Supplementary Material: Optimal Cooperative Inference

This supplementary material presents the additional details and proofs associated with the main paper.

1 Details of Remark 2.6

Suppose that $|\mathcal{H}|$ is countably infinite. Let $A = (L_{i,j}T_{i,j})_{|D| \times |H|}$ be the matrix obtained from L and T by element-wise multiplication. Denote the sum of elements in the j-th column of A by C_j. Then $S_n = \sum_{j=1}^{n} C_j$ is the sum of elements in the first n columns of A. Note that $0 \leq C_j = |D| \sum_{i=1}^{L_{i,j}} T_{i,j} \leq 1$ and so $0 \leq S_n \leq n$. Therefore, for any j, n, both C_j and S_n exist, and $\{\frac{S_n}{n}\}_{n=1}^{\infty}$ is a well-defined sequence whose limit is then called TI.

Regrading the existence of TI, there are two cases.

Case 1: The growth rate of S_n is strictly slower than any linear function. Thus, for any $k > 0$, there exists an integer $N(k)$ such that $S_n < k \cdot n$ for any $n > N(k)$. Then for any $k > 0$, the following holds:

$$0 \leq TI = \lim_{n \to \infty} \frac{S_n}{n} \leq \lim_{n \to \infty} \frac{k \cdot n}{n} = k.$$

Thus, $TI = 0$.

Case 2: If the growth rate of S_n is not strictly slower than linear functions, then TI exists if and only if the sequence $\{C_j\}$ converges as $j \to \infty$. Suppose that $\{C_j\}$ converges to k. Then for any $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that $|C_m - k| < \epsilon$ for any $m > N(\epsilon)$. Therefore, for n sufficiently large,

$$\left| \frac{S_n}{n} - k \right| = \left| \frac{S_n - n \cdot k}{n} \right| = \left| \frac{S_n - N \cdot k}{n} + \sum_{j=N}^{n} C_j - k \cdot N \right| \leq \left| \frac{S_n - N \cdot k}{n} \right| + \epsilon \leq \epsilon'.$$

Thus, TI exists. Similarly the other direction also holds.

Moreover, when TI exists, Proposition 2.4 can also be generalized. $0 \leq S_n \leq n$ implies that the range of TI is $[0, 1]$, and $TI = 1$ if and only if C_j converges to 1.

2 Proof of Theorem 4.6

For convenience, we first write the fixed-point iteration of (2) explicitly in vector form. We denote the matrix with elements $P_L(h|D)$ by $L \in [0, 1]^{|D| \times |H|}$, the matrix with elements $P_T(D|h)$ by $T \in [0, 1]^{|D| \times |H|}$, and the matrix with elements $P_D(D|h)$ by $M \in [0, 1]^{|D| \times |H|}$. Further, denote the vectors consisting of $P_L(h)$ and $P_T(h)$ by $a, d \in [0, 1]^{|H| \times 1}$, vectors consisting of $P_L(D)$ and $P_D(D)$ by $b, c \in [0, 1]^{|D| \times 1}$, respectively. Given
a, b, and M, the fixed-point iteration of the cooperative inference equations can be expressed as:

\[
P_{L_1}(h|D) = \frac{P(h|D) P_{L_0}(h)}{P(L_1(D))} \iff L^{(1)} = \text{Diag} \left(\frac{1}{M a} \right) \text{Diag}(a)
\]
\[
P_{T_{k+1}}(D|h) = \frac{P(k+1,h|D) P_{T_k}(D)}{P_{T_{k+1}}(h)} \iff T^{(k+1)} = \text{Diag}(b) L^{(k+1)} \text{Diag} \left(\frac{1}{d^{(k+1)}} \right)
\]
\[
P_{T_{k+1}}(h) = \sum_{D \in D} P_{L_k}(h|D) P_{T_k}(D) \iff d^{(k+1)} = \left(L^{(k+1)} \right)^T b
\]
\[
P_{L_{k+1}}(h) = \frac{P_{T_k}(D|h) P_{L_k}(h)}{P_{L_{k+1}}(D)} \iff L^{(k+1)} = \text{Diag} \left(\frac{1}{c^{(k+1)}} \right) T^{(k)} \text{Diag}(a)
\]
\[
P_{L_{k+1}}(D) = \sum_{h \in H} P_{T_k}(D|h) P_{L_0}(h) \iff c^{(k+1)} = T^{(k)} a,
\]

