Appendix A Derivation for Equation 4

Given the objective function,

$$
\begin{array}{ll}
\max & \operatorname{HSIC}(X W, U)-\lambda \operatorname{HSIC}(X W, Y) \\
U, W & \\
\text { s.t } & W^{T} W=I, U^{T} U=I
\end{array}
$$

Using the HSIC measure defined, the objective function can be rewritten as

$$
\begin{aligned}
\operatorname{HSIC}(X W, U)-\lambda \operatorname{HSIC}(X W, Y) & =\operatorname{Tr}\left(H U U^{T} H D^{\frac{-1}{2}} K_{X W} D^{\frac{-1}{2}}\right)-\lambda \operatorname{Tr}\left(H Y Y^{T} H D^{\frac{-1}{2}} K_{X W} D^{\frac{-1}{2}}\right) \\
& =\operatorname{Tr}\left(D^{\frac{-1}{2}} H\left(U U^{T}-\lambda Y Y^{T}\right) H D^{\frac{-1}{2}} K_{X W}\right) \\
& =\operatorname{Tr}\left(\gamma K_{X W}\right) \\
& =\sum_{i, j} \gamma_{i, j} K_{X_{i, j}} .
\end{aligned}
$$

where γ is a symmetric matrix and $\gamma=H\left(U U^{T}-\lambda Y Y^{T}\right) H$. By substituting the Gaussian kernel for $K_{X_{i, j}}$, the objective function becomes

$$
\min _{W}-\sum_{i, j} \gamma_{i, j} e^{-\frac{\operatorname{Tr}\left[W^{T} A_{i, j} W\right]}{2 \sigma^{2}}} \quad \text { s.t } \quad W^{T} W=I
$$

Appendix B Proof for Lemma 2

Proof. Algorithm 2 sets the smallest q eigenvectors of $\Phi\left(W_{k}\right)$ as W_{k+1}. Since a fixed point W^{*} is reached when $W_{k}=W_{k+1}$, therefore W^{*} consists of the smallest eigenvectors of $\Phi\left(W^{*}\right)$ and Λ^{*} corresponds with a diagonal matrix of eigenvavlues. Since the eigenvectors of $\Phi\left(W^{*}\right)$ are orthonormal, $W^{*^{T}} W^{*}=I$ is also satisfied.

Appendix C Proof for Lemma 3

Proof. Using Equation (4) as the objective function, the corresponding Lagrangian and its gradient is written as

$$
\begin{equation*}
\mathcal{L}(W, \Lambda)=-\sum_{i, j} \gamma_{i, j} e^{-\frac{\operatorname{Tr}\left(W^{T} A_{i, j} W\right)}{2 \sigma^{2}}}-\frac{1}{2} \operatorname{Tr}\left(\Lambda\left(W^{T} W-I\right)\right), \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{W} \mathcal{L}(W, \Lambda)=\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(W^{T} A_{i, j} W\right)}{2 \sigma^{2}}} A_{i, j} W-W \Lambda \tag{14}
\end{equation*}
$$

By setting the gradient of the Lagrangian to zero, and using the definition of $\Phi(W)$ from Equation (8), Equation (14) can be written as

$$
\begin{equation*}
\Phi(W) W=W \Lambda \tag{15}
\end{equation*}
$$

The gradient with respect to Λ is

$$
\begin{equation*}
\nabla_{\Lambda} \mathcal{L}(W, \Lambda)=W^{T} W-I \tag{16}
\end{equation*}
$$

Setting this gradient of the Lagrangian also to zero, condition (9b) is equivalent to

$$
\begin{equation*}
W^{T} W=I \tag{17}
\end{equation*}
$$

By Lemma 2, a fixed point W^{*} and its corresponding Λ^{*} satisfy (15) and (17), and the lemma follows.

