Supplementary Document for Dimensionality Reduced ℓ^{0}-Sparse Subspace Clustering

Yingzhen Yang
Independent Researcher

1 Proofs

We reiterate the necessary equations and statements before presenting the proofs of theorems in this paper.

$$
\begin{equation*}
\min _{\mathbf{Z}}\|\mathbf{Z}\|_{0} \quad \text { s.t. } \tilde{\boldsymbol{X}}=\tilde{\boldsymbol{X}} \mathbf{Z}, \operatorname{diag}(\mathbf{Z})=\mathbf{0} \tag{1}
\end{equation*}
$$

Lemma A. Under the assumptions of Theorem 1, for any $1 \leq k \leq K$, with probability 1 , any $L \leq \tilde{d}_{k}$ points in the projected data $\tilde{\boldsymbol{X}}^{(k)} \in \mathbb{R}^{p \times n_{k}}$ that lie in $\tilde{\mathcal{S}}_{k}$ are linearly independent.

Proof. For any set $\left\{\tilde{\mathbf{x}}_{j_{\ell}}\right\}_{\ell=1}^{L} \triangleq \mathbf{A} \subseteq \tilde{\boldsymbol{X}}^{(k)}$ that are linearly dependent, let $\mathcal{H}_{\ell} \triangleq \mathbf{H}_{\mathbf{A} \backslash\left\{\tilde{\mathbf{x}}_{j_{\ell}}\right\}}$ be the subspace spanned by $A \backslash\left\{\mathbf{x}_{j_{\ell}}\right\}$ for $1 \leq \ell \leq L$. Then $\operatorname{dim}\left[\mathcal{H}_{\ell}\right]<$ $L \leq \tilde{d}_{k}$, and

$$
\begin{align*}
& \operatorname{Pr}\left[\left\{\tilde{\mathbf{x}}_{j_{\ell}}\right\}_{\ell=1}^{L}:\left\{\tilde{\mathbf{x}}_{j_{\ell}}\right\}_{\ell=1}^{L} \text { are linearly dependent }\right] \\
& \leq \sum_{\ell=1}^{L} \operatorname{Pr}\left[\tilde{\mathbf{x}}_{j_{\ell}} \in \mathcal{H}_{\ell}\right] \tag{2}
\end{align*}
$$

Also, for any $1 \leq \ell \leq L$, according to Fubini's Theorem,

$$
\begin{aligned}
& \operatorname{Pr}\left[\tilde{\mathbf{x}}_{j_{\ell}} \in \mathcal{H}_{\ell}\right]=\operatorname{Pr}\left[\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k}\right] \\
& =\int_{\times_{\ell^{\prime}=1}^{L} \mathcal{S}^{\left(j_{\ell^{\prime}}\right)}} \mathbb{I}_{\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k}} \otimes_{\ell^{\prime}=1}^{L} d \mu^{\left(j_{\ell^{\prime}}\right)} \\
& =\int_{x_{\ell^{\prime} \neq \ell} \mathcal{S}^{\left(j_{\ell^{\prime}}\right)}} \operatorname{Pr}\left[\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k} \mid\left\{\mathbf{x}_{j_{\ell^{\prime}}}\right\}_{\ell^{\prime} \neq \ell}\right] \otimes_{\ell^{\prime} \neq \ell} d \mu^{\left(j_{\ell^{\prime}}\right)}
\end{aligned}
$$