where \(k \) denotes the iteration step; Diag \((z) \) denotes the diagonal matrix with elements of the vector \(z \) on its diagonal; and \(\frac{1}{z} \) denotes element-wise inverse of vector \(z \).

Note that (1b) and (1c) are the operations to column normalize Diag \((b) L^{(k)} \), and (1d) and (1e) are the operations to row normalize \(T^{(k)} \) Diag \((a) \). Zero rows in \(L^{(k)} \) and zero columns in \(T^{(k)} \) are fixed throughout the iteration of (1) if they exist. This is equivalent to removing the zero rows and zero columns of \(M \) for (1) and inserting them back at convergence or when the iteration is stopped.

Now we provide a version of the proof using the notations introduced in the paper. The original proof can be found in [2]. Remember that \(a \) and \(b \) are assumed to be uniform.

Proof. Let \(\sigma \) be a permutation of \(\{1, \cdots, n\} \) that makes \(\{ M_{i, \sigma(i)} \}_{i=1}^n \) a positive diagonal. Define

\[
e^{(k)} := \prod_{i=1}^n L^{(k)}_{i, \sigma(i)}; \quad f^{(k)} := \prod_{i=1}^n T^{(k)}_{i, \sigma(i)}.
\]

Applying (1a), \(L^{(1)} \) is a row-stochastic matrix, and \(\{ L^{(1)}_{i, \sigma(i)} \}_{i=1}^n \) is a positive diagonal, hence \(e^{(1)} \) is positive. Also, by applying (1b),

\[
f^{(1)} = \prod_{i=1}^n T^{(1)}_{i, \sigma(i)} = \prod_{i=1}^n \left(b_i L^{(1)}_{i, \sigma(i)} \right) = \frac{e^{(1)}}{n \prod_{i=1}^n d^{(1)}_{\sigma(i)}} = \frac{e^{(1)}}{n \prod_{i=1}^n d^{(1)}_{\sigma(i)}}.
\]

By the inequality of arithmetic and geometric means, \(\left(\prod_{i=1}^n d^{(1)}_{i} \right)^\frac{1}{n} \leq \frac{1}{n} \sum_{i=1}^n d^{(1)}_{i} \). Also, \(L^{(1)} \) is a row-stochastic matrix and we assumed uniform prior on data set space, and hence, by (1c)

\[
n^n \prod_{j=1}^n d^{(1)}_{j} \leq \left(\sum_{j=1}^n d^{(1)}_{j} \right)^n = \left(\sum_{i=1}^n \sum_{j=1}^n b_i L^{(1)}_{i,j} \right)^n = \left(\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n L^{(1)}_{i,j} \right)^n = 1.
\]

The equality in (3) is achieved if and only if \(d = \left(\frac{1}{n}, \cdots, \frac{1}{n} \right) \), or equivalently, \(L^{(1)} \) being a doubly stochastic matrix. Because \(f^{(1)} \) is the product of \(n \) values between 0 and 1,

\[
0 < e^{(1)} \leq \frac{f^{(1)}}{n} \leq 1,
\]

with equality in (a) if and only if \(L^{(1)} \) is a doubly stochastic matrix, and equality in (b) if and only if \(L^{(1)} \) is a permutation matrix. Applying the same logic to equations (1d) and (1e), we have

\[
0 < f^{(1)} \leq e^{(2)} \leq 1,
\]

with equality in (c) if and only if \(T^{(1)} \) is a doubly stochastic matrix, and equality in (d) if and only if \(T^{(1)} \) is a permutation matrix. Repeating this argument, we get the increasing sequence

