
A fully adaptive algorithm for pure exploration in linear bandits

A Detailed Procedure of Simulation

Based on Real-World Data

In this appendix we give the detailed procedure of the
experiment presented in Section 7.2. We use the Ya-
hoo! Webscope dataset R6A, which consists of more
than 45 million user visits to the Yahoo! Today module
collected over 10 days in May 2009. The log describes
the interaction (view/click) of each user with one ran-
domly chosen article out of 271 articles. It was orig-
inally used as an unbiased evaluation benchmark for
the LB in explore-exploration setting (Li et al., 2010).
The dataset is made of features describes each user u
and each article a, both are expressed in 6 dimension
feature vectors, accompanied with a binary outcome
(clicked/not clicked). We use article-user interaction
feature za,u 2 R36, which is expressed by a Kronecker
product of a feature vector of article a and that of u.
Chu et al. (2009) present a detailed description of the
dataset, features and the collection methodology.

In our setting, we use the subset of the dataset which
is collected on the one day (May 1st). We first conduct
the regularized linear regression on whether the target
is clicked (rt = 1) or not clicked (rt = �1). Here, the
regularize term is set as 0.01. Let ✓⇤ be the learned
parameter, which we regard as the “true” parameter
in the simulation. We consider the LB with K arms,
the features of which are sampled from the dataset.
We limit the the case of �i � 0.05 for all arms i in
order to make the problem not too hard. The reward
rt at the t-th round is given by

rt =

8
<

:
1

✓
w.p.

1+x>
at

✓⇤

2

◆

�1 (otherwise)
,

where xat is the feature of the arm selected at the tth
round. Although it does not always the case, x>✓⇤ is
happended to be bounded in [�1, 1] for all feature x
in the dataset, therefore (1 + x>

at
✓⇤)/2 is always valid

for probability. Furthermore, since x>
at
✓⇤ 2 [�1, 1],

the noise variable "t is bounded as "t 2 [�2, 2], which
is known as 2-sub-Gaussian. We run LinGapE on
this setting, where the parameter is fixed as " = 0,
� = 0.05, and � = 1, in comparison with XY-static
allocation, where the estimation is given by the regu-
larized least-squares estimator with � = 0.01.

B Algorithm with Problem

Complexity Independent of K

The problem complexity of Algorithm 1 is shown in
(13) and can be O(K) in the worst-case. This is prob-
lematic when K � d. In this section, we describe

the trick that makes problem complexity completely
independent of K.

The idea is to restrict the arms to be pulled. We
first choose K 0 = O(d) arms, denoted as B =
{b

1

, b
2

, . . . , bK0} ⇢ [K], and force the agent to select
arms from B. In other word, the arm selection strategy
in (12) would be

at+1

= arg min
a2B: p⇤

a(it,jt)>0

Ta(t)/p̃
⇤
a(it, jt), (19)

where p̃⇤a(it, jt) is defined as

p̃⇤k(it, jt) =

( |w̃⇤
k(it,jt)|PK

k=1 |w̃⇤
k(it,jt)|

(k 2 B)
0 (k /2 B)

w̃⇤(it, jt) = arg min
w2Rd

kwk
1

s.t. xit � xjt =
KX

k=1

wkxk

wk = 0 (8k /2 B). (20)

This modification does not a↵ect the proof given in
Appendix D, hence the bounds in Theorems 2 and 3
remain true with new problem complexity:

H̃" =
K0X

k=1

max
i,j2[K]

p̃⇤bk(i, j)⇢̃(i, j)

max
⇣
", "+�i

3

, "+�j

3

⌘
2

,

where ⇢̃ is

⇢̃(i, j) = kw̃⇤(i, j)k
1

.

As showed in the following lemma, this problem com-
plexity H̃" is independent of the number of arms K.

Lemma 1. Let X̃ be the matrix

X̃ =
⇥
xb1 , xb2 , . . . , xbK0

⇤> 2 RK0⇥d,

and � be the smallest eigenvalue of X̃>X̃. Then, prob-
lem complexity H̃" is bounded as follows.

H̃" 
K0X

k=1

max
i,j2[K]

2L
q

K0

�

max
⇣
", "+�i

3

, "+�j

3

⌘
2

= O(d
p
d).

