Supplementary Material: Optimal Cooperative Inference

This supplementary material presents the additional details and proofs associated with the main paper.

1 Details of Remark 2.6

Suppose that $|\mathcal{H}|$ is countably infinite. Let $\mathbf{A} = (\mathbf{L}_{i,j}\mathbf{T}_{i,j})_{|\mathcal{D}|\times|\mathcal{H}|}$ be the matrix obtained from \mathbf{L} and \mathbf{T} by element-wise multiplication. Denote the sum of elements in the *j*-th column of \mathbf{A} by C_j . Then $S_n = \sum_{j=1}^n C_j$

is the sum of elements in the first *n* columns of **A**. Note that $0 \le C_j = \sum_{i=1}^{|\mathcal{D}|} \mathbf{L}_{i,j} \mathbf{T}_{i,j} \le \sum_{i=1}^{|\mathcal{D}|} \mathbf{T}_{i,j} = 1$ and so

 $0 \leq S_n \leq n$. Therefore, for any j, n, both C_j and S_n exist, and $\{\frac{S_n}{n}\}_{n=1}^{\infty}$ is a well-defined sequence whose limit is then called TI.

Regrading the existence of TI, there are two cases.

Case 1: The growth rate of S_n is strictly slower than any linear function. Thus, for any k > 0, there exists an integer N(k) > 0 (depends on k) such that $S_n < k \cdot n$ for any n > N(k). Then for any k > 0, the following holds:

$$0 \le \mathrm{TI} = \lim_{n \to \infty} \frac{S_n}{n} \le \lim_{n \to \infty} \frac{k \cdot n}{n} = k.$$

Thus, TI = 0.

Case 2: If the growth rate of S_n is not strictly slower than linear functions, then TI exists if and only if the sequence $\{C_j\}$ converges as $j \to \infty$. Suppose that $\{C_j\}$ converges to k. Then for any $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that $|C_m - k| < \epsilon$ for any $m > N(\epsilon)$. Therefore, for n sufficiently large,

$$|\frac{S_n}{n} - k| = |\frac{S_n - n \cdot k}{n}| = |\frac{S_N - N \cdot k}{n} + \frac{\sum_{j=N}^n C_j - k}{n-N}| \le |\frac{S_N - N \cdot k}{n}| + \epsilon \le \epsilon'.$$

Thus, TI exists. Similarly the other direction also holds.

Moreover, when TI exists, Proposition 2.4 can also be generalized. $0 \le S_n \le n$ implies that the range of TI is [0, 1], and TI = 1 if and only if C_j converges to 1.

2 Proof of Theorem 4.6

For convenience, we first write the fixed-point iteration of (2) explicitly in vector form. We denote the matrix with elements $P_L(h|D)$ by $\mathbf{L} \in [0,1]^{|\mathcal{D}| \times |\mathcal{H}|}$, the matrix with elements $P_T(D|h)$ by $\mathbf{T} \in [0,1]^{|\mathcal{D}| \times |\mathcal{H}|}$, and the matrix with elements $P_0(D|h)$ by $\mathbf{M} \in [0,1]^{|\mathcal{D}| \times |\mathcal{H}|}$. Further, denote the vectors consisting of $P_{L_0}(h)$ and $P_T(h)$ by $\mathbf{a}, \mathbf{d} \in [0,1]^{|\mathcal{H}| \times 1}$, vectors consisting of $P_{T_0}(D)$ and $P_L(D)$ by $\mathbf{b}, \mathbf{c} \in [0,1]^{|\mathcal{D}| \times |\mathcal{H}|}$, respectively. Given

a, **b**, and **M**, the fixed-point iteration of the cooperative inference equations can be expressed as:

$$P_{L_1}(h|D) = \frac{P_0(D|h) P_{L_0}(h)}{P_{L_1}(D)} \qquad \Longleftrightarrow \quad \mathbf{L}^{(1)} = \mathrm{Diag}\left(\frac{1}{\mathbf{M}\,\mathbf{a}}\right) \mathbf{M}\,\mathrm{Diag}(\mathbf{a}) \tag{1a}$$