\[
0 < e^{(1)} \leq f^{(1)} \leq e^{(2)} \leq f^{(2)} \leq \cdots \leq 1.
\]
Monotone convergence theorem of real numbers guarantees that this sequence converges to its supremum
\[\lim_{k \to \infty} e^{(k)} = \lim_{k \to \infty} f^{(k)} = \sup\{e, f\}. \]
Asymptotically, \(e^{(k)} = f^{(k)} = e^{(k+1)} \); therefore, \(L^{(k)} \) and \(T^{(k)} \) are both doubly stochastic matrices. Because doubly stochastic matrices are stable under row and column normalization, \(L \) and \(T \) converge to the same doubly stochastic matrix,
\[M^{(\infty)} := \lim_{k \to \infty} L^{(k)} = \lim_{k \to \infty} T^{(k)}. \]

3 Proof of Theorem 4.10

Proof. (1) \((a) \Leftrightarrow (b) \): We first prove that (a) \(\text{CI}(M) = 1 \), and (b) \(M \) has exactly one positive diagonal, are equivalent. Since \(M \) is an \(n \times n \) nonnegative matrix with at least one positive diagonal, Theorem 4.6 guarantees that the iteration of equation set \(\{1\} \) converges to a doubly stochastic matrix, \(M^{(\infty)} \). According to Birkhoff–von Neumann theorem [1, 3], there exist \(\theta_1, \ldots, \theta_k \in (0, 1] \) with \(\sum_i \theta_i = 1 \) and distinct permutation matrices \(P_1, \ldots, P_k \) such that \(M^{(\infty)} = \theta_1 P_1 + \cdots + \theta_k P_k \). To simplify, we adopt the inner product notation between matrices: \(A \cdot B = \sum_{i,j} A_{i,j} B_{i,j} \), for any two \(n \times n \) square matrices \(A \) and \(B \). Then the following holds:

\[
\text{CI} = \text{TI}(M^{(\infty)}, M^{(\infty)}) = \frac{1}{n} M^{(\infty)} \cdot M^{(\infty)} = \frac{1}{n} (\sum_i \theta_i P_i) \cdot (\sum_j \theta_j P_j) = \frac{1}{n} \sum_{i,j} \theta_i \theta_j P_i \cdot P_j.
\]

Equality (I) comes from rewriting TI in the inner product notation. Equality (II) comes from substituting \(M^{(\infty)} \) by its Birkhoff–von Neumann decomposition. Equality (III) comes from distribution.

Further, as permutation matrices, \(P_i \cdot P_j \leq n \), and the equality holds if and only if \(P_i = P_j \). So we have

\[
\text{CI}(M) = \frac{1}{n} \sum_{i,j} \theta_i \theta_j P_i \cdot P_j \leq \frac{1}{n} \sum_{i,j} \theta_i \theta_j n = \frac{1}{n} \sum_{i,j} \theta_i \theta_j n = (\sum_i \theta_i) \times (\sum_j \theta_j) = 1.
\]

The equality in (IV) holds if and only if \(P_i = P_j \) for any \(i, j \). Note that \(P_1, \ldots, P_k \) are distinct, i.e., \(P_i \neq P_j \) when \(i \neq j \). So the equality in (IV) is achieved precisely when \(k = 1 \) and \(M^{(\infty)} = P_1 \). Hence, \(\text{CI}(M) \) is maximized if and only if \(M^{(\infty)} \) is a permutation matrix.