This lemma states that minimizing
p
K 0/� is the key

to reduce the problem complexity H̃. Thus we can
improve the sample complexity by choosing a set of
arms B with small size K 0 = |B| and large eigenvalues
�.
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Proof of Lemma 1. Due to the constraint in (20), we
have

xi � xj = X̃w̃⇤(i, j).

Using this, we can derive the upper bound of ⇢̃(i, j) as
follows.

⇢̃(i, j) =
KX

k=1

|w̃⇤
k(i, j)|

=

vuut
 

KX

k=1

|w̃⇤
k(i, j)|

!
2


vuutK 0

 
KX

k=1

|w̃⇤
k(i, j)|2

!

=
q
K 0(w̃⇤(i, j))>w̃⇤(i, j)


q
K 0(w̃⇤(i, j))>X̃>X̃w̃⇤(i, j)

⇥ max
w2Rd

s
w>w

w>X̃>X̃w

=

r
K 0

�
(w̃⇤(i, j))>X̃>X̃w̃⇤(i, j)


r

K 0

�
kxi � xjk2

 2L

r
K 0

�
.

Considering that p̃⇤(i, j)  1 and K 0 = O(d), we have

H̃" 
K0X

k=1

max
i,j2[K]

2L
q

K0

�

max
⇣
", "+�i

3

, "+�j

3

⌘
2

= O(d
p
d),

which does not depend on K.

C Derivation of Ratio p⇤k(i, j)

In this appendix, we present the derivation of p⇤k(i, j)
defined in (10) and the proof of Lemma 2, which
bounds the matrix norm when the arm selection strat-
egy based on the ratio p⇤k(i, j).

The original problem of reducing the interval of confi-
dence bound for given y 2 Y = {x � x0|x, x0 2 X} is
to obtain

arg min
xn

kyk
(A�

xn
)

�1

in the limit of n ! 1. Since we choose features from
the finite set X in the LB, the problem becomes

min
Ci2N[{0}

y>
 
�

n
I +

KX

i=1

Ci

n
xix

>
i

!�1

y s.t.
KX

i=1

Ci = n.

(21)

where the Ci represents the number of times that the
arm i 2 [K] is pulled before the n-th round.

We first conduct the continuous relaxation, which
turns the optimization problem (21) into

min
pi�0

y>
 
�

n
I +

KX

i=1

pixix
>
i

!�1

y s.t.
KX

i=1

pi = 1,

where pi corresponds to the ratio Ci/n. Although this
relaxed problem can be solved by convex optimization,
it is not suited for the LB setting because the solution
depends on the sample size n. Therefore, we consider
the asymptotic case, where the sample size n goes to
infinity.

It is proved (Yu et al., 2006, Thm. 3.2) that the con-
tinuous relaxed problem is equivalent to

min
pi,wi

�����y �
KX

i=1

wixi

�����

2

+
�

n

KX

i=1

w2

i

pi

s.t.
KX

i=1

pi = 1, pi � 0, pi, wi 2 R. (22)

Since we consider y 2 Y, there always exists wi

such that y =
PK

i=1

wixi. Then, {wi} such that

ky �PK
i=1

wixik > 0 cannot be the optimal solution
for su�ciently small �/n and thus the optimal solu-

tion has to satisfy ky �PK
i=1

wixik = 0. Therefore,
the asymptotic case of (22) corresponds to the prob-
lem

min
pi,wi

X

i=1

w2

i

pi

s.t. y =
KX

i=1

wixi

KX

i=1

pi = 1, pi � 0, wi 2 R, (23)

the KKT condition of which yields the definition of p⇤

and w⇤ in (10) and (11), respectively. Hence, ⇢(i, j),
the optimal value of (11), is the optimal value of (23)
as well.

If we employ the arm selection strategy in (12) based
on p⇤ in (10), we can bound the matrix norm kxi �
xjkA�1

t
as described in the following lemma.

Lemma 2. Recall that ⇢(i, j) and p⇤k(i, j) are defined
in (15) and (10), respectively. Let Ti(t) be the number
of times that the arm i is pulled before the t-th round.
Then, the matrix norm kxi � xjkA�1

t
is bounded by

kxi � xjkA�1
t


s

⇢(i, j)

Ti,j(t)
,
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where
Ti,j(t) = min

k2[K]:

p⇤
k(i,j)>0

Tk(t)/p
⇤
k(i, j).