$$P_{T_{k+1}}(D|h) = \frac{P_{L_{k+1}}(h|D) P_{T_0}(D)}{P_{T_{k+1}}(h)} \quad \iff \quad \mathbf{T}^{(k+1)} = \operatorname{Diag}(\mathbf{b}) \mathbf{L}^{(k+1)} \operatorname{Diag}\left(\frac{1}{\mathbf{d}^{(k+1)}}\right) \tag{1b}$$

$$P_{T_{k+1}}(h) = \sum_{D \in \mathcal{D}} P_{L_k}(h|D) P_{T_0}(D) \iff \mathbf{d}^{(k+1)} = (\mathbf{L}^{(k+1)})^{\mathsf{T}} \mathbf{b}$$
(1c)

$$P_{L_{k+1}}(h|D) = \frac{P_{T_k}(D|h) P_{L_0}(h)}{P_{L_{k+1}}(D)} \qquad \Longleftrightarrow \quad \mathbf{L}^{(k+1)} = \mathrm{Diag}\left(\frac{1}{\mathbf{c}^{(k+1)}}\right) \mathbf{T}^{(k)}\mathrm{Diag}(\mathbf{a}) \tag{1d}$$

$$P_{L_{k+1}}(D) = \sum_{h \in \mathcal{H}} P_{T_k}(D|h) P_{L_0}(h) \quad \Longleftrightarrow \quad \mathbf{c}^{(k+1)} = \mathbf{T}^{(k)} \mathbf{a}, \tag{1e}$$

where k denotes the iteration step; $Diag(\mathbf{z})$ denotes the diagonal matrix with elements of the vector \mathbf{z} on its

diagonal; and $\frac{1}{\mathbf{z}}$ denotes element-wise inverse of vector \mathbf{z} . Note that (1b) and (1c) are the operations to column normalize $\text{Diag}(\mathbf{b}) \mathbf{L}^{(k)}$, and (1d) and (1e) are the operations to row normalize $\mathbf{T}^{(k)}$ $\text{Diag}(\mathbf{a})$. Zero rows in $\mathbf{L}^{(k)}$ and zero columns in $\mathbf{T}^{(k)}$ are fixed throughout the iteration of (1) if they exist. This is equivalent to removing the zero rows and zero columns of M for (1)and inserting them back at convergence or when the iteration is stopped.

Now we provide a version of the proof using the notations introduced in the paper. The original proof can be found in [2]. Remember that \mathbf{a} and \mathbf{b} are assumed to be uniform.

Proof. Let σ be a permutation of $\{1, \dots, n\}$ that makes $\{\mathbf{M}_{i,\sigma(i)}\}_{i=1}^n$ a positive diagonal. Define

$$e^{(k)} := \prod_{i=1}^{n} \mathbf{L}_{i,\sigma(i)}^{(k)}; \quad f^{(k)} := \prod_{i=1}^{n} \mathbf{T}_{i,\sigma(i)}^{(k)}.$$

Applying (1a), $\mathbf{L}^{(1)}$ is a row-stochastic matrix, and $\{\mathbf{L}_{i,\sigma(i)}^{(1)}\}_{i=1}^{n}$ is a positive diagonal, hence $e^{(1)}$ is positive. Also, by applying (1b),

$$f^{(1)} = \prod_{i=1}^{n} \mathbf{T}_{i,\sigma(i)}^{(1)} = \prod_{i=1}^{n} \left(\mathbf{b}_{i} \frac{\mathbf{L}_{i,\sigma(i)}^{(1)}}{\mathbf{d}_{\sigma(i)}^{(1)}} \right) = \frac{e^{(1)}}{n^{n} \prod_{i=1}^{n} \mathbf{d}_{\sigma(i)}^{(1)}} = \frac{e^{(1)}}{n^{n} \prod_{i=1}^{n} \mathbf{d}_{i}^{(1)}}.$$
 (2)

By the inequality of arithmetic and geometric means, $\left(\prod_{i=1}^{n} \mathbf{d}_{i}^{(1)}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} \mathbf{d}_{i}^{(1)}$. Also, $\mathbf{L}^{(1)}$ is a rowstochastic matrix and we assumed uniform prior on data set space, and hence, by (1c)

$$n^{n} \prod_{j=1}^{n} \mathbf{d}_{j}^{(1)} \leq \left(\sum_{j=1}^{n} \mathbf{d}_{j}^{(1)}\right)^{n} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{b}_{j} \mathbf{L}_{i,j}^{(1)}\right)^{n} = \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{L}_{i,j}^{(1)}\right)^{n} = 1.$$
(3)