Appendix D Proof for Lemma 4

The proof for Lemma 4 relies on the following three sublemmas. The first two sublemmas demonstrate how the 2nd order conditions can be rewritten into a simpler form. With the simpler form, the third lemma demonstrates how the 2 nd order conditions of a local minimum are satisfied given a large enough σ.
Lemma 4.1. Let the directional derivative in the direction of Z be defined as

$$
\begin{equation*}
\mathcal{D} f(W)[Z]:=\lim _{t \rightarrow 0} \frac{f(W+t Z)-f(W)}{t} . \tag{18}
\end{equation*}
$$

Then the 2nd order condition of Lemma \& can be written as

$$
\begin{equation*}
\operatorname{Tr}\left(Z^{T} \mathcal{D} \nabla \mathcal{L}[Z]\right)=\left\{\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}}\left[\operatorname{Tr}\left(Z^{T} A_{i, j} Z\right)-\frac{1}{\sigma^{2}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}\right)^{2}\right]\right\}-\operatorname{Tr}\left(Z^{T} Z \Lambda^{*}\right), \tag{19}
\end{equation*}
$$

for all Z such that

$$
\begin{equation*}
Z^{T} W^{*}+W^{*^{T}} Z=0 \tag{20}
\end{equation*}
$$

Proof. Observe first that

$$
\begin{equation*}
\nabla_{W^{*} W^{*}}^{2} \mathcal{L}\left(W^{*}, \Lambda^{*}\right) Z=\mathcal{D} \nabla \mathcal{L}[Z], \tag{21}
\end{equation*}
$$

where the directional derivative of the gradient $\mathcal{D} \nabla \mathcal{L}[Z]$ is given by

$$
\mathcal{D} \nabla \mathcal{L}[Z]=\lim _{t \rightarrow 0} \frac{\partial}{\partial t} \sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*}+t z\right)^{T} A_{i, j}\left(W^{*}+t z\right)\right)}{2 \sigma^{2}}} A_{i, j}\left(W^{*}+t Z\right)-\left(W^{*}+t Z\right) \Lambda .
$$

This can be written as

$$
\mathcal{D} \nabla \mathcal{L}[Z]=T_{1}+T_{2}-T_{3},
$$

where

$$
\begin{align*}
T_{1} & =\lim _{t \rightarrow 0} \frac{\partial}{\partial t} \sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*}+t Z\right)^{T} A_{i, j}\left(W^{*}+t Z\right)\right)}{2 \sigma^{2}}} A_{i, j} W^{*} \tag{22}\\
& =\lim _{t \rightarrow 0} \frac{\partial}{\partial t} \sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}+t Z^{T} A_{i, j} W^{*}+t W^{*} A_{i, j} Z+t^{2} Z^{T} A_{i, j} Z\right)\right.}{2 \sigma^{2}}} A_{i, j} W^{*} \tag{23}\\
& =-\sum_{i, j} \frac{\gamma_{i, j}}{2 \sigma^{4}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}+W^{*^{T}} A_{i, j} Z\right) A_{i, j} W^{*} \tag{24}\\
& =-\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{4}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A^{T} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}\right) A_{i, j} W^{*} \tag{25}\\
T_{2} & =\lim _{t \rightarrow 0} \frac{\partial}{\partial t} \sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} t e^{-\frac{\operatorname{Tr}\left(\left(W^{*}+t Z\right)^{T} A_{i, j}\left(W^{*}+t Z\right)\right)}{2 \sigma^{2}}} A_{i, j} Z \tag{26}\\
& =\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(W^{*} A_{i, j} W^{*}\right)}{2 \sigma^{2}}} A_{i, j} Z, \tag{27}\\
T_{3} & =\lim _{t \rightarrow 0} \frac{\partial}{\partial t}\left(W^{*}+t Z\right) \Lambda \tag{28}\\
& =Z \Lambda . \tag{29}
\end{align*}
$$

Hence, putting all three terms together yields

$$
\begin{equation*}
\mathcal{D} \nabla \mathcal{L}[Z]=\left\{\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}}\left[A_{i, j} Z-\frac{1}{\sigma^{2}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}\right) A_{i, j} W^{*}\right]\right\}-Z \Lambda . \tag{30}
\end{equation*}
$$

