). Let & be
maxij |[X T X

n]ij " ! ij |. Suppose thatv > 2&. Then,
under the conditions (C-Sparse!), and as ' v (á) is a

soft-threshold function, we can deterministically guar-
antee that the spectral norm of error is bounded as
follows:

|||Tv (!!) " ! |||& ' 5v1! qc0(p) + 3 v! qc0(p)& (A.26)

Lemma A.5. (Lemma 1 of [23]). Let A be the event
that

||
X T X

n
" ! ||& ' 8(max

i
! ii)

'
10(logp(

n
(A.27)

wherep(:= max n, p and (is any constant greater than
2. Suppose that the design matrix X is i.i.d. sampled
from ! -Gaussian ensemble withn) 40maxi ! ii . Then,
the probability of event A occurring is at least 1 "
4/p (" ! 2.

To prove the bound of ||$ " " ([Tv (!! d)]! 1 "
[Tv (!! c)]! 1)||& , we Þrst prove the bound of
||" "

c " [Tv (!! c)]! 1||& . In the following proof, we
Þrst derive the inequality ||" "

c " [Tv (!! c)]! 1||& '
|||[Tv (!! c)]! 1|||& |||" "

c |||& ||Tv (!! c) " ! "
c ||& , which is

bounded by multiplication of three parts. Then we
use the above Lemmas and two conditions to prove
the bound of each part. Finally, we combine the three
results to have the whole bound of||" "

c " [Tv (!! c)]! 1||& .

A.2.4 Proof of Corollary (2.2)

Proof. In the following proof, we Þrst prove ||" "
c "

[Tv (!! c)]! 1||& ' $n c . Here $n c = 4#1 a
#2

(
log p"

n c
and

p(= max(p, nc)

The condition (C-Sparse!) and condition (C-MinInf !)
also hold for " "

c and ! "
c . In order to utilize Theo-

rem (A.3) for this speciÞc case, we only need to show
that ||" "

c " [Tv (!! c)]! 1||& ' $n c for the setting of

$n c = 4#1 a
#2

(
log p"

n c
:

||" "
c " [Tv (!! c)]! 1||& = ||[Tv (!! c)]! 1(Tv (!! c)" "

c " I)||&

' ||| [Tv (!! c)w]|||& ||Tv (!! c)" "
c " I ||&

= |||[Tv (!! c)]! 1|||& ||" "
c (Tv (!! c) " ! "

c)||&

' ||| [Tv (!! c)]! 1|||& |||" "
c |||& ||Tv (!! c) " ! "

c ||& .
(A.28)

We Þrst compute the upper bound of|||[Tv (!! c)]! 1|||& .
By the selection v in the statement, Lemma (A.4)
and Lemma (A.5) hold with probability at least 1 "
4/p (" ! 2. Armed with Eq. (A.26), we use the triangle
inequality of norm and the condition (C-Sparse!): for

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure 14

any w,

||Tv (!! c)w||& = ||Tv (!! c)w " ! w + ! w||&

) || ! w||& " || (Tv (!! c) " !) w||&

)) 2||w||& " || (Tv (!! c) " !) w||&

) () 2 " || (Tv (!! c) " !) w||&)||w||&

(A.29)

Where the second inequality uses the condition (C-
Sparse!). Now, by Lemma (A.4) with the selection of
v, we have

|||Tv (!! c) " ! |||& ' c1(
logp(

nc
)(1 ! q) / 2c0(p) (A.30)

where c1 is a constant related only on (and
maxi ! ii . SpeciÞcally, it is deÞned as6.5 -
(16(maxi ! ii)

*
10()1! q. Hence, as long asnc >

(2c1 c0 (p)
#2

)
2

1# q logp(as stated, so that|||Tv (!! c)" ! |||& '
#2
2 , we can conclude that ||Tv (!! c)w||&) #2

2 ||w||& ,
which implies |||[Tv (!! c)]! 1|||& ' 2

#2
.

The remaining term in Eq. (A.28) is ||Tv (!! c) "
! "

c ||& ; ||Tv (!! c) " ! "
c ||& ' || Tv (!! c) " !! c||& + || !! c "

! "
c ||& . By construction of Tv (á) in (C-Thresh) and

by Lemma (A.5), we can conÞrm that ||Tv (!! c) " !! c||&
as well as|| !! c " ! "

c ||& can be upper-bounded byv.

