Supplementary Material: Optimal Cooperative Inference

This supplementary material presents the additional details and proofs associated with the main paper.

1 Details of Remark 2.6

Suppose that $|\mathcal{H}|$ is countably infinite. Let $\mathbf{A}=\left(\mathbf{L}_{i, j} \mathbf{T}_{i, j}\right)_{|\mathcal{D}| \times|\mathcal{H}|}$ be the matrix obtained from \mathbf{L} and \mathbf{T} by element-wise multiplication. Denote the sum of elements in the j-th column of \mathbf{A} by C_{j}. Then $S_{n}=\sum_{j=1}^{n} C_{j}$ is the sum of elements in the first n columns of \mathbf{A}. Note that $0 \leq C_{j}=\sum_{i=1}^{|\mathcal{D}|} \mathbf{L}_{i, j} \mathbf{T}_{i, j} \leq \sum_{i=1}^{|\mathcal{D}|} \mathbf{T}_{i, j}=1$ and so $0 \leq S_{n} \leq n$. Therefore, for any j, n, both C_{j} and S_{n} exist, and $\left\{\frac{S_{n}}{n}\right\}_{n=1}^{\infty}$ is a well-defined sequence whose limit is then called TI.

Regrading the existence of TI, there are two cases.
Case 1: The growth rate of S_{n} is strictly slower than any linear function. Thus, for any $k>0$, there exists an integer $N(k)>0$ (depends on k) such that $S_{n}<k \cdot n$ for any $n>N(k)$. Then for any $k>0$, the following holds:

$$
0 \leq \mathrm{TI}=\lim _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \lim _{n \rightarrow \infty} \frac{k \cdot n}{n}=k
$$

Thus, $\mathrm{TI}=0$.
Case 2: If the growth rate of S_{n} is not strictly slower than linear functions, then TI exists if and only if the sequence $\left\{C_{j}\right\}$ converges as $j \rightarrow \infty$. Suppose that $\left\{C_{j}\right\}$ converges to k. Then for any $\epsilon>0$, there exists an integer $N(\epsilon)$ such that $\left|C_{m}-k\right|<\epsilon$ for any $m>N(\epsilon)$. Therefore, for n sufficiently large,

$$
\left|\frac{S_{n}}{n}-k\right|=\left|\frac{S_{n}-n \cdot k}{n}\right|=\left|\frac{S_{N}-N \cdot k}{n}+\frac{\sum_{j=N}^{n} C_{j}-k}{n-N}\right| \leq\left|\frac{S_{N}-N \cdot k}{n}\right|+\epsilon \leq \epsilon^{\prime}
$$

Thus, TI exists. Similarly the other direction also holds.
Moreover, when TI exists, Proposition 2.4 can also be generalized. $0 \leq S_{n} \leq n$ implies that the range of TI is $[0,1]$, and $\mathrm{TI}=1$ if and only if C_{j} converges to 1 .

2 Proof of Theorem 4.6

For convenience, we first write the fixed-point iteration of $\sqrt{2}$ explicitly in vector form. We denote the matrix with elements $P_{L}(h \mid D)$ by $\mathbf{L} \in[0,1]^{|\mathcal{D}| \times|\mathcal{H}|}$, the matrix with elements $P_{T}(D \mid h)$ by $\mathbf{T} \in[0,1]^{|\mathcal{D}| \times|\mathcal{H}|}$, and the matrix with elements $P_{0}(D \mid h)$ by $\mathbf{M} \in[0,1]^{|\mathcal{D}| \times|\mathcal{H}|}$. Further, denote the vectors consisting of $P_{L_{0}}(h)$ and $P_{T}(h)$ by $\mathbf{a}, \mathbf{d} \in[0,1]^{|\mathcal{H}| \times 1}$, vectors consisting of $P_{T_{0}}(D)$ and $P_{L}(D)$ by $\mathbf{b}, \mathbf{c} \in[0,1]^{|\mathcal{D}| \times 1}$, respectively. Given
\mathbf{a}, \mathbf{b}, and \mathbf{M}, the fixed-point iteration of the cooperative inference equations can be expressed as:

$$
\begin{align*}
P_{L_{1}}(h \mid D) & =\frac{P_{0}(D \mid h) P_{L_{0}}(h)}{P_{L_{1}}(D)} \tag{1a}
\end{align*} \Longleftrightarrow \mathbf{L}^{(1)}=\operatorname{Diag}\left(\frac{1}{\mathbf{M a}}\right) \mathbf{M} \operatorname{Diag}(\mathbf{a}) ~=\mathbf{T}^{(k+1)}=\operatorname{Diag}(\mathbf{b}) \mathbf{L}^{(k+1)} \operatorname{Diag}\left(\frac{1}{\mathbf{d}^{(k+1)}}\right)
$$

where k denotes the iteration step; $\operatorname{Diag}(\mathbf{z})$ denotes the diagonal matrix with elements of the vector \mathbf{z} on its diagonal; and $\frac{1}{\mathbf{z}}$ denotes element-wise inverse of vector \mathbf{z}.

Note that 1 b and 1 c are the operations to column normalize $\operatorname{Diag}(\mathbf{b}) \mathbf{L}^{(k)}$, and 1 d$)$ and 1 e are the operations to row normalize $\mathbf{T}^{(k)} \operatorname{Diag}(\mathbf{a})$. Zero rows in $\mathbf{L}^{(k)}$ and zero columns in $\mathbf{T}^{(k)}$ are fixed throughout the iteration of (1) if they exist. This is equivalent to removing the zero rows and zero columns of \mathbf{M} for (1) and inserting them back at convergence or when the iteration is stopped.

Now we provide a version of the proof using the notations introduced in the paper. The original proof can be found in [2]. Remember that \mathbf{a} and \mathbf{b} are assumed to be uniform.

Proof. Let σ be a permutation of $\{1, \cdots, n\}$ that makes $\left\{\mathbf{M}_{i, \sigma(i)}\right\}_{i=1}^{n}$ a positive diagonal. Define

$$
e^{(k)}:=\prod_{i=1}^{n} \mathbf{L}_{i, \sigma(i)}^{(k)} ; \quad f^{(k)}:=\prod_{i=1}^{n} \mathbf{T}_{i, \sigma(i)}^{(k)}
$$

Applying 1a, $\mathbf{L}^{(1)}$ is a row-stochastic matrix, and $\left\{\mathbf{L}_{i, \sigma(i)}^{(1)}\right\}_{i=1}^{n}$ is a positive diagonal, hence $e^{(1)}$ is positive. Also, by applying 1b,

$$
\begin{equation*}
f^{(1)}=\prod_{i=1}^{n} \mathbf{T}_{i, \sigma(i)}^{(1)}=\prod_{i=1}^{n}\left(\mathbf{b}_{i} \frac{\mathbf{L}_{i, \sigma(i)}^{(1)}}{\mathbf{d}_{\sigma(i)}^{(1)}}\right)=\frac{e^{(1)}}{n^{n} \prod_{i=1}^{n} \mathbf{d}_{\sigma(i)}^{(1)}}=\frac{e^{(1)}}{n^{n} \prod_{i=1}^{n} \mathbf{d}_{i}^{(1)}} \tag{2}
\end{equation*}
$$

By the inequality of arithmetic and geometric means, $\left(\prod_{i=1}^{n} \mathbf{d}_{i}^{(1)}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} \mathbf{d}_{i}^{(1)}$. Also, $\mathbf{L}^{(1)}$ is a rowstochastic matrix and we assumed uniform prior on data set space, and hence, by 1c

$$
\begin{equation*}
n^{n} \prod_{j=1}^{n} \mathbf{d}_{j}^{(1)} \leq\left(\sum_{j=1}^{n} \mathbf{d}_{j}^{(1)}\right)^{n}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{b}_{j} \mathbf{L}_{i, j}^{(1)}\right)^{n}=\left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{L}_{i, j}^{(1)}\right)^{n}=1 \tag{3}
\end{equation*}
$$