where $\mathcal{S}^{(j)} \in\left\{\mathcal{S}_{k}\right\}_{k=1}^{K}$ is the subspace that \mathbf{x}_{j} lies in, and $\mu^{(j)}$ is the probabilistic measure of the distribution in $\mathcal{S}^{(j)}$. Note that $\mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k}$ is a subspace lie in \mathcal{S}_{k} with dimension less than d_{k}. To see this, suppose $\operatorname{dim}\left[\mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k}\right]=d_{k}$, since $\mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k} \subseteq \mathcal{S}_{k}$, we have $\mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k}=\mathcal{S}_{k}$, and it follows that $\mathcal{H}_{\ell}=\tilde{\mathcal{S}}_{k}$ and $\operatorname{dim}_{\tilde{d}}\left[\mathcal{H}_{\ell}\right]=\tilde{d}_{k}$, contradicting with the fact that $\operatorname{dim}\left[\mathcal{H}_{\ell}\right]<\tilde{d}_{k}$. Since the data distribution in \mathcal{S}_{k} is continuous, the probability that the random data point $\mathbf{x}_{j_{\ell}}$ lie in a subspace of \mathcal{S}_{k} with dimension less than d_{k} is zero, i.e. $\operatorname{Pr}\left[\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}\left(\mathcal{H}_{\ell}\right) \cap \mathcal{S}_{k}\right]=0$. According to the union bound (2), the conclusion of this lemma holds.

Theorem 1. (Subspace detection property holds almost surely for DR- ℓ^{0}-SSC under the randomized models) Under either the semi-random model or the fullyrandom model, if $n_{k} \geq d_{k}+1$ for any $1 \leq k \leq K$ and \mathbf{P} is a subspace preserving transformation, then the subspace detection property for $D R-\ell^{0}-S S C$ holds with probability 1 with the optimal solution \mathbf{Z}^{*} to (1).

Proof. We first prove the result under the semi-random model, wherein the subspaces are fixed and the data in each subspace are distributed at random.

For any fixed $1 \leq i \leq n$, note that $\mathbf{Z}^{* i}$ is the optimal solution to the following ℓ^{0} sparse representation problem

$$
\begin{equation*}
\min _{\mathbf{Z}^{i}}\left\|\mathbf{Z}^{i}\right\|_{0} \quad \text { s.t. } \tilde{\mathbf{x}}_{i}=\left[\tilde{\boldsymbol{X}}^{(k)} \backslash \tilde{\mathbf{x}}_{i} \quad \tilde{\boldsymbol{X}}^{(-k)}\right] \mathbf{Z}^{i}, \mathbf{Z}_{i i}=0 \tag{3}
\end{equation*}
$$

where $\tilde{\boldsymbol{X}}^{(k)}=\mathbf{P} \boldsymbol{X}^{(k)}, \tilde{\boldsymbol{X}}^{(-k)}=\mathbf{P} \boldsymbol{X}^{(-k)}, \boldsymbol{X}^{(-k)}$ denotes the data that lie in all subspaces except \mathcal{S}_{k}. Let $\mathbf{Z}^{* i}=\left[\begin{array}{l}\boldsymbol{\alpha} \\ \boldsymbol{\beta}\end{array}\right]$ where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are sparse codes corresponding to $\tilde{\boldsymbol{X}}^{(k)} \backslash \tilde{\mathbf{x}}_{i}$ and $\tilde{\boldsymbol{X}}^{(-k)}$ respectively.
Suppose $\boldsymbol{\beta} \neq \mathbf{0}$, then $\tilde{\mathbf{x}}_{i}$ belongs to a subspace \mathcal{S}^{\prime} spanned by the projected data points corresponding to nonzero elements of $\mathbf{Z}_{\tilde{\alpha}}^{* i}$, and $\mathcal{S}^{\prime} \neq \tilde{\mathcal{S}}_{k}$, $\operatorname{dim}\left[\mathcal{S}^{\prime}\right] \leq$ \tilde{d}_{k}. To see this, if $\mathcal{S}^{\prime}=\tilde{\mathcal{S}}_{k}$, then the projected data corresponding to nonzero elements of $\boldsymbol{\beta}$ belong to $\tilde{\mathcal{S}}_{k}$, which is contrary to the definition of $\boldsymbol{X}^{(-k)}$. Also, if $\operatorname{dim}\left[\mathcal{S}^{\prime}\right]>\tilde{d}_{k}$, then any \tilde{d}_{k} points in $\tilde{\boldsymbol{X}}^{(k)}$ can be used to linearly represent $\tilde{\mathbf{x}}_{i}$ almost surely according to Lemma A, contradicting with the optimality of $\mathbf{Z}^{* i}$.
Let $\mathcal{S}^{\prime \prime}=\mathcal{S}^{\prime} \cap \tilde{\mathcal{S}}_{k}$, then $\operatorname{dim}\left[\mathcal{S}^{\prime \prime}\right] \leq \tilde{d}_{k}$ we now derive the following results according to the dimension of $\mathcal{S}^{\prime \prime}$:

- $\operatorname{dim}\left[\mathcal{S}^{\prime \prime}\right]<\tilde{d}_{k}$. By Fubini's Theorem, the probability that $\tilde{\mathbf{x}}_{i}$ lies in $\mathcal{S}^{\prime \prime}$ is

$$
\begin{align*}
& \operatorname{Pr}\left[\tilde{\mathbf{x}}_{i} \in \mathcal{S}^{\prime \prime}\right]=\int_{\times_{i=1}^{n} \mathcal{S}^{(i)}} \mathbb{I}_{\tilde{\mathbf{x}}_{i} \in \mathcal{S}^{\prime \prime}} \otimes_{i=1}^{n} d \mu^{(i)} \\
& =\int_{\times_{j \neq i} \mathcal{S}^{(j)}} \operatorname{Pr}\left[\mathbf{x}_{i} \in \mathbf{P}^{(-1)}\left(\mathcal{S}^{\prime \prime}\right) \cap \mathcal{S}_{k} \mid\left\{\mathbf{x}_{j}\right\}_{j \neq i}\right] \otimes_{j \neq i} d \mu^{(j)} \tag{4}
\end{align*}
$$

where $\mathcal{S}^{(j)} \in\left\{\mathcal{S}_{k}\right\}_{k=1}^{K}$ is the subspace that \mathbf{x}_{j} lies in, and $\mu^{(j)}$ is the probabilistic measure of the distribution in $\mathcal{S}^{(j)}$.
Since $\operatorname{dim}\left[\mathcal{S}^{\prime \prime}\right]<\tilde{d}_{k}, \mathbf{P}^{(-1)}\left(\mathcal{S}^{\prime \prime}\right) \cap \mathcal{S}_{k}$ must be a subspace in \mathcal{S}_{k} with dimension less than d_{k}. Otherwise, if $\operatorname{dim}\left[\mathbf{P}^{(-1)}\left(\mathcal{S}^{\prime \prime}\right) \cap \mathcal{S}_{k}\right]=d_{k}$, then $\mathbf{P}^{(-1)}\left(\mathcal{S}^{\prime \prime}\right) \cap \mathcal{S}_{k}=$ \mathcal{S}_{k} and $\mathcal{S}^{\prime \prime}=\tilde{\mathcal{S}}_{k}$, and it follows that $\operatorname{dim}\left[\mathcal{S}^{\prime \prime}\right]=\tilde{d}_{k}$ which contradicts with the condition that $\operatorname{dim}\left[\mathcal{S}^{\prime \prime}\right]<$ \tilde{d}_{k}.
Therefore, $\operatorname{dim}\left[\mathbf{P}^{(-1)}\left(\mathcal{S}^{\prime \prime}\right) \cap \mathcal{S}_{k}\right]<d_{k}$, and the probability that \mathbf{x}_{i} lies in a subspace of dimension less than d_{k} in \mathcal{S}_{k} is zero by the similar argument used in the proof of Lemma A. So we have $\operatorname{Pr}\left[\mathbf{x}_{i} \in\right.$ $\left.\mathbf{P}^{(-1)}\left(\mathcal{S}^{\prime \prime}\right) \cap \mathcal{S}_{k} \mid\left\{\mathbf{x}_{j}\right\}_{j \neq i}\right]=0$, and it follows that the integral in (4) vanishes, namely $\operatorname{Pr}\left[\tilde{\mathbf{x}}_{i} \in \mathcal{S}^{\prime \prime}\right]=0$.