Similarly, the [Tv (!! d)]! 1 has the same result.

Finally,
||$ " "

)
[Tv (!! d)]! 1 " [Tv (!! c)]! 1

*
||& (A.31)

'|| " d " [Tv (!! d)]! 1||& + ||" c " [Tv (!! c)]! 1||&
(A.32)

'
4) 1a
) 2

'
logp(

nc
+

4) 1a
) 2

'
logp(

nc
(A.33)

Supposep > max(nc, nd), we have that

||$ " "
)

[Tv (!! d)]! 1 " [Tv (!! c)]! 1
*

||& '

8) 1a
) 2

+
logp

min(nc, nd)

(A.34)

Similarly, we also have that
||$ " "

)
[Tv (!! d)]! 1 " [Tv (!! c)]! 1

*
||F '

32) 1a
) 2

+
k logp

min(nc, nd)

(A.35)

, and
||$ " "

)
[Tv (!! d)]! 1 " [Tv (!! c)]! 1

*
||1 '

64) 1a
) 2

k

+
logp

min(nc, nd)

(A.36)

By combining all together, we can conÞrm that the se-
lection of $n satisÞes the requirement of Theorem (A.3),
which completes the proof.

B Details of Experimental Setup

Evaluation Metrics: We evaluate DIFFEE and the
baseline methods on both contexts of e"ectiveness and
scalability.

¥ F1-score: We Þrst use the edge-level F1-score to
compare the predicted versus true di"erential graph.
Here, F1 = 2áPrecisionáRecall

Precision+ Recall , where Precision =
TP

TP+ FP and Recall = TP
TP+ FN . TP (true positive)

means the number of true edges correctly estimated
by the predicted di"erential network. FP (false pos-
itive) and FN (false negative) are the number of
incorrectly predicted nonzero entries and zero entries
respectively. We repeat the experiment 10 times
for each method and use the average metrics for
comparison. The better method achieves a higher
F1-score.

¥ Time Cost: We use the execution time (measured in
seconds or log(seconds)) for a method as a measure
of its scalability. To ensure a fair comparison, we try
30 di"erent $ (or $2) and measure the total time of
execution for each method. The better method uses
less time6.

¥ Low F1 values on Model 1 datasets: The F1-score
of all cases in Figure 2(a) appear quite low. This is
due to the fact that simulated di"erential networks
from Model 1 are extremely sparse (e.g., only0.1%
non-zero edges among all possible edges). For exam-
ple, if the estimated !$ only predicts 5% zero entries
incorrectly (i.e., FP= 5%) and correctly predicts all
the rest entries (TP = 0.1%, TN = 94.9%). The pre-
cision equals to TP

TP + FP = 0.1%
0.1%+5% . 0.02, which

is a small number. The recall equals to TP
TP + FN =

0.1%
0.1%+0% = 1 . Then F1 = precisionárecall

2(precision+ recall) . 0.01,
which is also a relatively small number. However,
the estimator only wrongly inferred 5% zero entries,
which is still a good result. Therefore, low F1-score
doesnÕt mean that the estimator is bad when the
di"erential network is extremely sparse.

This extreme sparsity also inßuences other evalua-
tion metrics. For instance, if the estimated !$ only
includes 1% zero entries and0.05% non-zero entries
incorrectly (i.e., FP= 5% and FN= 0.05%) and cor-
rectly predicts all the rest entries (TP= 0.05% and
TN= 94.9%). The TPR = 0.05%

0.05%+0 .05% = 0 .5 and

FPR = 5%
5%+94 .9% . 0.2. If you plot this point in

the FPR vs. TPR curve, it is not good. However
from the angle of accuracy, this method only predicts
wrongly around 5% edges, which indicates that it
performs well.
6The machine that we use for experiments is an Intel(R)

Core(TM) i7-6850k CPU @ 3.60GHz with a 64GB memory.