This lemma is proved by the following lemma.

Lemma 3. Let A be a positive definite matrix in Rd⇥d

and x, y be vectors in Rd. Then, for any constant ↵ >
0,

y>(A+ ↵xx>)�1y  y>A�1y

holds.

Proof. By Sherman-Morrison formula (Sherman and
Morrison, 1950) we have,

y>(A+ ↵xx>)�1y = y>
✓
A�1 � ↵A�1xx>A�1

1 + ↵xTA�1x

◆
y

= y>A�1y � y>
↵A�1xx>A�1

1 + ↵xTA�1x
y

 y>A�1y.

The last inequality follows from the fact that A�1 is
positive definite.

Using Lemma 3, we can prove Lemma 2 as follows.

Proof of Lemma 2. By the definition of At, we have

At = �I +
KX

k=1

Tk(t)xkx
>
k .

Then, for

Ãt = �I +
KX

k=1

p⇤k(i, j)Ti,j(t)xkx
>
k ,

we have

kxi � xjkA�1
t

 kxi � xjk ˜A�1
t

from Lemma 3 and the fact

Tk(t)  p⇤k(i, j)Ti,j(t),

which can be inferred from the definition of Tt(i, j).
Therefore, proving

kxi � xjk2
˜A�1
t

 ⇢(i, j)

Ti,j(t)

completes the proof of the lemma.

For convenience, we write xi�xj as y. The KKT con-
dition of (23) implies that w⇤

k(i, j) and p⇤k(i, j) satisfy

w⇤
k(i, j) =

1

2
p⇤k(i, j)x

>
k �

y =
1

2

KX

k=1

p⇤k(i, j)xkx
>
k �,

where � 2 Rd corresponds to the Lagrange multiplier.
Therefore, the optimal value ⇢(i, j) can be written as

⇢(i, j) =
KX

i=1

w⇤2
k(i, j)

p⇤k(i, j)
=

1

4
�>

 
KX

k=1

p⇤k(i, j)xkx
>
k

!
�.

Now, let B be denoted as

B =

 
KX

k=1

p⇤k(i, j)xkx
>
k

!
.

Then, since y = 1

2

B�, we have

y>Ã�1

t y � ⇢(y)

Ti,j(t)
=

1

4
�>B>Ã�1

t B� � 1

4Ti,j(t)
�>B�

=
1

4
�>

 
B> � Ãt

Ti,j(t)

!
Ã�1

t B�

= �1

4
�> �

Ti,j(t)
Ã�1

t B�

 0.

The inequality follows from the fact that both of Ã�1

t

and B are positive semi-definite matrices.

D Proofs of Theorems

In this appendix, we give the proofs of Theorems 1, 2,
and 3, which are the main theoretical contribution of
this paper. In the proof, we assume that the event E
defined as

E = {8t > 0, 8i, j 2 [K], |�(i, j)� �̂t(i, j)|  �t(i, j)}

occurs, where �(i, j) = (xi � xj)>✓ is the gap of ex-
pected rewards between arms i and j. The follow-
ing lemma states that this assumption holds with high
probability.

Lemma 4. Event E holds w.p. at least 1� �.

Combining Prop. 2 and union bounds proves this
lemma.

D.1 Proof of Theorem 1

Let ⌧ be the stopping round of LinGapE. If
�(a⇤, â⇤) > " holds, that is the returned arm â⇤ is
worse than the best arm a⇤ by ", then we have

�(a⇤, â⇤) > " � B(⌧) � �̂⌧ (a
⇤, â⇤) + �⌧ (a

⇤, â⇤).

The second inequality holds for stopping condition
B(⌧)  " and the last follows from the definition of
B(⌧) (Line 5 in Algorithm 2). From this inequality,
we can see that �(a⇤, â⇤) > " means that event E
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does not occur. Thus, the probability that LinGapE
returns such arms is

P[�(a⇤, â⌧ ) > "]  P[Ē ] = 1� P[E ]  �,

where Ē represents the complement of the event E .
The last inequality follows from Lemma 4. Therefore,
we can conclude that the returned arm satisfies the
condition (1).