The equality in (3) is achieved if and only if $\mathbf{d} = (\frac{1}{n}, \dots, \frac{1}{n})$, or equivalently, $\mathbf{L}^{(1)}$ being a doubly stochastic matrix. Because $f^{(1)}$ is the product of n values between 0 and 1,

$$0 < e^{(1)} \leq f^{(1)} \leq f^{(1)} \leq 1, \tag{4}$$

with equality in (a) if and only if $\mathbf{L}^{(1)}$ is a doubly stochastic matrix, and equality in (b) if and only if $\mathbf{L}^{(1)}$ is a permutation matrix. Applying the same logic to equations (1d) and (1e), we have

$$0 < f^{(1)} \leq e^{(2)} \leq \frac{1}{(d)} = 0$$

with equality in (c) if and only if $\mathbf{T}^{(1)}$ is a doubly stochastic matrix, and equality in (d) if and only if $\mathbf{T}^{(1)}$ is a permutation matrix. Repeating this argument, we get the increasing sequence

$$0 < e^{(1)} \le f^{(1)} \le e^{(2)} \le f^{(2)} \le \dots \le 1.$$

Monotone convergence theorem of real numbers guarantees that this sequence converges to its supremum

$$\lim_{k \to \infty} e^{(k)} = \lim_{k \to \infty} f^{(k)} = \sup\{\mathbf{e}, \mathbf{f}\}.$$

Asymptotically, $e^{(k)} = f^{(k)} = e^{(k+1)}$; therefore, $\mathbf{L}^{(k)}$ and $\mathbf{T}^{(k)}$ are both doubly stochastic matrices. Because doubly stochastic matrices are stable under row and column normalization, \mathbf{L} and \mathbf{T} converge to the same doubly stochastic matrix,

$$\mathbf{M}^{(\infty)} := \lim_{k \to \infty} \mathbf{L}^{(k)} = \lim_{k \to \infty} \mathbf{T}^{(k)}.$$

3 Proof of Theorem 4.10

Proof. (1) (a) \iff (b): We first prove that (a) CI(**M**) = 1, and (b) **M** has exactly one positive diagonal, are equivalent. Since **M** is an $n \times n$ nonnegative matrix with at least one positive diagonal, Theorem 4.6 guarantees that the iteration of equation set (1) converges to a doubly stochastic matrix, $\mathbf{M}^{(\infty)}$. According to Birkhoff-von Neumann theorem [1, 3], there exist $\theta_1, \ldots, \theta_k \in (0, 1]$ with $\sum_i \theta_i = 1$ and distinct permutation matrices P_1, \ldots, P_k such that $\mathbf{M}^{(\infty)} = \theta_1 P_1 + \cdots + \theta_k P_k$. To simplify, we adopt the *inner product* notation between matrices: $A \cdot B = \sum_{i,j} A_{i,j} B_{i,j}$, for any two $n \times n$ square matrices A and B. Then the following holds:

$$CI = TI(\mathbf{M}^{(\infty)}, \mathbf{M}^{(\infty)}) = \frac{1}{n} \mathbf{M}^{(\infty)} \cdot \mathbf{M}^{(\infty)} = \frac{1}{n} (\sum_{i} \theta_{i} P_{i}) \cdot (\sum_{j} \theta_{j} P_{j}) = \frac{1}{n} \sum_{i,j} \theta_{i} \theta_{j} P_{i} \cdot P_{j}.$$

Equality (I) comes from rewriting TI in the inner product notation. Equality (II) comes from substituting $\mathbf{M}^{(\infty)}$ by its Birkhoff-von Neumann decomposition. Equality (III) comes from distribution.