Beilun Wang, Arshdeep Sekhon, Yanjun Qi 15

Figure 4: F1-score versus Time Cost(log(seconds)) for di�erent
methods and synthetic data models (a) F1-score vs. Time for
Model 1. (b)F1-score vs. Time for Model 2.

Simulated Data Generation: We Þrst simulate pre-
cision matrices" c and " d by Model 1 or Model 2. To
simulate data for the control block, we generatenc

data samples following multivariate gaussian distribu-
tion with mean 0 and covariance matrix (" c)! 1. We
use the multivariate distribution method from stochas-
tic simulation [24] to sample the simulated data blocks.
In our implementation, we directly use the R function
Òmvrnorm Ó inMASS package. We repeat the same
process for the case group with" d. Then, we apply
DIFFEE and baseline methods to obtain the estimated
di"erential networks.

C Detailed Empirical Results

Figure 4 (a) and (b) summarize DIFFEEÕs better per-
formance in both scalability and e"ectiveness for all ex-
periment settings in Model 1 and Model 2, respectively.

Each point in Figure4 represents both the F1-Score and
Time Cost of a method. Most of the DIFFEE points
lie in the top left area, indicating lesser Time Cost and
higher F1-scores compared to the other baselines.

Table 3 and Table 4 present the detailed results on
the simulated datasets, comparing the scalability top
of our proposed method DIFFEE with the baselines
FusedGLasso, Density Ratio, and Di"-CLIME. The Ta-
ble 3 and Table 4 are obtained by experimental settings
under Model 1 and Model 2 respectively. We vary num-
ber of featuresp in the set of { 100, 200, 300, 400, 500} .
The computation time for each case is the summation of
the computational time for the method over a range of

$n ! { 0.01-
(

log p
min(n c ,n d) - i |i ! { 1, 2, 3, . . . , 30}} . The

F1-score for each case is the best result over a range of

$n ! { 0.01-
(

log p
min(n c ,n d) - i |i ! { 1, 2, 3, . . . , 30}} . The

Di"-CLIME cannot Þnish any tasks in one day. So all
the results in the column ÒDi"-CLIMEÓ are indicated
by ÒNAÓ. In most of the synthetic datasets, DIFFEE
achieves a higher F1-Score and less computation time
than other baselines. This proves that DIFFEE outper-
forms the baselines in both e"ectiveness and scalability.

Table 5 and Table 6 present the detailed performance
results of our proposed method DIFFEE and others by
varying the sparsity level s. The Table 5 and Table 6 are
obtained by Model 1 and Model 2 respectively. We vary
the sparsity parameter s in the set of { 0.1, 0.2, . . . , 0.7} .
The computation time and F1-Score are measured sim-
ilar to Table 3 and Table 4. In all of the synthetic
datasets, DIFFEE performs better as indicated by its
higher F1-score and lesser computation time than other
baselines.

Table 7 and Table 8 present the detailed results of our
proposed methodÐDIFFEE versus the corresponding
baselines FusedGLasso, Density Ratio, and Di"-CLIME
on the simulated datasets varying di"erent nc and nd

in a high-dimensional setting (p > max(nc, nd)). The
Table 7 and Table 8 are obtained by Model 1 and
Model 2, respectively. We vary the number of samples
nc and nd in the set of { p/ 2, p/ 4} . The computation
time and F1-Score are measured similar to Table 3 and
Table 4. In most of the synthetic datasets, DIFFEE
achieves a higher F1-Score and less computation time
than other baselines.

Table 9 and Table 10 present the performance of our
proposed methodÐDIFFEE and other methods with
varying nc and nd in a low-dimensional setting (p >
max(nc, nd)). The Table 9 and Table 10 correspond to
Model 1 and Model 2, respectively. We vary the number
of samplesnc and nd in the set of { p,2p,3p} . The
computation time and F1-Score are measured similar
to Table 3 and Table 4. In most of the synthetic

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure 16

Table 3: Model 1 varying p

Model DIFFEE FusedGLasso Slower Density Ratio Slower Di"-CLIME Slower

F1-score

p = 50 0.029 0 0.027 0.016
p = 100 0.017 0.015 0.015 0.012
p = 200 0.009 0.008 0.009 NA
p = 300 0.005 0.002 0.006 NA
p = 400 0.004 0.003 0.004 NA
p = 500 0.004 0.003 0.003 NA