The equality in (3) is achieved if and only if $\mathbf{d}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$, or equivalently, $\mathbf{L}^{(1)}$ being a doubly stochastic matrix. Because $f^{(1)}$ is the product of n values between 0 and 1 ,

$$
\begin{equation*}
0<e^{(1)} \underset{(a)}{\leq} f^{(1)} \underset{(b)}{\leq} 1 \tag{4}
\end{equation*}
$$

with equality in (a) if and only if $\mathbf{L}^{(1)}$ is a doubly stochastic matrix, and equality in (b) if and only if $\mathbf{L}^{(1)}$ is a permutation matrix. Applying the same logic to equations 1 d and 1 e , we have

$$
0<f^{(1)} \underset{(c)}{\leq} e^{(2)} \underset{(d)}{\leq} 1
$$

with equality in (c) if and only if $\mathbf{T}^{(1)}$ is a doubly stochastic matrix, and equality in (d) if and only if $\mathbf{T}^{(1)}$ is a permutation matrix. Repeating this argument, we get the increasing sequence

$$
0<e^{(1)} \leq f^{(1)} \leq e^{(2)} \leq f^{(2)} \leq \cdots \leq 1
$$

Monotone convergence theorem of real numbers guarantees that this sequence converges to its supremum

$$
\lim _{k \rightarrow \infty} e^{(k)}=\lim _{k \rightarrow \infty} f^{(k)}=\sup \{\mathbf{e}, \mathbf{f}\}
$$

Asymptotically, $e^{(k)}=f^{(k)}=e^{(k+1)}$; therefore, $\mathbf{L}^{(k)}$ and $\mathbf{T}^{(k)}$ are both doubly stochastic matrices. Because doubly stochastic matrices are stable under row and column normalization, \mathbf{L} and \mathbf{T} converge to the same doubly stochastic matrix,

$$
\mathbf{M}^{(\infty)}:=\lim _{k \rightarrow \infty} \mathbf{L}^{(k)}=\lim _{k \rightarrow \infty} \mathbf{T}^{(k)}
$$

3 Proof of Theorem 4.10

Proof. (1) $(a) \Longleftrightarrow(b)$: We first prove that (a) $\mathrm{CI}(\mathbf{M})=1$, and (b) \mathbf{M} has exactly one positive diagonal, are equivalent. Since \mathbf{M} is an $n \times n$ nonnegative matrix with at least one positive diagonal, Theorem 4.6 guarantees that the iteration of equation set (1) converges to a doubly stochastic matrix, $\mathbf{M}^{(\infty)}$. According to Birkhoff-von Neumann theorem [1, 3], there exist $\theta_{1}, \ldots, \theta_{k} \in(0,1]$ with $\sum_{i} \theta_{i}=1$ and distinct permutation matrices P_{1}, \ldots, P_{k} such that $\mathbf{M}^{(\infty)}=\theta_{1} P_{1}+\cdots+\theta_{k} P_{k}$. To simplify, we adopt the inner product notation between matrices: $A \cdot B=\sum_{i, j} A_{i, j} B_{i, j}$, for any two $n \times n$ square matrices A and B. Then the following holds:

$$
\mathrm{CI}=\mathrm{TI}\left(\mathbf{M}^{(\infty)}, \mathbf{M}^{(\infty)}\right) \underset{(I)}{=} \frac{1}{n} \mathbf{M}^{(\infty)} \cdot \mathbf{M}^{(\infty)} \underset{(I I)}{\overline{=}} \frac{1}{n}\left(\sum_{i} \theta_{i} P_{i}\right) \cdot\left(\sum_{j} \theta_{j} P_{j}\right)_{(I I I)}^{\bar{n}} \frac{1}{\sum_{i, j}} \theta_{i} \theta_{j} P_{i} \cdot P_{j} .
$$

Equality (I) comes from rewriting TI in the inner product notation. Equality (II) comes from substituting $\mathbf{M}^{(\infty)}$ by its Birkhoff-von Neumann decomposition. Equality (III) comes from distribution.

Further, as permutation matrices, $P_{i} \cdot P_{j} \leq n$, and the equality holds if and only if $P_{i}=P_{j}$. So we have

$$
\mathrm{CI}(\mathbf{M})=\frac{1}{n} \sum_{i, j} \theta_{i} \theta_{j} P_{i} \cdot P_{j} \underset{(\overline{I V})}{\leq} \frac{1}{n} \sum_{i, j} \theta_{i} \theta_{j} n=\sum_{i, j} \theta_{i} \theta_{j}=\left(\sum_{i} \theta_{i}\right) \times\left(\sum_{j} \theta_{j}\right)=1
$$

The equality in (IV) holds if and only if $P_{i}=P_{j}$ for any i, j. Note that P_{1}, \ldots, P_{k} are distinct, i.e., $P_{i} \neq P_{j}$ when $i \neq j$. So the equality in (IV) is achieved precisely when $k=1$ and $\mathbf{M}^{(\infty)}=P_{1}$. Hence, $\mathrm{CI}(\mathbf{M})$ is maximized if and only if $\mathbf{M}^{(\infty)}$ is a permutation matrix.