D.2 Proofs of Theorems 2 and 3

We prove Theorems 2 and 3 by combining Lemma 2
with following lemmas.

Lemma 5. Under event E, B(t) is bounded as follows.
If it or jt is the best arm, then

B(t)  min(0,�(�it _�jt) + �t(it, jt)) + �t(it, jt).

Otherwise, we have

B(t)  min(0,�(�it _�jt) + 2�t(it, jt)) + �t(it, jt),

where a _ b = max(a, b).

Proof. First, we consider the case where either arm it
or jt is the best arm a⇤. Since arm it is the estimated
best arm (Line 3 in Algorithm 2), we have

�̂t(jt, it) = (xjt � xit)
>✓�t  0. (24)

Thus, B(t) is bounded by

B(t) = �̂(jt, it) + �t(it, jt)  �t(it, jt). (25)

Therefore, it is su�cient to show

B(t)  �(�it _�jt) + 2�t(it, jt). (26)

If it = a⇤, then

(�it _�jt) = �jt (27)

follows from the definition of �a in (14). In this case,
B(t) is bounded as

B(t)
(a)

= �̂t(jt, it) + �t(it, jt)

(b)

 �(jt, it) + 2�t(it, jt)

(c)

= ��jt + 2�t(it, jt)

(d)

= �(�it _�jt) + 2�t(it, jt),

where (a), (b), (c) and (d) follow from the definition of
B(t), event E , definition of �a and (14), respectively.

On the other hand, in the case where jt = a⇤, we have

(�it _�jt) = �it . (28)

In this case, the upper bound of B(t) is derived as

B(t)
(a)

 �t(it, jt)

(b)

 ��̂t(jt, it) + �t(it, jt)

(c)

 ��(jt, it) + 2�t(it, jt)

(d)

= �(�it _�jt) + 2�t(it, jt),

where (a), (b), (c) and (d) follow from (25), (24), event
E , and (28), respectively.

Therefore, in both cases, (26) holds, which completes
the proof of the first inequality in Lemma 5.

Next, we prove the second inequality, which holds
when neither it 6= a⇤ nor jt 6= a⇤. Again, with (25), it
is su�cient to prove

B(t)  �(�it _�jt) + 3�t(it, jt). (29)

Since jt 6= a⇤,

�̂t(a
⇤, it) + �t(a

⇤, it)  �̂t(jt, it) + �t(jt, it). (30)

follows from the definition of jt (Line 4 in Algo-
rithm 2). Thus, we have

�t(it, jt)
(a)

� �̂t(jt, it) + �t(jt, it)

(b)

� �̂t(a
⇤, it) + �t(a

⇤, it)

(c)

� �(a⇤, it), (31)

where (a), (b) and (c) follow from (24), (30), event E ,
respectively. By using (31) and event E , we have

B(t) = �̂t(jt, it) + �t(it, jt)

 �(jt, it) + 2�t(it, jt)

= �(jt, a
⇤) +�(a⇤, it) + 2�t(it, jt)

 ��jt + 3�t(it, jt). (32)

Moreover, from (25) and (31), we obtain

B(t)  2�t(it, jt)  ��it + 3�t(it, jt). (33)

Combining (32) and (33) yields (29), which was what
we wanted.

Based on Lemmas 2 and 5, we can derive the follow-
ing lemma, which is the essential part of the proofs of
Theorems 2 and 3.

Lemma 6. Let ⌧ be the stopping time of LinGapE
when at is determined by (12). Then, statement

⌧  H"C
2

⌧ +K (34)

holds with probability at least 1��, where Cn is defined
as (3).



