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Appendix A Derivation for Equation 4

Given the objective function,
max HSIC(XW,U)− λHSIC(XW,Y )
U,W
s.t WTW = I, UTU = I.

Using the HSIC measure defined, the objective function can be rewritten as

HSIC(XW,U)− λHSIC(XW,Y ) = Tr(HUUTHD
−1
2 KXWD

−1
2 )− λTr(HY Y THD

−1
2 KXWD

−1
2 )

= Tr(D
−1
2 H(UUT − λY Y T )HD

−1
2 KXW )

= Tr(γKXW )
=

∑
i,j γi,jKXi,j .

where γ is a symmetric matrix and γ = H(UUT −λY Y T )H. By substituting the Gaussian kernel for KXi,j , the
objective function becomes

min
W

−
∑
i,j

γi,je
−

Tr[WTAi,jW ]

2σ2 s.t WTW = I.

Appendix B Proof for Lemma 2

Proof. Algorithm 2 sets the smallest q eigenvectors of Φ(Wk) as Wk+1. Since a fixed point W ∗ is reached when
Wk = Wk+1, therefore W ∗ consists of the smallest eigenvectors of Φ(W ∗) and Λ∗ corresponds with a diagonal

matrix of eigenvavlues. Since the eigenvectors of Φ(W ∗) are orthonormal , W ∗
T

W ∗ = I is also satisfied.

Appendix C Proof for Lemma 3

Proof. Using Equation (4) as the objective function, the corresponding Lagrangian and its gradient is written as

L(W,Λ) = −
∑
i,j

γi,je
−

Tr(WTAi,jW )

2σ2 − 1

2
Tr(Λ(WTW − I)), (13)

and

∇WL(W,Λ) =
∑
i,j

γi,j
σ2

e−
Tr(WTAi,jW )

2σ2 Ai,jW −WΛ. (14)

By setting the gradient of the Lagrangian to zero, and using the definition of Φ(W ) from Equation (8), Equation
(14) can be written as

Φ(W )W = WΛ. (15)

The gradient with respect to Λ is

∇ΛL(W,Λ) = WTW − I. (16)

Setting this gradient of the Lagrangian also to zero, condition (9b) is equivalent to

WTW = I. (17)

By Lemma 2, a fixed point W ∗ and its corresponding Λ∗ satisfy (15) and (17), and the lemma follows.
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Appendix D Proof for Lemma 4

The proof for Lemma 4 relies on the following three sublemmas. The first two sublemmas demonstrate how the
2nd order conditions can be rewritten into a simpler form. With the simpler form, the third lemma demonstrates
how the 2nd order conditions of a local minimum are satisfied given a large enough σ.

Lemma 4.1. Let the directional derivative in the direction of Z be defined as

Df(W )[Z] :=
lim
t→ 0

f(W + tZ)− f(W )

t
. (18)

Then the 2nd order condition of Lemma 4 can be written as

Tr(ZTD∇L[Z]) =

∑
i,j

γi,j
σ2

e−
Tr((W∗T Ai,jW

∗)

2σ2

[
Tr(ZTAi,jZ)− 1

σ2
Tr(ZTAi,jW

∗)2

]− Tr(ZTZΛ∗), (19)

for all Z such that

ZTW ∗ +W ∗
T

Z = 0. (20)

Proof. Observe first that
∇2
W∗W∗L(W ∗,Λ∗)Z = D∇L[Z], (21)

where the directional derivative of the gradient D∇L[Z] is given by

D∇L[Z] =
lim
t→ 0

∂

∂t

∑
i,j

γi,j
σ2

e−
Tr((W∗+tZ)TAi,j(W∗+tZ))

2σ2 Ai,j(W
∗ + tZ)− (W ∗ + tZ)Λ.