Hence,

$$
\begin{gather*}
\operatorname{Tr}\left(Z^{T} \nabla_{W^{*} W^{*}}^{2} \mathcal{L}\left(W^{*}, \Lambda^{*}\right) Z\right)=\operatorname{Tr}\left(Z^{T} \mathcal{D} \nabla \mathcal{L}[Z]\right), \tag{31}\\
=\left\{\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*}{ }^{T} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}}\left[\operatorname{Tr}\left(Z^{T} A_{i, j} Z\right)-\frac{1}{\sigma^{2}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}\right)^{2}\right]\right\}-\operatorname{Tr}\left(Z^{T} Z \Lambda_{W}\right) . \tag{32}
\end{gather*}
$$

Next, let Z be such that $Z \neq 0$ and $\nabla h\left(W^{*}\right)^{T} Z=0$, where

$$
\begin{equation*}
h\left(W^{*}\right)=W^{*^{T}} W^{*}-I . \tag{33}
\end{equation*}
$$

Therefore, the constraint condition can be written on Z in (9c) can be written as

$$
\begin{align*}
\nabla h\left(W^{*}\right)^{T} Z & =\lim _{t \rightarrow 0} \frac{\partial}{\partial t} \frac{\left(W^{*}+t Z\right)^{T}\left(W^{*}+t Z\right)-W^{*^{T}} W^{*}}{t} \tag{34}\\
& =Z^{T} W^{*}+W^{*^{T}} Z=0 .
\end{align*}
$$

Using Equations (32) and (34) lemma 4.1 follows.
Recall from Lemma 2 that W^{*} consists of the q eigenvectors of $\Phi\left(W^{*}\right)$ with the smallest eigenvalues. We define $\bar{W}^{*} \in \mathbb{R}^{d \times d-q}$ as all other eigenvectors of $\Phi\left(W^{*}\right)$. Because Z has the same dimension as W^{*}, each column of Z resides in the space of \mathbb{R}^{d}. Since the eigenvectors of $\Phi\left(W^{*}\right)$ span \mathbb{R}^{d}, each column of Z can be represented as a linear combination of the eigenvectors of $\Phi\left(W^{*}\right)$. In other words, each column z_{i} can therefore be written as $z_{i}=W^{*} P_{W}^{(i)}+\bar{W}^{*} P_{\bar{W}^{*}}^{(i)}$, where $P_{W^{*}}^{(i)} \in \mathbb{R}^{q \times 1}$ and $P_{\bar{W}^{*}}^{(i)} \in \mathbb{R}^{d-q \times 1}$ represents the coordinates for the two sets of eigenvectors. Using the same notation, we also define $\Lambda^{*} \in \mathbb{R}^{q \times q}$ as the eigenvalues corresponding to W^{*} and $\bar{\Lambda}^{*} \in \mathbb{R}^{d-q \times d-q}$ as the eigenvalues corresponding to \bar{W}^{*}. The entire matrix Z can therefore be represented as

$$
\begin{equation*}
Z=\bar{W}^{*} P_{\bar{W}^{*}}+W^{*} P_{W^{*}} \tag{35}
\end{equation*}
$$

Furthermore, it can be easily shown that $P_{W^{*}}$ is a skew symmetric matrix, or $-P_{W^{*}}=P_{W^{*}}^{T}$. By setting Z from Equation (20) into (35), the constraint can be rewritten as

$$
\begin{equation*}
\left[P_{\bar{W}^{*}}^{T} \bar{W}^{*^{T}}+P_{W}^{*^{T}} W^{*^{T}}\right] W^{*}+W^{*^{T}}\left[\bar{W}^{*} P_{\bar{W}^{*}}+W^{*} P_{W^{*}}\right]=0 . \tag{36}
\end{equation*}
$$