A fully adaptive algorithm for pure exploration in linear bandits

Proof. From Lemma 4, it su�ces to show the (34)
holds in the case where event E occurs. First we derive
the upper bound of Tk(⌧). Let t̃  ⌧ be the last round
that arm k is pulled. Then,

min(0,��k + 2�
˜t�1

(i
˜t�1

, j
˜t�1

)) + �
˜t�1

(i
˜t�1

, j
˜t�1

))

� B(t̃� 1) � "

follows from Lemma 5 and the fact that stopping con-
dition is not satisfied at the t̃-th round. Applying
Lemma 2 yields

Tit̃�1,jt̃�1
(t̃� 1)  ⇢(i

˜t�1

, j
˜t�1

)

max
⇣
",

"+�it̃�1

3

,
"+�jt̃�1

3

⌘
2

C2

˜t�1

,

where Ct is defined in (3). Now, since arm k is pulled
at t̃-th round,

Tk(t̃� 1) = p⇤k(i˜t�1

, j
˜t�1

)Tit̃�1,jt̃�1
(t̃� 1)

holds by definition. Therefore, Tk(⌧) can be bounded
as

Tk(⌧) = Tk(t̃� 1) + 1

= p⇤k(i˜t�1

, j
˜t�1

)Tit̃�1,jt̃�1
(t̃� 1) + 1

 max
i,j2[K]

p⇤k(i, j)Ti,j(t̃� 1) + 1

 p⇤k(i˜t�1

, j
˜t�1

)⇢(i
˜t�1

, j
˜t�1

)

max
⇣
",

"+�it̃�1

3

,
"+�jt̃�1

3

⌘
2

C2

˜t�1

+ 1

 max
i,j2[K]

p⇤k(i, j)⇢(i, j)

max
⇣
", "+�i

3

, "+�j

3

⌘
2

C2

⌧ + 1.

Since
PK

k=1

Tk(⌧) = ⌧ , summing up the upper bound
of Tk(t) above yields

⌧  H"C
2

⌧ +K.

Now, we can complete the proofs by bounding C⌧ in
(34) by the following proposition.

Proposition 3. (Abbasi-Yadkori et al., 2011, Lemma
10) Let the maximum l

2

norm of features be denoted
as L. Then, det(A�

n) is bounded as

det(A�
n)  (�+ nL2/d)d.

Proof of Theorem 2. From Proposition 3, we have

C⌧ = R

s

2 log
K2 det(At)

1
2 det(�I)�

1
2

�
+ �

1
2S

 R

s

2 log
K2

�
+ d log

✓
1 +

⌧L2

�d

◆
+ �

1
2S

 2R

s

2 log
K2

�
+ d log

✓
1 +

⌧L2

�d

◆
.

The second inequality follows from condition � 
2R2

S2 log K2

� . Therefore, using Lemma 6, we have

⌧  H"C
2

⌧ +K

 4H"R
2

✓
2 log

K2

�
+ d log

✓
1 +

⌧L2

�d

◆◆
+K.

Let ⌧ 0 a parameter satisfying

⌧ = 4H"R
2

✓
2 log

K2

�
+ d log

✓
1 +

⌧ 0L2

�d

◆◆
+K.

(35)

Then, ⌧ 0  ⌧ holds.

For N defined as

N = 8H"R
2 log

K2

�
+K,

we have

⌧ 0  ⌧

= 4H"R
2d log

✓
1 +

⌧ 0L2

�d

◆
+N

 4H"R
2

p
dL2⌧ 0/�+N.

By solving this inequality, we obtain

p
⌧ 0  4H"R

2

p
dL2/�+

p
16H2

"R
4dL2⌧ 0/�+N2

 2
p
16H2

"R
4dL2/�+N2.

Let M be the right hand side of the inequality:

M = 2
p

16H2

"R
4dL2/�+N2.

Then, using this upper bound of ⌧ 0 in (35) yields

⌧  K + 8H"R
2 log

K2

�
+ C(H", �),

where C(H", �) is denoted as

C(H", �) = 4H"R
2d log

✓
1 +

M2L2

�d

◆
(36)

= O
✓
H" log

✓
H" log

1

�

◆◆

Proof of Theorem 3. By Prop. 3, we have

C⌧  R

s

2 log
K2

�
+ d log

✓
1 +

⌧L2

�d

◆
+ �

1
2S.
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Using the fact (a+ b)2  2(a2 + b2) and (1 + 1

x )
x  e,

we have

⌧  H"C
2

⌧ +K

 2H"

✓
2R2 log

K2

�
+

⌧R2L2

�
+ �S2

◆
+K,

from Lemma 6. Therefore, we can conclude that if
� > 4H"R2L2, then

⌧ 
✓
1� 2H"R2L2

�

◆�1

✓
4H"R

2 log
K2

�
+ C 0

◆

 2

✓
4H"R

2 log
K2

�
+ C 0

◆
,

where C 0 = 2H"�S2 +K.