This can be written as
D∇L[Z] = T1 + T2 − T3,

where

T1 =
lim
t→ 0

∂

∂t

∑
i,j

γi,j
σ2

e−
Tr((W∗+tZ)TAi,j(W∗+tZ))

2σ2 Ai,jW
∗ (22)

=
lim
t→ 0

∂

∂t

∑
i,j

γi,j
σ2

e−
Tr((W∗T Ai,jW

∗+tZTAi,jW
∗+tW∗T Ai,jZ+t2ZTAi,jZ)

2σ2 Ai,jW
∗ (23)

= −
∑
i,j

γi,j
2σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ZTAi,jW
∗ +W ∗

T

Ai,jZ)Ai,jW
∗ (24)

= −
∑
i,j

γi,j
σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ZTAi,jW
∗)Ai,jW

∗ as Ai,j = ATi,j , (25)

T2 =
lim
t→ 0

∂

∂t

∑
i,j

γi,j
σ2

te−
Tr((W∗+tZ)TAi,j(W∗+tZ))

2σ2 Ai,jZ (26)

=
∑
i,j

γi,j
σ2

e−
Tr(W∗T Ai,jW

∗)

2σ2 Ai,jZ, (27)

T3 =
lim
t→ 0

∂

∂t
(W ∗ + tZ)Λ (28)

= ZΛ. (29)

Hence, putting all three terms together yields
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D∇L[Z] =

∑
i,j

γi,j
σ2

e−
Tr((W∗T Ai,jW

∗)

2σ2

[
Ai,jZ −

1

σ2
Tr(ZTAi,jW

∗)Ai,jW
∗
]− ZΛ. (30)

Hence,

Tr(ZT∇2
W∗W∗L(W ∗,Λ∗)Z) = Tr(ZTD∇L[Z]), (31)

=

∑
i,j

γi,j
σ2

e−
Tr((W∗T Ai,jW

∗)

2σ2

[
Tr(ZTAi,jZ)− 1

σ2
Tr(ZTAi,jW

∗)2

]− Tr(ZTZΛW ). (32)

Next, let Z be such that Z 6= 0 and ∇h(W ∗)TZ = 0, where

h(W ∗) = W ∗
T

W ∗ − I. (33)

Therefore, the constraint condition can be written on Z in (9c) can be written as

∇h(W ∗)TZ =
lim
t→ 0

∂

∂t

(W ∗ + tZ)T (W ∗ + tZ)−W ∗TW ∗

t

= ZTW ∗ +W ∗
T

Z = 0.

(34)

Using Equations (32) and (34) lemma 4.1 follows.

Recall from Lemma 2 that W ∗ consists of the q eigenvectors of Φ(W ∗) with the smallest eigenvalues. We define
W̄ ∗ ∈ Rd×d−q as all other eigenvectors of Φ(W ∗). Because Z has the same dimension as W ∗, each column of
Z resides in the space of Rd. Since the eigenvectors of Φ(W ∗) span R

d, each column of Z can be represented as
a linear combination of the eigenvectors of Φ(W ∗). In other words, each column zi can therefore be written as

zi = W ∗P
(i)
W + W̄ ∗P

(i)

W̄∗ , where P
(i)
W∗ ∈ Rq×1 and P

(i)

W̄∗ ∈ Rd−q×1 represents the coordinates for the two sets of
eigenvectors. Using the same notation, we also define Λ∗ ∈ R

q×q as the eigenvalues corresponding to W ∗ and
Λ̄∗ ∈ Rd−q×d−q as the eigenvalues corresponding to W̄ ∗. The entire matrix Z can therefore be represented as

Z = W̄ ∗PW̄∗ +W ∗PW∗ . (35)

Furthermore, it can be easily shown that PW∗ is a skew symmetric matrix, or −PW∗ = PTW∗ . By setting Z from
Equation (20) into (35), the constraint can be rewritten as

[PTW̄∗W̄ ∗
T

+ P ∗
T

W W ∗
T

]W ∗ +W ∗
T

[W̄ ∗PW̄∗ +W ∗PW∗ ] = 0. (36)

Simplifying the equation yields the relationship

P ∗
T

W + PW∗ = 0. (37)

Using these definitions, we define the following sublemma.

Lemma 4.2. Given a fixed point W ∗ and a Z satisfying condition (20), the condition Tr(ZTD∇L[Z]) ≥ 0 is
equivalent to

Tr(PTW̄∗Λ̄∗PW̄∗)− Tr(PW̄∗Λ∗PTW̄∗) ≥ C2, (38)
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where

C2 =
∑
i,j

γi,j
σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ZTAi,jW
∗)2, (39)

PW∗ , PW̄∗ are given by Equation (35), and Λ∗, Λ̄∗ are the diagonal matrices containing the bottom and top
eigenvalues of Φ(W ∗) respectively.