Further, as permutation matrices, $P_i \cdot P_j \leq n$, and the equality holds if and only if $P_i = P_j$. So we have

$$\operatorname{CI}(\mathbf{M}) = \frac{1}{n} \sum_{i,j} \theta_i \theta_j P_i \cdot P_j \leq \frac{1}{n} \sum_{i,j} \theta_i \theta_j n = \sum_{i,j} \theta_i \theta_j = (\sum_i \theta_i) \times (\sum_j \theta_j) = 1.$$

The equality in (IV) holds if and only if $P_i = P_j$ for any i, j. Note that P_1, \ldots, P_k are distinct, i.e., $P_i \neq P_j$ when $i \neq j$. So the equality in (IV) is achieved precisely when k = 1 and $\mathbf{M}^{(\infty)} = P_1$. Hence, CI(**M**) is maximized if and only if $\mathbf{M}^{(\infty)}$ is a permutation matrix.

We then prove that $\mathbf{M}^{(\infty)}$ is a permutation matrix if and only if \mathbf{M} has exactly one positive diagonal. This follows from this claim, **Claim** (1): elements of \mathbf{M} that lie in a positive diagonal do not tend to zero during the cooperative inference iteration [2] (i.e., if $\mathbf{M}_{i,j} \neq 0$ lies in a positive diagonal, then $\mathbf{M}_{i,j}^{(\infty)} \neq 0$). Claim (1) implies that $\mathbf{M}^{(\infty)}$ and \mathbf{M} have the same number of positive diagonals. Further, note that a doubly stochastic matrix has exactly one diagonal if and only it is a permutation matrix. So as a doubly stochastic matrix, $\mathbf{M}^{(\infty)}$ is a permutation matrix if and only if \mathbf{M} has exactly one positive diagonal. Thus, CI is maximized if and only if \mathbf{M} has exactly one positive diagonal.

To complete the proof for $(a) \iff (b)$, we only need to justify Claim (1). Note that the product of any positive diagonal converges to a positive number $\sup\{\mathbf{e}, \mathbf{f}\}$ (shown in the proof for Theorem 4.6) and all elements on the positive diagonal is upper-bounded by 1 and lower-bounded by $\sup\{\mathbf{e}, \mathbf{f}\}$., elements on a diagonal of \mathbf{M} cannot converge to 0.

(2) $(b) \iff (c)$: This follows immediately from a slightly more general claim below, where positive diagonals are generalized to non-zero diagonals (can have negative values).

Claim (2): Let A be an $n \times n$ -square matrix (elements can be any real number). Then A has exactly one non-zero diagonal (i.e., a diagonal with no zero element) if and only if A is a permutation of an upper-triangular matrix.

We now prove Claim (2). The if direction is clear since an upper-triangular matrix always has exactly one non-zero diagonal, which is its main diagonal. The only if direction is proved by induction on the dimension n of A.

Step 1—Induction basis: When n = 2, it is easy to check that any 2×2 matrix with exactly one diagonal is either of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ or $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, where $a, c \neq 0$. So it is a permutation of an upper-triangular matrix.

Step 2—Inductive step: Suppose that the claim—an $n \times n$ -square matrix A has exactly one non-zero diagonal if and only if it is a permutation of an upper-triangular matrix—holds for any n < N. We need to show that the claim also holds when n = N.

The following notation will be used. Let A be an $n \times n$ -square matrix. $A_{i,j}$ denotes the element of A at row i and column j. $\widetilde{A}_{i,j}$ denotes the $(n-1) \times (n-1)$ sub-matrix obtained from A by crossing out row i and column j.

First, we will prove three handy observations.

Observation 1: If A has exactly one non-zero diagonal and $A_{i,j} \neq 0$, then $A_{i,j}$ has at most one non-zero diagonal. In particular, if $A_{i,j}$ is on that non-zero diagonal, then $\widetilde{A}_{i,j}$ has exactly one non-zero diagonal.

Proof of Observation 1: Suppose that $A_{i,j}$ has more than one diagonal. Then these diagonals for $A_{i,j}$ along with $A_{i,j}$ form different diagonals for A, which is a contradiction.

Observation 2: If A has exactly one non-zero diagonal and A has a row or a column with exactly one non-zero element, then A is a permutation of an upper-triangular matrix.