We then prove that $\mathbf{M}^{(\infty)}$ is a permutation matrix if and only if \mathbf{M} has exactly one positive diagonal. This follows from this claim, Claim (1): elements of \mathbf{M} that lie in a positive diagonal do not tend to zero during the cooperative inference iteration [2] (i.e., if $\mathbf{M}_{i, j} \neq 0$ lies in a positive diagonal, then $\mathbf{M}_{i, j}^{(\infty)} \neq 0$). Claim (1) implies that $\mathbf{M}^{(\infty)}$ and \mathbf{M} have the same number of positive diagonals. Further, note that a doubly stochastic matrix has exactly one diagonal if and only it is a permutation matrix. So as a doubly stochastic matrix, $\mathbf{M}^{(\infty)}$ is a permutation matrix if and only if \mathbf{M} has exactly one positive diagonal. Thus, CI is maximized if and only if \mathbf{M} has exactly one positive diagonal.

To complete the proof for $(a) \Longleftrightarrow(b)$, we only need to justify Claim (1). Note that the product of any positive diagonal converges to a positive number $\sup \{\mathbf{e}, \mathbf{f}\}$ (shown in the proof for Theorem 4.6) and all elements on the positive diagonal is upper-bounded by 1 and lower-bounded by $\sup \{\mathbf{e}, \mathbf{f}\}$., elements on a diagonal of \mathbf{M} cannot converge to 0 .
$(2)(b) \Longleftrightarrow(c)$: This follows immediately from a slightly more general claim below, where positive diagonals are generalized to non-zero diagonals (can have negative values).

Claim (2): Let A be an $n \times n$-square matrix (elements can be any real number). Then A has exactly one non-zero diagonal (i.e., a diagonal with no zero element) if and only if A is a permutation of an upper-triangular matrix.

We now prove Claim (2). The if direction is clear since an upper-triangular matrix always has exactly one non-zero diagonal, which is its main diagonal. The only if direction is proved by induction on the dimension n of A.

Step 1-Induction basis: When $n=2$, it is easy to check that any 2×2 matrix with exactly one diagonal is either of the form $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ or $\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$, where $a, c \neq 0$. So it is a permutation of an upper-triangular matrix.

Step 2-Inductive step: Suppose that the claim-an $n \times n$-square matrix A has exactly one non-zero diagonal if and only if it is a permutation of an upper-triangular matrix-holds for any $n<N$. We need to show that the claim also holds when $n=N$.

The following notation will be used. Let A be an $n \times n$-square matrix. $A_{i, j}$ denotes the element of A at row i and column j. $\widetilde{A}_{i, j}$ denotes the $(n-1) \times(n-1)$ sub-matrix obtained from A by crossing out row i and column j.

First, we will prove three handy observations.
Observation 1: If A has exactly one non-zero diagonal and $A_{i, j} \neq 0$, then $\widetilde{A}_{i, j}$ has at most one non-zero diagonal. In particular, if $A_{i, j}$ is on that non-zero diagonal, then $\widetilde{A}_{i, j}$ has exactly one non-zero diagonal.

Proof of Observation 1: Suppose that $\widetilde{A}_{i, j}$ has more than one diagonal. Then these diagonals for $\widetilde{A}_{i, j}$ along with $A_{i, j}$ form different diagonals for A, which is a contradiction.

Observation 2: If A has exactly one non-zero diagonal and A has a row or a column with exactly one non-zero element, then A is a permutation of an upper-triangular matrix.

Proof of Observation 2: Suppose that A has a column with exactly one non-zero element. Then by permutation, we may assume that it is the first column of A and the only non-zero element in column 1 is $A_{1,1}$. $A_{1,1}$ must be on the non-zero diagonal of A. Hence, according to observation $1, \widetilde{A}_{1,1}$ is a $(N-1 \times N-1)$-square matrix with exactly one non-zero diagonal. Then by the inductive assumption, we may permute $\widetilde{A}_{1,1}$ into an upper-triangular matrix. Note that each permutation of $\widetilde{A}_{1,1}$ induces a permutation of A. So there exist permutations that convert A into A^{\prime} such that $A_{i, j}^{\prime}=0$ when $j>1$ and $i>j$. Moreover, permutations that convert A to A^{\prime} never switch column 1 (row 1) of A with any other columns (rows). So $A_{i, 1}^{\prime}=0$ for $i \neq 1$, as $A_{1,1}$ is the only non-zero element in the first column of A. Thus, we have $A_{i, j}^{\prime}=0$ when $i>j$, which implies that A^{\prime} is an upper-triangular matrix.