Proof. By condition (19),

Tr(ZTD∇L[Z]) = C1 − C2 + C3, (40)

where

C1 = Tr

ZT∑
i,j

γi,j
σ2

e−
Tr((W∗T Ai,jW

∗)

2σ2 Ai,jZ

 ,

C2 =
∑
i,j

γi,j
σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ZTAi,jW
∗)2,

C3 = −Tr(ZTZΛ∗).

C1 can be written as

C1 = Tr

ZT∑
i,j

γi,j
σ2

e−
Tr((W∗T Ai,jW

∗)

2σ2 Ai,jZ


= Tr(ZTΦ(W ∗)[W̄ ∗PW̄∗ +W ∗PW∗ ])

= Tr(ZT [Φ(W ∗)W̄ ∗PW̄∗ + Φ(W ∗)W ∗PW∗ ])

= Tr(ZT [W̄ ∗Λ̄PW̄∗ +W ∗ΛPW∗ ]) By definition of eigenvalues.

= Tr([PTW̄∗W̄ ∗
T

+ P ∗
T

W W ∗
T

][W̄ ∗Λ̄PW̄∗ +W ∗ΛPW∗ ]) Substitute for Z

= Tr(PTW̄∗Λ̄PW̄∗) + Tr(PTW∗ΛPW ) Given W ∗
T

W ∗ = I, W̄ ∗
T
W ∗ = 0.

Similarly

C3 = −Tr(ZTZΛ)

= −Tr([PTW̄∗W̄ ∗
T

+ PTW∗W ∗
T

][W̄ ∗PW̄∗ +W ∗PW∗ ]Λ)

= −Tr([PTW̄∗PW̄∗ + PTW∗PW∗ ]Λ)

= −Tr(PTW̄∗PW̄∗Λ)− Tr(PTW∗PW∗Λ).

Because PW∗ is a square skew symmetric matrix, the diagonal elements of PW∗PTW∗ is the same as the diagonal
of PW∗PTW∗ . From this observation, we conclude that Tr(PW∗PTW∗Λ) = Tr(PTW∗PW∗Λ). Hence,

C3 = −Tr(PW̄∗ΛPTW̄∗)− Tr(PTW∗ΛPW∗).

Putting all 3 parts together yields

Tr(ZTD∇L[Z]) = Tr(PTW̄∗Λ̄PW̄∗) + Tr(PTW∗ΛPW∗)− C2 − Tr(PW̄∗ΛPTW̄∗)− Tr(PTW∗ΛPW∗)

= Tr(PTW̄∗Λ̄PW̄∗)− Tr(PW̄∗ΛPTW̄∗)− C2.
(41)
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The 2nd order condition (9c) is, therefore, satisfied, when

Tr(PTW̄∗Λ̄PW̄∗)− Tr(PW̄∗ΛPTW̄∗) ≥ C2. (42)

Lemma 4.3. Given W ∗,W̄ ∗,Λ̄∗, and Λ∗ as defined in Equation (35), if the corresponding smallest eigenvalue
of Λ̄∗ is larger than the largest eigenvalue of Λ∗, then given a large enough σ the condition (9c) of Lemma 1 is
satisfied.

Proof. To proof sublemma (4.3), we provide bounds on each of the terms in (42). Starting with C2 defined at
(39). It has a trace term, (Tr(ZTAijW

∗))2 that can be rewritten as

(Tr(AijW
∗ZT ))2 = (Tr(AijW

∗PTW∗W ∗
T

+AijW
∗PTW̄∗W̄ ∗

T
))2. (43)

Since Aij is symmetric and W ∗PTW∗W ∗
T

is skew-symmetric, then Tr(AijW
∗PTW∗W ∗

T

) = 0. Hence

(Tr(ZTAijW
∗))2 = (Tr(AijW

∗ZT ))2 = (Tr(AijW
∗PTW̄∗W̄ ∗

T
))2 (44)

≤ Tr(ATi,jAij) Tr(PTW̄∗PW̄∗) (45)

where the last inequality follows from Cauchy-Schwartz inequality and that fact that W ∗
T