Proof of Observation 2: Suppose that A has a column with exactly one non-zero element. Then by permutation, we may assume that it is the first column of A and the only non-zero element in column 1 is $A_{1,1}$. $A_{1,1}$ must be on the non-zero diagonal of A. Hence, according to observation 1, $\tilde{A}_{1,1}$ is a $(N-1\times N-1)$ -square matrix with exactly one non-zero diagonal. Then by the inductive assumption, we may permute $\tilde{A}_{1,1}$ into an upper-triangular matrix. Note that each permutation of $\tilde{A}_{1,1}$ induces a permutation of A. So there exist permutations that convert A into A' such that $A'_{i,j} = 0$ when j > 1 and i > j. Moreover, permutations that convert A to A' never switch column 1 (row 1) of A with any other columns (rows). So $A'_{i,1} = 0$ for $i \neq 1$, as $A_{1,1}$ is the only non-zero element in the first column of A. Thus, we have $A'_{i,j} = 0$ when i > j, which implies that A' is an upper-triangular matrix.

If A has a row with exactly one non-zero element, then up to permutation, we may assume it is the last row of A and the only non-zero element is $A_{N,N}$. Following similar argument as above, we may show that $\widetilde{A}_{N,N}$ can be arranged into an upper-triangular matrix by permutations. The corresponding permutations of A will also convert A into an upper triangular matrix. So observation 2 holds.

Observation 3: If the main diagonal of A is the only non-zero diagonal of A, then $A_{t_1,t_2}A_{t_2,t_3}\cdots A_{t_{k-1},t_k}A_{t_k,t_1} = 0$ for any distinct t_1, t_2, \ldots, t_k .

Proof of Observation 3: Suppose that $A_{t_1,t_2}A_{t_2,t_3}\cdots A_{t_{k-1},t_k}A_{t_k,t_1} \neq 0$. Then a different non-zero diagonal for A other than the main diagonal is form by $\{A_{i,i}|i \neq t_1,\ldots,t_k\}$ and $A_{t_1,t_2}, A_{t_2,t_3}, \cdots, A_{t_{k-1},t_k}, A_{t_k,t_1}$.

Now back to the inductive step. Suppose that A is an $N \times N$ -square matrix with exactly one non-zero diagonal. By permutation, we may assume that the main diagonal of A is the only non-zero diagonal. In particular, $A_{1,1} \neq 0$. According to Observation 1, $\tilde{A}_{1,1}$ has exactly one non-zero diagonal and so can be arranged into an upper-triangular matrix by permutations. The corresponding permutations convert A into a new form, denoted by A^1 , with the property that $A_{i,j}^1 = 0$ when j > 1 and i > j. In particular, $A_{N,j}^1 = 0$ when $j \neq 1$ and $j \neq N$. $\tilde{A}_{1,1}^1$ is an upper-triangular matrix implies that $A_{N,N}^1 \neq 0$. If $A_{N,1}^1 = 0$, then the last row of A^1 contains only one non-zero element $A_{N,N}^1$. So by Observation 2, we are done.

Otherwise, according to Observation 1, $A_{N,N}^1$ can be arranged into an upper-triangular matrix by permutation. Hence, after the corresponding permutations, we may convert A^1 into a new form, denoted by A^2 with the property that $A_{i,j}^2 = 0$ when i > j and $i \neq N$. Moreover, permutations that convert A^1 to A^2 never switch row N (column N) of A^1 with any other rows (columns). So only one of $\{A_{N,j}^2 | j \neq N\}$ is not zero. If $A_{N,1}^2 = 0$, along with $A_{i,1}^2 = 0$ for N > i > 1, we have that the first column of A^2 contains exactly one non-zero element, $A_{1,1}^2$. So by Observation 2, we are done.

Otherwise, $A_{N,1}^2 \neq 0$. According to Observation 3, $A_{N,1}^2 A_{1,k}^2 A_{k,N}^2 = 0$, for k = 2, ..., N - 1. So we have that $A_{1,k}^2 A_{k,N}^2 = 0$, for k = 2, ..., N - 1. We will proceed by analyzing cases from k = 2 to k = N - 1.

When k = 2, if $A_{1,2}^2 = 0$, then column 2 of A^2 contains only one non-zero element $A_{2,2}^2$, and we are done by Observation 2. Otherwise, we may assume that $A_{1,2}^2 \neq 0$ and $A_{2,N}^2 = 0$.