Time (s)

p = 50 0.296 45.61 154- 24.903 84- 56.37 190-
p = 100 0.748 121.537 162- 122.596 163- 5094.796 6811-
p = 200 3.645 715.672 196- 611.341 167- NA
p = 300 11.064 2106.681 190- 1584.262 143- NA
p = 400 24.763 4551.419 183- 4159.019 167- NA
p = 500 44.54 8008.809 179- 8575.529 192- NA

Table 4: Model 2 varying p

Model DIFFEE FusedGLasso Slower Density Ratio Slower Di"-CLIME Slower

F1-score

p = 50 0.581 0.401 0.082 0.422
p = 100 0.444 0.335 0.071 0.406
p = 200 0.45 0.311 0.066 NA
p = 300 0.444 0.265 0.073 NA
p = 400 0.449 0.229 0.078 NA
p = 500 0.45 0.203 0.075 NA

Time (s)

p = 50 0.274 43.57 159- 19.35 70- 116.712 425-
p = 100 0.751 115.049 153- 104.53 139- 11640.82 15500-
p = 200 3.528 657.147 186- 538.842 152- NA
p = 300 10.887 2106.415 193- 1780.176 163- NA
p = 400 23.462 4406.156 187- 3859.082 164- NA
p = 500 44.163 8164.19 184- 9054.507 205- NA

Table 5: Model 1 varying sparsity

Model DIFFEE FusedGLasso Slower Density Ratio Slower

F1-score

s = 0.1 0.008 0.003 0.009
s = 0.2 0.009 0.008 0.009
s = 0.3 0.008 0.008 0.008
s = 0.4 0.011 0.008 0.008
s = 0.5 0.008 0.006 0.008
s = 0.6 0.008 0.008 0.008
s = 0.7 0.008 0.007 0.008

Time (s)

s = 0.1 3.606 712.682 197- 631.582 175-
s = 0.2 3.993 712.365 178- 598.191 149-
s = 0.3 3.97 719.859 181- 595.246 149-
s = 0.4 3.65 721.785 197- 598.009 163-
s = 0.5 3.632 679.94 187- 631.062 173-
s = 0.6 3.693 679.263 183- 608.358 164-
s = 0.7 3.679 686.979 186- 624.632 169-

Beilun Wang, Arshdeep Sekhon, Yanjun Qi 17

Table 6: Model 2 varying sparsity

Model DIFFEE FusedGLasso Slower Density Ratio Slower

F1-score

s = 0.1 0.165 0.089 0.066
s = 0.2 0.158 0.073 0.059
s = 0.3 0.15 0.057 0.05
s = 0.4 0.144 0.053 0.044
s = 0.5 0.137 0.042 0.036
s = 0.6 0.13 0.046 0.033
s = 0.7 0.124 0.043 0.027

Time (s)

s = 0.1 3.817 671.255 175- 564.679 147-
s = 0.2 3.763 671.499 178- 559.455 148-
s = 0.3 3.62 674.941 186- 609.633 168-
s = 0.4 3.741 664.363 177- 635.302 169-
s = 0.5 3.691 662.802 179- 603.838 163-
s = 0.6 3.619 659.336 182- 611.441 168-
s = 0.7 3.596 648.885 180- 689.137 191-

Table 7: model1 varying n c and n d in high-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower

F1-score

nc = p/ 4, nd = p/ 4 0.008 0.008 0
nc = p/ 4, nd = p/ 2 0.008 0.008 0
nc = p/ 2, nd = p/ 4 0.016 0.008 0
nc = p/ 2, nd = p/ 2 0.009 0.008 0.009

Time (s)

nc = p/ 4, nd = p/ 4 3.647 696.742 191- 398.226 109-
nc = p/ 4, nd = p/ 2 3.61 704.943 195- 590.044 163-
nc = p/ 2, nd = p/ 4 3.609 697.858 193- 408.149 113-
nc = p/ 2, nd = p/ 2 3.582 654.147 182- 642.168 179-

Table 8: model2 varying n c and n d in high-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower

F1-score

nc = p/ 4, nd = p/ 4 0.45 0.221 0.065
nc = p/ 4, nd = p/ 2 0.45 0.226 0.063
nc = p/ 2, nd = p/ 4 0.45 0.29 0.065
nc = p/ 2, nd = p/ 2 0.45 0.203 0.066

Time (s)

nc = p/ 4, nd = p/ 4 3.74 654.227 174- 381.686 102-
nc = p/ 4, nd = p/ 2 3.748 654.822 174- 484.77 129-
nc = p/ 2, nd = p/ 4 3.717 653.657 175- 346.148 93-
nc = p/ 2, nd = p/ 2 3.528 657.147 186- 494.066 140-

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure 18

datasets, DIFFEE achieves a higher F1-Score and less
computation time than other baselines.

Figure 5 and Figure 6 summarize F1-Scores for DIF-

FEE and the baseline methods: FusedGLasso and Den-
sityRatio for all simulations under varying p, s and
(nc, nd) for Model 1 and Model 2, respectively.

Beilun Wang, Arshdeep Sekhon, Yanjun Qi 19

Table 9: model1 varying n c and n d in low-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower

F1-score

nc = p, nd = p 0.01 0.008 0.008
nc = p, nd = 2p 0.011 0.008 0.008
nc = p, nd = 3p 0.008 0.007 0.008
nc = 2p, nd = p 0.015 0.008 0.011
nc = 2p, nd = 2p 0.01 0.008 0.016
nc = 2p, nd = 3p 0.009 0.008 0.014
nc = 3p, nd = p 0.008 0.004 0.008
nc = 3p, nd = 2p 0.008 0.007 0.008
nc = 3p, nd = 3p 0.008 0.003 0.009

Time (s)

nc = p, nd = p 3.643 691.581 189- 838.863 230-
nc = p, nd = 2p 3.569 1023.507 286- 1468.593 411-
nc = p, nd = 3p 3.62 1319.354 364- 2054.228 567-
nc = 2p, nd = p 3.578 700.539 195- 932.511 260-
nc = 2p, nd = 2p 3.568 875.55 245- 1291.795 362-
nc = 2p, nd = 3p 3.553 1406.44 395- 2224.744 626-
nc = 3p, nd = p 3.587 696.087 194- 882.885 246-
nc = 3p, nd = 2p 3.578 725.195 202- 1464.343 409-
nc = 3p, nd = 3p 3.592 1264.346 351- 2191.003 609-

Table 10: model2 varying n c and n d in low-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower

F1-score

nc = p, nd = p 0.45 0.372 0.076
nc = p, nd = 2p 0.453 0.394 0.081
nc = p, nd = 3p 0.452 0.39 0.092
nc = 2p, nd = p 0.451 0.426 0.093
nc = 2p, nd = 2p 0.477 0.471 0.111
nc = 2p, nd = 3p 0.488 0.479 0.131
nc = 3p, nd = p 0.452 0.445 0.103
nc = 3p, nd = 2p 0.488 0.484 0.143
nc = 3p, nd = 3p 0.546 0.508 0.148

Time (s)

nc = p, nd = p 3.658 707.735 193- 714.371 195-
nc = p, nd = 2p 3.746 688.608 183- 1192.792 318-
nc = p, nd = 3p 3.673 676.806 184- 1707.516 464-
nc = 2p, nd = p 3.69 673.112 182- 723.656 196-
nc = 2p, nd = 2p 3.691 676.597 183- 1164.175 315-
nc = 2p, nd = 3p 3.57 677.65 189- 1830.678 512-
nc = 3p, nd = p 3.692 673.364 182- 717.752 194-
nc = 3p, nd = 2p 3.692 682.499 184- 1090.64 295-
nc = 3p, nd = 3p 3.732 719.733 192- 1739.274 466-

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure 20

(a) varying p (b) varying s

(c) varying n (low dimensional) (d) varying n (high dimensional)

Figure 5: F1-Score of DIFFEE and baseline methods for Simulated Model 1

(a) varying p (b) varying s

(c) varying n (low dimensional) (d) varying n (high dimensional)

Figure 6: F1-Score of DIFFEE and baseline methods for Simulated Model 2