We then prove that \(M^{(\infty)} \) is a permutation matrix if and only if \(M \) has exactly one positive diagonal. This follows from this claim, Claim (1): elements of \(M \) that lie in a positive diagonal do not tend to zero during the cooperative inference iteration [2] (i.e., if \(M_{i,j} \neq 0 \) lies in a positive diagonal, then \(M^{(\infty)}_{i,j} \neq 0 \)). Claim (1) implies that \(M^{(\infty)} \) and \(M \) have the same number of positive diagonals. Further, note that a doubly stochastic matrix has exactly one diagonal if and only it is a permutation matrix. So as a doubly stochastic matrix, \(M^{(\infty)} \) is a permutation matrix if and only if \(M \) has exactly one positive diagonal. Thus, \(\text{CI} \) is maximized if and only if \(M^{(\infty)} \) is a permutation matrix.

To complete the proof for (a) \(\Leftrightarrow \) (b), we only need to justify Claim (1). Note that the product of any positive diagonal converges to a positive number \(\sup\{e, f\} \) (shown in the proof for Theorem 4.6) and all elements on the positive diagonal are upper-bounded by 1 and lower-bounded by \(\sup\{e, f\} \). , elements on a diagonal of \(M \) cannot converge to 0.

(2) \((b) \Leftrightarrow (c) \): This follows immediately from a slightly more general claim below, where positive diagonals are generalized to non-zero diagonals (can have negative values).

Claim (2): Let \(A \) be an \(n \times n \)-square matrix (elements can be any real number). Then \(A \) has exactly one non-zero diagonal (i.e., a diagonal with no zero element) if and only if \(A \) is a permutation of an upper-triangular matrix.

We now prove Claim (2). The if direction is clear since an upper-triangular matrix always has exactly one non-zero diagonal, which is its main diagonal. The only if direction is proved by induction on the dimension \(n \) of \(A \).
Step 1—Induction basis: When \(n = 2 \), it is easy to check that any \(2 \times 2 \) matrix with exactly one diagonal is either of the form \(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \) or \(\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \), where \(a, c \neq 0 \). So it is a permutation of an upper-triangular matrix.

Step 2—Inductive step: Suppose that the claim—an \(n \times n \)-square matrix \(A \) has exactly one non-zero diagonal if and only if it is a permutation of an upper-triangular matrix—holds for any \(n < N \). We need to show that the claim also holds when \(n = N \).

The following notation will be used. Let \(A \) be an \(n \times n \)-square matrix. \(A_{i,j} \) denotes the element of \(A \) at row \(i \) and column \(j \). \(\tilde{A}_{i,j} \) denotes the \((n-1) \times (n-1)\) sub-matrix obtained from \(A \) by crossing out row \(i \) and column \(j \).

First, we will prove three handy observations.

Observation 1: If \(A \) has exactly one non-zero diagonal and \(A_{i,j} \neq 0 \), then \(\tilde{A}_{i,j} \) has at most one non-zero diagonal. In particular, if \(A_{i,j} \) is on that non-zero diagonal, then \(\tilde{A}_{i,j} \) has exactly one non-zero diagonal.

Proof of Observation 1: Suppose that \(\tilde{A}_{i,j} \) has more than one diagonal. Then these diagonals for \(\tilde{A}_{i,j} \) along with \(A_{i,j} \) form different diagonals for \(A \), which is a contradiction.

Observation 2: If \(A \) has exactly one non-zero diagonal and \(A \) has a row or a column with exactly one non-zero element, then \(A \) is a permutation of an upper-triangular matrix.

Proof of Observation 2: Suppose that \(A \) has a column with exactly one non-zero element. Then by permutation, we may assume that it is the first column of \(A \) and the only non-zero element in column 1 is \(A_{1,1} \). \(A_{1,1} \) must be on the non-zero diagonal of \(A \). Hence, according to observation 1, \(A_{1,1} \) is a \((N-1) \times (N-1)\)-square matrix with exactly one non-zero diagonal. Then by the inductive assumption, we may permute \(A_{1,1} \) into an upper-triangular matrix. Note that each permutation of \(A_{1,1} \) induces a permutation of \(A \). So there exist permutations that convert \(A \) into \(A' \) such that \(A'_{i,j} = 0 \) when \(j > 1 \) and \(i > j \). Moreover, permutations that convert \(A \) to \(A' \) never switch column 1 (row 1) of \(A \) with any other columns (rows). So \(A'_{1,1} = 0 \) for \(i \neq 1 \), as \(A_{1,1} \) is the only non-zero element in the first column of \(A \). Thus, we have \(A'_{i,j} = 0 \) when \(i > j \), which implies that \(A' \) is an upper-triangular matrix.