Simplifying the equation yields the relationship

$$
\begin{equation*}
P_{W}^{*^{T}}+P_{W^{*}}=0 . \tag{37}
\end{equation*}
$$

Using these definitions, we define the following sublemma.
Lemma 4.2. Given a fixed point W^{*} and a Z satisfying condition (20), the condition $\operatorname{Tr}\left(Z^{T} \mathcal{D} \nabla \mathcal{L}[Z]\right) \geq 0$ is equivalent to

$$
\begin{equation*}
\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} \bar{\Lambda}^{*} P_{\bar{W}^{*}}\right)-\operatorname{Tr}\left(P_{\bar{W}^{*}} \Lambda^{*} P_{\bar{W}^{*}}^{T}\right) \geq C_{2}, \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{2}=\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{4}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}\right)^{2} \tag{39}
\end{equation*}
$$

$P_{W^{*}}, P_{\bar{W}^{*}}$ are given by Equation (35), and $\Lambda^{*}, \overline{\Lambda^{*}}$ are the diagonal matrices containing the bottom and top eigenvalues of $\Phi\left(W^{*}\right)$ respectively.

Proof. By condition (19),

$$
\begin{equation*}
\operatorname{Tr}\left(Z^{T} \mathcal{D} \nabla \mathcal{L}[Z]\right)=C_{1}-C_{2}+C_{3} \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{1}=\operatorname{Tr}\left(Z^{T} \sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} A_{i, j} Z\right) \\
& C_{2}=\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{4}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*}{ }^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(Z^{T} A_{i, j} W^{*}\right)^{2} \\
& C_{3}=-\operatorname{Tr}\left(Z^{T} Z \Lambda^{*}\right)
\end{aligned}
$$

C_{1} can be written as

$$
\begin{array}{rlr}
C_{1} & =\operatorname{Tr}\left(Z^{T} \sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} A_{i, j} Z\right) \\
& =\operatorname{Tr}\left(Z^{T} \Phi\left(W^{*}\right)\left[\bar{W}^{*} P_{\bar{W}^{*}}+W^{*} P_{W^{*}}\right]\right) \\
& =\operatorname{Tr}\left(Z^{T}\left[\Phi\left(W^{*}\right) \bar{W}^{*} P_{\bar{W}^{*}}+\Phi\left(W^{*}\right) W^{*} P_{W^{*}}\right]\right) & \\
& =\operatorname{Tr}\left(Z^{T}\left[\bar{W}^{*} \bar{\Lambda} P_{\bar{W}^{*}}+W^{*} \Lambda P_{W^{*}}\right]\right) & \\
& =\operatorname{Tr}\left([P _ { \overline { W } ^ { * } } ^ { T } \overline { W } ^ { * } + P _ { W } ^ { * ^ { T } } W ^ { * ^ { T } }] \left[\bar{W}^{*} \bar{\Lambda} P_{\left.\left.\bar{W}_{\bar{W}^{*}}+W^{*} \Lambda P_{W^{*}}\right]\right)}\right.\right. & \\
& =\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} \bar{\Lambda} P_{\bar{W}^{*}}\right)+\operatorname{Tr}\left(P_{W^{*}}^{T} \Lambda P_{W}\right) & \text { By definition of eigenvalues. } \\
\text { Substitute for } Z \\
& \text { Given } W^{*^{T}} W^{*}=I, \bar{W}^{*} T W^{*}=0 .
\end{array}
$$

Similarly

$$
\begin{aligned}
C_{3} & =-\operatorname{Tr}\left(Z^{T} Z \Lambda\right) \\
& =-\operatorname{Tr}\left(\left[P_{\bar{W}^{*}}^{T} \bar{W}^{*}+P_{W^{*}}^{T} W^{*^{T}}\right]\left[\bar{W}^{*} P_{\bar{W}^{*}}+W^{*} P_{W^{*}}\right] \Lambda\right) \\
& =-\operatorname{Tr}\left(\left[P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}}+P_{W^{*}}^{T} P_{W^{*}}\right] \Lambda\right) \\
& =-\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}} \Lambda\right)-\operatorname{Tr}\left(P_{W^{*}}^{T} P_{W^{*}} \Lambda\right)
\end{aligned}
$$