W ∗ = I and W̄ ∗
T
W̄ ∗ =

I. Thus, C2 in (41) is bounded by

C2 ≤
∑
i,j

|γi,j |
σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ATi,jAij) Tr(PTW̄∗PW̄∗) (46)

Similarly, the remaining terms in (40) can be bounded by

C1 = Tr(PTW̄∗Λ̄∗PW̄∗) ≥ min
i

(Λ̄∗i) Tr(PW̄∗PTW̄∗) (47)

C3 = −Tr(PW̄∗Λ∗PTW̄∗) ≥ −max
i

(Λ∗i ) Tr(PTW̄∗PW̄∗). (48)

Using the bounds for each term, the Equation (42) can be rewritten as

[min
i

(Λ̄∗i)−max
j

(Λ∗j )] Tr(PTW̄∗PW̄∗) ≥
∑
i,j

|γi,j |
σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ATi,jAij) Tr(PTW̄∗PW̄∗) (49)

[min
i

(Λ̄∗i)−max
j

(Λ∗j )] ≥
∑
i,j

|γi,j |
σ4

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ATi,jAij) (50)

It should be noted that Λ∗ is a function of 1
σ2 . This relationship could be removed by multiplying both sides of

the inequality by σ∗ to yield

σ2[min
i

(Λ̄∗i)−max
j

(Λ∗j )] ≥
∑
i,j

|γi,j |
σ2

e−
Tr((W∗T Ai,jW

∗)

2σ2 Tr(ATi,jAij). (51)

Since σ2 is always a positive value, as long as all the eigenvalues from Λ̄∗ is larger than all the eigenvalues from
Λ∗, the left hand side of the equation will always be greater than 0. As σ →∞, the right hand side approaches
0, and the condition (9c) of Lemma 1 is satisfied.

As a side note, the eigen gap between min(Λ̄∗) and max(Λ∗) controls the range of potential σ values i.e. the
larger the eigen gap the easier for σ to satisfy (51). Therefore, the ideal cutoff point should have a large eigen
gap.
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Appendix E Convergence Plot from Experiments

Figure 4 summarizes the convergence activity of various experiments. For each experiment, the top figure
provides the magnitude of the objective function. It can be seen that the values converges towards a fixed point.
The middle plot provide updates of the gradient of the Lagrangian. It can be seen that the gradient converges
towards 0. The bottom plot shows the changes in W during each iteration. The change in W converge towards
0.

4 Small Gaussians 4 Large Gaussians with Noise

Moon with Noise Images of Faces

Flower Images WebKB University Pages

Figure 4: Convergence Results from the Experiments.
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Appendix F Proof of Convergence

The convergence property of ISM has been analyzed and yields the following theorem.

Theorem 2. A sequence {Wk}k∈N generated by Algorithm 2 contains a convergent subsequence.

Proof. According to Bolzano-Weierstrass theorem, if we can show that the sequences generated from the 1st
order relaxation is bounded, it has a convergent subsequence. If we study the Equation Φ(W ) more closely, the
key driver of the sequence of Wk is the matrix Φ, therefore, if we can show that if this matrix is bounded, the
sequence itself is also bounded. We look inside the construction of the matrix itself.

Φn+1 =

∑
i,j

γi,j
σ2

e−
Tr(WT

n Ai,jWn)

2σ2 Ai,j


From this equation, start with the matrix Ai,j = (xi − xj)(xi − xj)

T . Since xi, xj are data points that are
always centered and scaled to a variance of 1, the size of this matrix is always constrained. It also implies
that Ai,j is a PSD matrix. From this, the exponential term is always limited between the value of 0 and
1. The value of σ is a constant given from the initialization stage. Lastly, we have the γi,j term. Since
γ = D−1/2H(UUT − λY Y T )HD−1/2. The degree matrix came from the exponential kernel. Since the kernels
are bounded, D is also bounded. The centering matrix H and the previous clustering result Y can be considered
as bounded constants. Since the spectral embedding U is a orthonormal matrix, it is always bounded. From this,
given that the components of Φ is bounded, the infinity norm of the Φ is always bounded. The eigenvalue matrix
of Λ is therefore also bounded. Using the Bolzano-Weierstrass Theorem, the sequence contains a convergent sub-
sequence. Given that Φ is a continuous function of W , by continuity, W also has a convergent sub-sequence.