If \(A \) has a row with exactly one non-zero element, then up to permutation, we may assume it is the last row of \(A \) and the only non-zero element is \(A_{N,N} \). Following similar argument as above, we may show that \(\tilde{A}_{N,N} \) can be arranged into an upper-triangular matrix by permutations. The corresponding permutations of \(A \) will also convert \(A \) into an upper triangular matrix. So observation 2 holds.

Observation 3: If the main diagonal of \(A \) is the only non-zero diagonal of \(A \), then \(A_{t_1,t_2}A_{t_2,t_3} \cdots A_{t_{k-1},t_k}A_{t_k,t_1} = 0 \) for any distinct \(t_1, t_2, \ldots, t_k \).

Proof of Observation 3: Suppose that \(A_{t_1,t_2}A_{t_2,t_3} \cdots A_{t_{k-1},t_k}A_{t_k,t_1} \neq 0 \). Then a different non-zero diagonal for \(A \) other than the main diagonal is form by \(\{A_{i,i} | i \neq t_1, \ldots, t_k\} \) and \(A_{t_1,t_2}, A_{t_2,t_3}, \ldots, A_{t_{k-1},t_k}, A_{t_k,t_1} \).

Now back to the inductive step. Suppose that \(A \) is an \(N \times N \)-square matrix with exactly one non-zero diagonal. By permutation, we may assume that the main diagonal of \(A \) is the only non-zero diagonal. In particular, \(A_{1,1} \neq 0 \). According to Observation 1, \(A_{1,1} \) has exactly one non-zero diagonal and so can be arranged into an upper-triangular matrix by permutations. The corresponding permutations convert \(A \) into a new form, denoted by \(A^1 \), with the property that \(A^1_{i,j} = 0 \) when \(j > 1 \) and \(i > j \). In particular, \(A^1_{N,j} = 0 \) when \(j \neq 1 \) and \(j \neq N \). \(A^1_{N,1} \) is an upper-triangular matrix implies that \(A^1_{N,N} \neq 0 \). If \(A^1_{N,1} = 0 \), then the last row of \(A^1 \) contains only one non-zero element \(A^1_{1,N} \). So by Observation 2, we are done.

Otherwise, according to Observation 1, \(A^1_{N,N} \) can be arranged into an upper-triangular matrix by permutation. Hence, after the corresponding permutations, we may convert \(A^1 \) into a new form, denoted by \(A^2 \) with the property that \(A^2_{i,j} = 0 \) when \(i > j \) and \(i \neq N \). Moreover, permutations that convert \(A^1 \) to \(A^2 \) never switch row \(N \) (column \(N \)) of \(A^1 \) with any other rows (columns). So only one of \(\{A^2_{N,j} | j \neq N\} \) is not zero. If \(A^2_{N,1} = 0 \), along with \(A^2_{1,N} = 0 \) for \(N > i > 1 \), we have that the first column of \(A^2 \) contains exactly one non-zero element, \(A^2_{1,1} \). So by Observation 2, we are done.

Otherwise, \(A^2_{N,1} \neq 0 \). According to Observation 3, \(A^2_{N,1}A^2_{1,k}A^2_{k,N} = 0 \) for \(k = 2, \ldots, N - 1 \). So we have that \(A^2_{i,k}A^2_{k,N} = 0 \), for \(k = 2, \ldots, N - 1 \). We will proceed by analyzing cases from \(k = 2 \) to \(k = N - 1 \).
When $k = 2$, if $A^2_{1,2} = 0$, then column 2 of A^2 contains only one non-zero element $A^2_{2,2}$, and we are done by Observation 2. Otherwise, we may assume that $A^2_{1,2} \neq 0$ and $A^2_{2,3} = 0$.