Because $P_{W^{*}}$ is a square skew symmetric matrix, the diagonal elements of $P_{W^{*}} P_{W^{*}}^{T}$ is the same as the diagonal of $P_{W^{*}} P_{W^{*}}^{T}$. From this observation, we conclude that $\operatorname{Tr}\left(P_{W^{*}} P_{W^{*}}^{T} \Lambda\right)=\operatorname{Tr}\left(P_{W^{*}}^{T} P_{W^{*}} \Lambda\right)$. Hence,

$$
C_{3}=-\operatorname{Tr}\left(P_{\bar{W}^{*}} \Lambda P_{\bar{W}^{*}}^{T}\right)-\operatorname{Tr}\left(P_{W^{*}}^{T} \Lambda P_{W^{*}}\right)
$$

Putting all 3 parts together yields

$$
\begin{align*}
\operatorname{Tr}\left(Z^{T} \mathcal{D} \nabla \mathcal{L}[Z]\right) & =\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} \bar{\Lambda} P_{\bar{W}^{*}}\right)+\operatorname{Tr}\left(P_{W^{*}}^{T} \Lambda P_{W^{*}}\right)-C_{2}-\operatorname{Tr}\left(P_{\bar{W}^{*}} \Lambda P_{\bar{W}^{*}}^{T}\right)-\operatorname{Tr}\left(P_{W^{*}}^{T} \Lambda P_{W^{*}}\right) \tag{41}\\
& =\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} \bar{\Lambda} P_{\bar{W}^{*}}\right)-\operatorname{Tr}\left(P_{\bar{W}^{*}} \Lambda P_{\bar{W}^{*}}^{T}\right)-C_{2}
\end{align*}
$$

The 2nd order condition (9c) is, therefore, satisfied, when

$$
\begin{equation*}
\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} \bar{\Lambda} P_{\bar{W}^{*}}\right)-\operatorname{Tr}\left(P_{\bar{W}^{*}} \Lambda P_{\bar{W}^{*}}^{T}\right) \geq C_{2} \tag{42}
\end{equation*}
$$

Lemma 4.3. Given $W^{*}, \bar{W}^{*}, \bar{\Lambda}^{*}$, and Λ^{*} as defined in Equation (35), if the corresponding smallest eigenvalue of $\bar{\Lambda}^{*}$ is larger than the largest eigenvalue of Λ^{*}, then given a large enough σ the condition (9c) of Lemma 1 is satisfied.

Proof. To proof sublemma (4.3), we provide bounds on each of the terms in (42). Starting with C_{2} defined at (39). It has a trace term, $\left(\operatorname{Tr}\left(Z^{T} A_{i j} W^{*}\right)\right)^{2}$ that can be rewritten as

$$
\begin{equation*}
\left(\operatorname{Tr}\left(A_{i j} W^{*} Z^{T}\right)\right)^{2}=\left(\operatorname{Tr}\left(A_{i j} W^{*} P_{W^{*}}^{T} W^{*^{T}}+A_{i j} W^{*} P_{\bar{W}^{*}}^{T} \bar{W}^{*} T\right)\right)^{2} \tag{43}
\end{equation*}
$$

Since $A_{i j}$ is symmetric and $W^{*} P_{W^{*}}^{T} W^{*^{T}}$ is skew-symmetric, then $\operatorname{Tr}\left(A_{i j} W^{*} P_{W^{*}}^{T} W^{*^{T}}\right)=0$. Hence

$$
\begin{align*}
\left(\operatorname{Tr}\left(Z^{T} A_{i j} W^{*}\right)\right)^{2} & =\left(\operatorname{Tr}\left(A_{i j} W^{*} Z^{T}\right)\right)^{2}=\left(\operatorname{Tr}\left(A_{i j} W^{*} P_{\bar{W}^{*}}^{T} \bar{W}^{T}\right)\right)^{2} \tag{44}\\
& \leq \operatorname{Tr}\left(A_{i, j}^{T} A_{i j}\right) \operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}}\right) \tag{45}
\end{align*}
$$