If A has a row with exactly one non-zero element, then up to permutation, we may assume it is the last row of A and the only non-zero element is $A_{N, N}$. Following similar argument as above, we may show that $\widetilde{A}_{N, N}$ can be arranged into an upper-triangular matrix by permutations. The corresponding permutations of A will also convert A into an upper triangular matrix. So observation 2 holds.

Observation 3: If the main diagonal of A is the only non-zero diagonal of A, then $A_{t_{1}, t_{2}} A_{t_{2}, t_{3}} \cdots A_{t_{k-1}, t_{k}} A_{t_{k}, t_{1}}=$ 0 for any distinct $t_{1}, t_{2}, \ldots, t_{k}$.

Proof of Observation 3: Suppose that $A_{t_{1}, t_{2}} A_{t_{2}, t_{3}} \cdots A_{t_{k-1}, t_{k}} A_{t_{k}, t_{1}} \neq 0$. Then a different non-zero diagonal for A other than the main diagonal is form by $\left\{A_{i, i} \mid i \neq t_{1}, \ldots, t_{k}\right\}$ and $A_{t_{1}, t_{2}}, A_{t_{2}, t_{3}}, \cdots, A_{t_{k-1}, t_{k}}, A_{t_{k}, t_{1}}$.

Now back to the inductive step. Suppose that A is an $N \times N$-square matrix with exactly one non-zero diagonal. By permutation, we may assume that the main diagonal of A is the only non-zero diagonal. In particular, $A_{1,1} \neq 0$. According to Observation $1, \widetilde{A}_{1,1}$ has exactly one non-zero diagonal and so can be arranged into an upper-triangular matrix by permutations. The corresponding permutations convert A into a new form, denoted by A^{1}, with the property that $A_{i, j}^{1}=0$ when $j>1$ and $i>j$. In particular, $A_{N j}^{1}=0$ when $j \neq 1$ and $j \neq N . \widetilde{A}_{1,1}^{1}$ is an upper-triangular matrix implies that $A_{N, N}^{1} \neq 0$. If $A_{N, 1}^{1}=0$, then the last row of A^{1} contains only one non-zero element $A_{N, N}^{1}$. So by Observation 2, we are done.

Otherwise, according to Observation $1, \widetilde{A}_{N, N}^{1}$ can be arranged into an upper-triangular matrix by permutation. Hence, after the corresponding permutations, we may convert A^{1} into a new form, denoted by A^{2} with the property that $A_{i, j}^{2}=0$ when $i>j$ and $i \neq N$. Moreover, permutations that convert A^{1} to A^{2} never switch row N (column N) of A^{1} with any other rows (columns). So only one of $\left\{A_{N, j}^{2} \mid j \neq N\right\}$ is not zero. If $A_{N, 1}^{2}=0$, along with $A_{i, 1}^{2}=0$ for $N>i>1$, we have that the first column of A^{2} contains exactly one non-zero element, $A_{1,1}^{2}$. So by Observation 2, we are done.

Otherwise, $A_{N, 1}^{2} \neq 0$. According to Observation $3, A_{N, 1}^{2} A_{1, k}^{2} A_{k, N}^{2}=0$, for $k=2, \ldots, N-1$. So we have that $A_{1, k}^{2} A_{k, N}^{2}=0$, for $k=2, \ldots, N-1$. We will proceed by analyzing cases from $k=2$ to $k=N-1$.

When $k=2$, if $A_{1,2}^{2}=0$, then column 2 of A^{2} contains only one non-zero element $A_{2,2}^{2}$, and we are done by Observation 2. Otherwise, we may assume that $A_{1,2}^{2} \neq 0$ and $A_{2, N}^{2}=0$.