Appendix G Proof for the initialization

Although the proof was originally shown through the usage of the 2nd order Taylor Approximation. A simpler
approach was later discovered to arrive to the same formulation faster. We first note that Taylor’s Expansion
around 0 of an exponential is

ex = 1 + x+
x2

2!
+ ....

Given the objective Lagrangian in eq (6), we simplify the Lagrangian by using the Taylor approximation only
on the problematic exponential term. The approximation is expanded up to the 1st order centering around 0 to
yield

L ≈ −
∑
i,j

γi,j

(
1− Tr(WTAi,jW )

2σ2

)
+

1

2
Tr(Λ(I −WTW )).

By taking the derivative of the approximated Lagrangian and setting the derivative to zero, an eigen-
value/eigenvector relationship emerges as

ΦW =

∑
i,j

γi,j
σ2

Ai,j

W0 = W0Λ.

From this, we see that Φ0 is no longer a function of W . Using this Φ0 we can then calculate a closed form
solution for W0

Appendix H Proof for the computational complexity

For ISM, DG and SM, the bottleneck resides in the computation of the gradient.

f(W ) =
∑
i,j

γi,je
−

Tr(WTAi,jW )

2σ2
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∂f

∂W
=

∑
i,j

γi,j
σ2

e−
Tr(WTAi,jW )

2σ2 Ai,j

W
∂f

∂W
=

∑
i,j

γi,j
σ2

e−
Tr(WT∆xi,j∆xTi,jW )

2σ2 Ai,j

W
Where Ai,j = ∆xi,j∆x

T
i,j . The variables have the following dimensions.

xi,j ∈ Rd×1

W ∈ Rd×q

To compute a new W with DG, we first mulitply ∆xTi,jW , which is O(d). Note that W in DG is always 1 single

column. Next, it multiplies with its own transpose to yied O(d+q2). Then we compute Ai,j to get O(d+q2 +d2).
Since this operation needs to be added n2 times, we get, O(n2(d+ q2 + d2)). Since d� q, this notation reduces
down to O(n2d2). Let T1 be the number of iterations until convergence, then it becomes O(T1n

2d2). Lastly, in
DG, this operation needs to be repeated q times, hence, O(T1n

2d2q).

To compute a new W with SM, we first mulitply ∆xTi,jW , which is O(dq). Next, it multiplies with its own

transpose to yied O(dq + q2). Then we compute Ai,j to get O(dq + q2 + d2). Since this operation needs to be
added n2 times, we get, O(n2(dq + q2 + d2)). Since d � q, this notation reduces down to O(n2d2). The SM
method requires the computation of the inverse of d×d matrix. Since inverses is cubic, it becomes O(n2d2 +d3).
Lastly, let T2 be the number of iterations until convergence, then it becomes O(T2(n2d2 + d3)).

To compute a new W with ISM, we first mulitply ∆xTi,jW , which is O(dq). Next, it multiplies with its own

transpose to yied O(dq + q2). Then we compute Ai,j to get O(dq + q2 + d2). Since this operation needs to be
added n2 times, we get, O(n2(dq + q2 + d2)). Since d � q, this notation reduces down to O(n2d2). The ISM
method requires the computation of the eigen decomposition of d× d matrix. Since inverses is cubic, it becomes
O(n2d2 + d3). Lastly, let T3 be the number of iterations until convergence, then it becomes O(T3(n2d2 + d3)).

Appendix I Measure of Non-linear Relationship by HSIC Versus Correlation

The figure below demonstrates a visual comparison of HSIC and correlation. It can be seen that HSIC measures
non-linear relationships, while correlation does not.

Figure 5: Showing that HSIC captures non-linear information.

Appendix J Hyperparameters Used in Each Experiment
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σ λ q
Gauss A 1 0.04 1
Gauss B 200 5 2 3
Moon 400 0.1 1 3
Moon+N 200 0.2 0.1 6
Flower 2 10 2
Face 3.1 1 17
Web KB 18.7 0.057 4