where the last inequality follows from Cauchy-Schwartz inequality and that fact that $W^{*}{ }^{T} W^{*}=I$ and $\bar{W}^{*} \bar{W}^{*}=$ I. Thus, C_{2} in (41) is bounded by

$$
\begin{equation*}
C_{2} \leq \sum_{i, j} \frac{\left|\gamma_{i, j}\right|}{\sigma^{4}} e^{\left.-\frac{\operatorname{Tr}\left(\left(W^{*} T\right.\right.}{} A_{i, j} W^{*}\right)}{ }^{2 \sigma^{2}} \operatorname{Tr}\left(A_{i, j}^{T} A_{i j}\right) \operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}}\right) \tag{46}
\end{equation*}
$$

Similarly, the remaining terms in (40) can be bounded by

$$
\begin{gather*}
C_{1}=\operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} \bar{\Lambda}^{*} P_{\bar{W}^{*}}\right) \geq \min _{i}\left(\bar{\Lambda}_{i}^{*}\right) \operatorname{Tr}\left(P_{\bar{W}^{*}} P_{\bar{W}^{*}}^{T}\right) \tag{47}\\
C_{3}=-\operatorname{Tr}\left(P_{\bar{W}^{*}} \Lambda^{*} P_{\bar{W}^{*}}^{T}\right) \geq-\max _{i}\left(\Lambda_{i}^{*}\right) \operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}}\right) . \tag{48}
\end{gather*}
$$

Using the bounds for each term, the Equation (42) can be rewritten as

$$
\begin{gather*}
{\left[\min _{i}\left(\bar{\Lambda}^{*}{ }_{i}\right)-\max _{j}\left(\Lambda_{j}^{*}\right)\right] \operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}}\right) \geq \sum_{i, j} \frac{\left|\gamma_{i, j}\right|}{\sigma^{4}} e^{-\frac{\operatorname{Tr}\left(\left(W^{* T} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(A_{i, j}^{T} A_{i j}\right) \operatorname{Tr}\left(P_{\bar{W}^{*}}^{T} P_{\bar{W}^{*}}\right)} \tag{49}\\
{\left[\min _{i}\left(\bar{\Lambda}_{i}^{*}\right)-\max _{j}\left(\Lambda_{j}^{*}\right)\right] \geq \sum_{i, j} \frac{\left|\gamma_{i, j}\right|}{\sigma^{4}} e^{-\frac{\operatorname{Tr}\left(\left(W^{*} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(A_{i, j}^{T} A_{i j}\right)} \tag{50}
\end{gather*}
$$

It should be noted that Λ^{*} is a function of $\frac{1}{\sigma^{2}}$. This relationship could be removed by multiplying both sides of the inequality by σ^{*} to yield

$$
\begin{equation*}
\sigma^{2}\left[\min _{i}\left(\overline{\Lambda^{*}}{ }_{i}\right)-\max _{j}\left(\Lambda_{j}^{*}\right)\right] \geq \sum_{i, j} \frac{\left|\gamma_{i, j}\right|}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(\left(W^{* T} A_{i, j} W^{*}\right)\right.}{2 \sigma^{2}}} \operatorname{Tr}\left(A_{i, j}^{T} A_{i j}\right) \tag{51}
\end{equation*}
$$

Since σ^{2} is always a positive value, as long as all the eigenvalues from $\overline{\Lambda^{*}}$ is larger than all the eigenvalues from Λ^{*}, the left hand side of the equation will always be greater than 0 . As $\sigma \rightarrow \infty$, the right hand side approaches 0 , and the condition (9c) of Lemma 1 is satisfied.

As a side note, the eigen gap between $\min \left(\bar{\Lambda}^{*}\right)$ and $\max \left(\Lambda^{*}\right)$ controls the range of potential σ values i.e. the larger the eigen gap the easier for σ to satisfy (51). Therefore, the ideal cutoff point should have a large eigen gap.