When $k=3$, if $A_{3, N}^{2} \neq 0$, then $A_{1,3}^{2}=0$. According to Observation $3, A_{N, 1}^{2} A_{1,2}^{2} A_{2,3}^{2} A_{3, N}^{2}=0$, and this implies that $A_{2,3}^{2}=0$. Hence, column 3 of A^{2} contains only one non-zero element, $A_{3,3}^{2}$, and again we are done by Observation 2. Otherwise, we may assume that $A_{3, N}^{2}=0$, and one of $\left\{A_{1,3}^{2}, A_{2,3}^{2}\right\}$ is not zero.

When $k=k$, if $A_{4, N}^{2} \neq 0$, then $A_{1,4}^{2}=0$. Similarly, as in the case where $k=3$ (by Observation 3), $A_{N, 1}^{2} A_{1,2}^{2} A_{2,4}^{2} A_{3, N}^{2}=0$, and this implies that $A_{2,4}^{2}=0$. One of $\left\{A_{1,3}^{2}, A_{2,3}^{2}\right\}$ is not zero \Longrightarrow either $A_{N, 1}^{2} A_{1,3}^{2} A_{3,4}^{2} A_{3, N}^{2}=0$ or $A_{N, 1}^{2} A_{1,2}^{2} A_{2,3}^{2} A_{3,4}^{2} A_{3, N}^{2}=0 \Longrightarrow A_{3,4}^{2}=0$. Hence, column 4 of A^{2} contains only one non-zero element, $A_{4.4}^{2}$, and again we are done by Observation 2. Otherwise, we may assume that $A_{4, N}^{2}=0$, and at least one of $\left\{A_{1,4}^{2}, A_{2,4}^{2}, A_{3,4}^{2}\right\}$ is not zero.

Inductively, either one of column k 's of A^{2} contains only one non-zero element, or $A_{k, N}^{2}=0$ for all $k=2, \ldots, N-1$. Note that the latter case implies that column N of A^{2} contains only one non-zero element, $A_{N, N}^{2}$, as $A_{N, 1}^{2} \neq 0 \Longrightarrow A_{1, N}^{2}=0$. Either way, the proof is then completed by Observation 2.

4 Details to Example 4.11

To construct \mathbf{M}, first notice that if maximum likelihood is achieved, $\mathbf{M}_{1,1}=\mathbf{M}_{1,2}$ under all settings of Δ, a, and q. This is because a first- and second-order polynomial give the same fit to D_{1}.

For $\mathbf{M}_{2,1}$, by symmetry arguments we know that the maximum-likelihood fit of a first-order polynomial to D_{2} is a horizontal line $(f(x)=b)$. We can find this value of b through a grid search. Given this b,

$$
\mathbf{M}_{2,1}=N_{q}(a ; b)^{2} N_{q}(-a ; b)^{2} N_{q}(\Delta+a ; b) N_{q}(\Delta-a ; b)
$$

where

$$
N_{q}(z ; b)=\frac{\sqrt{\beta}}{C_{q}} e_{q}\left(-\beta\left(x_{i}-\mu\right)^{2}\right)
$$

Here, $\beta=\frac{1}{5-3 q}$ so that the variance is $1 ; e_{q}(x)$ is the q-exponential function defined by $[1+(1-q) x]^{\frac{1}{1-q}}$ when $q \neq 1$, and $\exp (x)$ when $q=1$. The normalizing constant C_{q} is given by:

$$
C_{q}= \begin{cases}\frac{2 \sqrt{\pi} \Gamma\left(\frac{1}{1-q}\right)}{(3-q) \sqrt{1-q} \Gamma\left(\frac{3-q}{2(1-q)}\right)} & \text { for }-\infty<q<1 \\ \sqrt{\pi} & \text { for } q=1 \\ \frac{\sqrt{\pi} \Gamma\left(\frac{3-q}{2(q-1)}\right.}{\sqrt{q-1 \Gamma \frac{1}{q-1}}} & \text { for } 1<q<3 .\end{cases}
$$

For $\mathbf{M}_{2,2}$, again by symmetry arguments we know that the maximum-likelihood fit of a second order polynomial to D_{2} is a parabola that passes through the middle of each of the three pairs of data points. Thus, $\mathbf{M}_{2,2}=N_{q}(a ; 0)^{6}$.

References

[1] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista A, 5:147-151, 1946.
[2] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 21(2):343-348, 1967.
[3] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games, 2:5-12, 1953.