When $k = 3$, if $A^2_{2,N} \neq 0$, then $A^2_{1,2} = 0$. According to Observation 3, $A^2_{N,1} A^2_{1,2} A^2_{2,3} A^2_{3,N} = 0$, and this implies that $A^2_{2,3} = 0$. Hence, column 3 of A^2 contains only one non-zero element, $A^2_{3,3}$, and again we are done by Observation 2. Otherwise, we may assume that $A^2_{3,N} = 0$, and one of $\{A^2_{2,3}, A^2_{3,3}\}$ is not zero.

When $k = k$, if $A^2_{k,N} \neq 0$, then $A^2_{1,4} = 0$. Similarly, as in the case where $k = 3$ (by Observation 3), $A^2_{N,1} A^2_{1,2} A^2_{2,4} A^2_{3,N} = 0$, and this implies that $A^2_{2,4} = 0$. One of $\{A^2_{2,3}, A^2_{3,3}\}$ is not zero \implies either $A^2_{N,1} A^2_{1,3} A^2_{2,4} A^2_{3,N} = 0$ or $A^2_{N,1} A^2_{1,2} A^2_{2,3} A^2_{3,4} A^2_{3,N} = 0 \implies A^2_{3,4} = 0$. Hence, column 4 of A^2 contains only one non-zero element, $A^2_{4,4}$, and again we are done by Observation 2. Otherwise, we may assume that $A^2_{4,N} = 0$, and at least one of $\{A^2_{2,4}, A^2_{3,4}\}$ is not zero.

Inductively, either one of column k's of A^2 contains only one non-zero element, or $A^2_{k,N} = 0$ for all $k = 2, \ldots, N - 1$. Note that the latter case implies that column N of A^2 contains only one non-zero element, $A^2_{N,1}$, as $A^2_{N,1} \neq 0 \implies A^2_{1,N} = 0$. Either way, the proof is then completed by Observation 2.

\[\square \]

4 Details to Example 4.11

To construct \mathbf{M}_1, first notice that if maximum likelihood is achieved, $\mathbf{M}_{1,1} = \mathbf{M}_{1,2}$ under all settings of Δ, a, and q. This is because a first- and second-order polynomial give the same fit to D_1.

For $\mathbf{M}_{2,1}$, by symmetry arguments we know that the maximum-likelihood fit of a first-order polynomial to D_2 is a horizontal line $(f(x) = b)$. We can find this value of b through a grid search. Given this b,

$$
\mathbf{M}_{2,1} = N_q(a; b)^2 N_q(-a; b)^2 N_q(\Delta + a; b) N_q(\Delta - a; b),
$$

where

$$
N_q(z; b) = \frac{\sqrt{\pi}}{C_q} e_q(-\beta(x_i - \mu)^2).
$$

Here, $\beta = \frac{1}{\sqrt{\pi} - \delta}$ so that the variance is 1; $e_q(x)$ is the q-exponential function defined by $[1 + (1 - q)x]^{1/\pi} - 1$ when $q \neq 1$, and $\exp(x)$ when $q = 1$. The normalizing constant C_q is given by:

$$
C_q = \begin{cases}
\frac{2\sqrt{\pi}((1-q)\pi)}{(3-q)\sqrt{\pi} - 6q(\pi-1)} & \text{for } -\infty < q < 1 \\
\sqrt{\pi} & \text{for } q = 1 \\
\sqrt{\pi} \frac{3-q}{\sqrt{\pi} - q} & \text{for } 1 < q < 3.
\end{cases}
$$

For $\mathbf{M}_{2,2}$, again by symmetry arguments we know that the maximum-likelihood fit of a second order polynomial to D_2 is a parabola that passes through the middle of each of the three pairs of data points. Thus, $\mathbf{M}_{2,2} = N_q(a; 0)^6$.

References