D.3 Proof of Theorem 4

In this appendix we give the proof of Theorem 4. This
follows straightforwardly from the definition of prob-
lem complexity H" in (13) and the ratio p⇤k(i, j) in
(10).

Proof of Theorem 4. First, we bound the ⇢(i, j),
which is the optimal value of

min
pk,wk

X

k=1

w2

k

pk

s.t. xi � xj =
KX

k=1

wkxk

KX

i=1

pk = 1, pk � 0, pk, wk 2 R. (37)

Now, since xi � xj = (xi � xa⇤) + (xa⇤ � xj), p0k and
w0

k defined as

p0k =
p⇤k(i, a

⇤) + p⇤k(a
⇤, j)

2
,

w0
k = w⇤

k(i, a
⇤) + w⇤

k(a
⇤, j)

satisfy the condition of (37). Therefore, we have

⇢(y(i, j)) 
X

k=1

(w0
k)

2

p0k

= 2
X

k=1

(w⇤
k(i, a

⇤) + w⇤
k(a

⇤, j))2

p⇤k(i, a
⇤) + p⇤k(a

⇤, j)

 4
X

k=1

(w⇤
k(i, a

⇤))2 + (w⇤
k(a

⇤, j))2

p⇤k(i, a
⇤) + p⇤k(a

⇤, j)

 4
X

k=1

(w⇤
k(i, a

⇤))2

p⇤k(i, a
⇤)

+
(w⇤

k(a
⇤, j))2

p⇤k(a
⇤, j)

= 4⇢(i, a⇤) + 4⇢(a⇤, j).

Using this upper bound, we can bound the problem
complexity H

0

as follows. Let i⇤k and j⇤k be defined as

(i⇤k, j
⇤
k) = arg max

i,j2[K]

p⇤k(i, j)⇢(i, j)

max
�
�2

i ,�
2

j

� .

and we have

H
0

= 9
KX

k=1

max
i,j2[K]

p⇤k(i, j)⇢(i, j)

max
�
�2

i ,�
2

j

�

= 9
KX

k=1

p⇤k(i
⇤
k, j

⇤
k)⇢(i

⇤
k, j

⇤
k)

max
⇣
�2

i⇤k
,�2

j⇤k

⌘

 36
KX

k=1

p⇤k(i
⇤
k, j

⇤
k)

⇢(i⇤k, a
⇤) + ⇢(a⇤, j⇤k))

max
⇣
�2

i⇤k
,�2

j⇤k

⌘

 36
KX

k=1

p⇤k(i
⇤
k, j

⇤
k)

 
⇢(i⇤k, a

⇤)

�2

i⇤k

+
⇢(a⇤, j⇤k))

�2

j⇤k

!
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The last inequality holds from
PK

k=1

p⇤k(i, j) = 1 for
all i, j 2 [K]. Now, it is su�cient to prove

KH
oracle

� H 0
oracle

.

This can be derived as follows. By definition, we have

H
oracle

= lim
n!1

min
xn

max
i2[K]\{a⇤}

nkxa⇤ � xik2A�1
xn

�2

i

� max
i2[K]\{a⇤}

lim
n!1

min
xn

nkxa⇤ � xik2A�1
xn

�2

i

.

As discussed in Appendix C, ⇢(a⇤, i) is the optimal
value of (23) and is also equal to the limit of the op-
timal value of (21) as n ! 1 for y = xa⇤ � xi, that
is,

lim
n!1

min
xn

nkxa⇤ � xik2A�1
xn

= lim
n!1

min
Ck2N[{0}:PK

k=1 Ck=n

y>
 
�

n
I +

KX

k=1

Ck

n
x>
k xk

!
y

= ⇢(a⇤, i).

Therefore, we have

H
oracle

� max
i2[K]\{a⇤}

⇢(a⇤, i)

�2

i

� 1

K
H 0

oracle

.