Appendix E Convergence Plot from Experiments

Figure 4 summarizes the convergence activity of various experiments. For each experiment, the top figure provides the magnitude of the objective function. It can be seen that the values converges towards a fixed point. The middle plot provide updates of the gradient of the Lagrangian. It can be seen that the gradient converges towards 0 . The bottom plot shows the changes in W during each iteration. The change in W converge towards 0 .

Figure 4: Convergence Results from the Experiments.

Appendix F Proof of Convergence

The convergence property of ISM has been analyzed and yields the following theorem.
Theorem 2. A sequence $\left\{W_{k}\right\}_{k \in \mathbb{N}}$ generated by Algorithm 2 contains a convergent subsequence.
Proof. According to Bolzano-Weierstrass theorem, if we can show that the sequences generated from the 1st order relaxation is bounded, it has a convergent subsequence. If we study the Equation $\Phi(W)$ more closely, the key driver of the sequence of W_{k} is the matrix Φ, therefore, if we can show that if this matrix is bounded, the sequence itself is also bounded. We look inside the construction of the matrix itself.

$$
\Phi_{n+1}=\left[\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(W_{n}^{T} A_{i, j} W_{n}\right)}{2 \sigma^{2}}} A_{i, j}\right]
$$

From this equation, start with the matrix $A_{i, j}=\left(x_{i}-x_{j}\right)\left(x_{i}-x_{j}\right)^{T}$. Since x_{i}, x_{j} are data points that are always centered and scaled to a variance of 1 , the size of this matrix is always constrained. It also implies that $A_{i, j}$ is a PSD matrix. From this, the exponential term is always limited between the value of 0 and 1. The value of σ is a constant given from the initialization stage. Lastly, we have the $\gamma_{i, j}$ term. Since $\gamma=D^{-1 / 2} H\left(U U^{T}-\lambda Y Y^{T}\right) H D^{-1 / 2}$. The degree matrix came from the exponential kernel. Since the kernels are bounded, D is also bounded. The centering matrix H and the previous clustering result Y can be considered as bounded constants. Since the spectral embedding U is a orthonormal matrix, it is always bounded. From this, given that the components of Φ is bounded, the infinity norm of the Φ is always bounded. The eigenvalue matrix of Λ is therefore also bounded. Using the Bolzano-Weierstrass Theorem, the sequence contains a convergent subsequence. Given that Φ is a continuous function of W, by continuity, W also has a convergent sub-sequence.

Appendix G Proof for the initialization

Although the proof was originally shown through the usage of the 2nd order Taylor Approximation. A simpler approach was later discovered to arrive to the same formulation faster. We first note that Taylor's Expansion around 0 of an exponential is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\ldots
$$

Given the objective Lagrangian in eq (6), we simplify the Lagrangian by using the Taylor approximation only on the problematic exponential term. The approximation is expanded up to the 1 st order centering around 0 to yield

$$
\mathcal{L} \approx-\sum_{i, j} \gamma_{i, j}\left(1-\frac{\operatorname{Tr}\left(W^{T} A_{i, j} W\right)}{2 \sigma^{2}}\right)+\frac{1}{2} \operatorname{Tr}\left(\Lambda\left(I-W^{T} W\right)\right) .
$$

By taking the derivative of the approximated Lagrangian and setting the derivative to zero, an eigenvalue/eigenvector relationship emerges as

$$
\Phi W=\left[\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} A_{i, j}\right] W_{0}=W_{0} \Lambda .
$$

From this, we see that Φ_{0} is no longer a function of W. Using this Φ_{0} we can then calculate a closed form solution for W_{0}

Appendix H Proof for the computational complexity

For ISM, DG and SM, the bottleneck resides in the computation of the gradient.