When k = 3, if $A_{3,N}^2 \neq 0$, then $A_{1,3}^2 = 0$. According to Observation 3, $A_{N,1}^2 A_{1,2}^2 A_{2,3}^2 A_{3,N}^2 = 0$, and this implies that $A_{2,3}^2 = 0$. Hence, column 3 of A^2 contains only one non-zero element, $A_{3,3}^2$, and again we are done by Observation 2. Otherwise, we may assume that $A_{3,N}^2 = 0$, and one of $\{A_{1,3}^2, A_{2,3}^2\}$ is not zero.

When k = k, if $A_{4,N}^2 \neq 0$, then $A_{1,4}^2 = 0$. Similarly, as in the case where k = 3 (by Observation 3), $A_{N,1}^2 A_{1,2}^2 A_{2,4}^2 A_{3,N}^2 = 0$, and this implies that $A_{2,4}^2 = 0$. One of $\{A_{1,3}^2, A_{2,3}^2\}$ is not zero \Longrightarrow either $A_{N,1}^2 A_{1,3}^2 A_{3,4}^2 A_{3,N}^2 = 0$ or $A_{N,1}^2 A_{1,2}^2 A_{2,3}^2 A_{3,4}^2 A_{3,N}^2 = 0 \Longrightarrow A_{3,4}^2 = 0$. Hence, column 4 of A^2 contains only one non-zero element, $A_{4,4}^2$, and again we are done by Observation 2. Otherwise, we may assume that $A_{4,N}^2 = 0$, and at least one of $\{A_{1,4}^2, A_{2,4}^2, A_{3,4}^2\}$ is not zero.

Inductively, either one of column k's of A^2 contains only one non-zero element, or $A_{k,N}^2 = 0$ for all k = 2, ..., N - 1. Note that the latter case implies that column N of A^2 contains only one non-zero element, $A_{N,N}^2$, as $A_{N,1}^2 \neq 0 \Longrightarrow A_{1,N}^2 = 0$. Either way, the proof is then completed by Observation 2.

4 Details to Example 4.11

To construct \mathbf{M} , first notice that if maximum likelihood is achieved, $\mathbf{M}_{1,1} = \mathbf{M}_{1,2}$ under all settings of Δ , a, and q. This is because a first- and second-order polynomial give the same fit to D_1 .

For $\mathbf{M}_{2,1}$, by symmetry arguments we know that the maximum-likelihood fit of a first-order polynomial to D_2 is a horizontal line (f(x) = b). We can find this value of b through a grid search. Given this b,

$$\mathbf{M}_{2,1} = N_q(a;b)^2 N_q(-a;b)^2 N_q(\Delta + a;b) N_q(\Delta - a;b)$$

where

$$N_q(z;b) = \frac{\sqrt{\beta}}{C_q} e_q(-\beta(x_i - \mu)^2).$$

Here, $\beta = \frac{1}{5-3q}$ so that the variance is 1; $e_q(x)$ is the q-exponential function defined by $[1 + (1-q)x]^{\frac{1}{1-q}}$ when $q \neq 1$, and $\exp(x)$ when q = 1. The normalizing constant C_q is given by:

$$C_q = \begin{cases} \frac{2\sqrt{\pi}\Gamma(\frac{1}{1-q})}{(3-q)\sqrt{1-q}\Gamma(\frac{3-q}{2(1-q)})} & \text{for } -\infty < q < 1\\ \sqrt{\pi} & \text{for } q = 1\\ \frac{\sqrt{\pi}\Gamma(\frac{3-q}{2(q-1)})}{\sqrt{q-1}\Gamma\frac{1}{q-1}} & \text{for } 1 < q < 3. \end{cases}$$

For $\mathbf{M}_{2,2}$, again by symmetry arguments we know that the maximum-likelihood fit of a second order polynomial to D_2 is a parabola that passes through the middle of each of the three pairs of data points. Thus, $\mathbf{M}_{2,2} = N_q(a;0)^6$.

References

- [1] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista A, 5:147–151, 1946.
- [2] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics*, 21(2):343–348, 1967.
- [3] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games, 2:5–12, 1953.