$$
f(W)=\sum_{i, j} \gamma_{i, j} e^{-\frac{\operatorname{Tr}\left(W^{T} A_{i, j} W\right)}{2 \sigma^{2}}}
$$

$$
\begin{gathered}
\frac{\partial f}{\partial W}=\left[\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(W^{T} A_{i, j} W\right)}{2 \sigma^{2}}} A_{i, j}\right] W \\
\frac{\partial f}{\partial W}=\left[\sum_{i, j} \frac{\gamma_{i, j}}{\sigma^{2}} e^{-\frac{\operatorname{Tr}\left(W^{T} \Delta x_{i, j} \Delta x_{i, j}^{T} W\right)}{2 \sigma^{2}}} A_{i, j}\right] W
\end{gathered}
$$

Where $A_{i, j}=\Delta x_{i, j} \Delta x_{i, j}^{T}$. The variables have the following dimensions.

$$
\begin{aligned}
& x_{i, j} \in \mathbb{R}^{d \times 1} \\
& W \in \mathbb{R}^{d \times q}
\end{aligned}
$$

To compute a new W with DG, we first mulitply $\Delta x_{i, j}^{T} W$, which is $O(d)$. Note that W in DG is always 1 single column. Next, it multiplies with its own transpose to yied $O\left(d+q^{2}\right)$. Then we compute $A_{i, j}$ to get $O\left(d+q^{2}+d^{2}\right)$. Since this operation needs to be added n^{2} times, we get, $O\left(n^{2}\left(d+q^{2}+d^{2}\right)\right)$. Since $d \gg q$, this notation reduces down to $O\left(n^{2} d^{2}\right)$. Let T_{1} be the number of iterations until convergence, then it becomes $O\left(T_{1} n^{2} d^{2}\right)$. Lastly, in DG, this operation needs to be repeated q times, hence, $O\left(T_{1} n^{2} d^{2} q\right)$.
To compute a new W with SM, we first mulitply $\Delta x_{i, j}^{T} W$, which is $O(d q)$. Next, it multiplies with its own transpose to yied $O\left(d q+q^{2}\right)$. Then we compute $A_{i, j}$ to get $O\left(d q+q^{2}+d^{2}\right)$. Since this operation needs to be added n^{2} times, we get, $O\left(n^{2}\left(d q+q^{2}+d^{2}\right)\right)$. Since $d \gg q$, this notation reduces down to $O\left(n^{2} d^{2}\right)$. The SM method requires the computation of the inverse of $d \times d$ matrix. Since inverses is cubic, it becomes $O\left(n^{2} d^{2}+d^{3}\right)$. Lastly, let T_{2} be the number of iterations until convergence, then it becomes $O\left(T_{2}\left(n^{2} d^{2}+d^{3}\right)\right)$.

To compute a new W with ISM, we first mulitply $\Delta x_{i, j}^{T} W$, which is $O(d q)$. Next, it multiplies with its own transpose to yied $O\left(d q+q^{2}\right)$. Then we compute $A_{i, j}$ to get $O\left(d q+q^{2}+d^{2}\right)$. Since this operation needs to be added n^{2} times, we get, $O\left(n^{2}\left(d q+q^{2}+d^{2}\right)\right)$. Since $d \gg q$, this notation reduces down to $O\left(n^{2} d^{2}\right)$. The ISM method requires the computation of the eigen decomposition of $d \times d$ matrix. Since inverses is cubic, it becomes $O\left(n^{2} d^{2}+d^{3}\right)$. Lastly, let T_{3} be the number of iterations until convergence, then it becomes $O\left(T_{3}\left(n^{2} d^{2}+d^{3}\right)\right)$.

Appendix I Measure of Non-linear Relationship by HSIC Versus Correlation

The figure below demonstrates a visual comparison of HSIC and correlation. It can be seen that HSIC measures non-linear relationships, while correlation does not.

Figure 5: Showing that HSIC captures non-linear information.

Appendix J Hyperparameters Used in Each Experiment

	σ	λ	q
Gauss A	1	0.04	1
Gauss B 200	5	2	3
Moon 400	0.1	1	3
Moon+N 200	0.2	0.1	6
Flower	2	10	2
Face	3.1	1	17
Web KB	18.7	0.057	4