- $\operatorname{dim}\left[\mathcal{S}^{\prime \prime}\right]=\tilde{d}_{k}$. In this case, $\mathcal{S}^{\prime \prime}=\mathcal{S}^{\prime}=\tilde{\mathcal{S}}_{k}$, which indicates that the data points corresponding to nonzero elements of $\boldsymbol{\beta}$ belong to $\tilde{\mathcal{S}}_{k}$, contradicting with the definition of $\tilde{\boldsymbol{X}}^{(-k)}$.

Therefore, with probability $1, \boldsymbol{\beta}=\mathbf{0}$. By the union bound over all $1 \leq i \leq n$, the conclusion of Theorem 1 holds for the semi-random model.

In the case of fully-random model, note that the subspace detection property holds with probability 1 for any subspaces $\left\{\mathcal{S}_{k}\right\}_{k=1}^{K}$. It follows that with probability 1 over the subspaces and the data, the subspace detection property holds with probability 1.

Theorem 2. (Subspace detection property holds for DR- ℓ^{0}-SSC under the deterministic model) Under the deterministic model, suppose $n_{k} \geq d_{k}+1, \boldsymbol{X}^{(k)}$ is in general position for any $1 \leq k \leq K$. Furthermore, if all the data points in $\boldsymbol{X}^{(k)}$ are away from the external subspaces under the linear transformation $\mathbf{P} \in \mathbb{R}^{p \times d}$ for any $1 \leq k \leq K$, then the subspace detection property for $D R-\ell^{0}-S S C$ holds with the optimal solution \mathbf{Z}^{*} to (1).

Proof. Similar to the proof of Theorem 1, $\mathbf{Z}^{* i}$ is the optimal solution to the following ℓ^{0} sparse representation problem

$$
\min _{\mathbf{Z}^{i}}\left\|\mathbf{Z}^{i}\right\|_{0} \quad \text { s.t. } \tilde{\mathbf{x}}_{i}=\left[\begin{array}{lll}
\tilde{\boldsymbol{X}}^{(k)} \backslash \tilde{\mathbf{x}}_{i} & \tilde{\boldsymbol{X}}^{(-k)} \tag{5}
\end{array}\right] \mathbf{Z}^{i}, \mathbf{Z}_{i i}=0
$$

where $\tilde{\boldsymbol{X}}^{(k)}=\mathbf{P} \boldsymbol{X}^{(k)}, \tilde{\boldsymbol{X}}^{(-k)}=\mathbf{P} \boldsymbol{X}^{(-k)}, \boldsymbol{X}^{(-k)}$ denotes the data that lie in all subspaces except \mathcal{S}_{k}. Let $\mathbf{Z}^{* i}=\left[\begin{array}{l}\boldsymbol{\alpha} \\ \boldsymbol{\beta}\end{array}\right]$ where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are sparse codes corresponding to $\tilde{\boldsymbol{X}}^{(k)} \backslash \tilde{\mathbf{x}}_{i}$ and $\tilde{\boldsymbol{X}}^{(-k)}$ respectively.
Suppose $\boldsymbol{\beta} \neq \mathbf{0}$, then $\tilde{\mathbf{x}}_{i}$ belongs to a subspace $\mathcal{S}^{\prime}=$ $\mathbf{H}_{\tilde{\boldsymbol{X}}_{\mathbf{Z} * i}}$ spanned by the projected data points corresponding to nonzero elements of $\mathbf{Z}^{* i}$, and $\mathcal{S}^{\prime} \neq \tilde{\mathcal{S}}_{k}$,
$\operatorname{dim}\left[\mathcal{S}^{\prime}\right] \leq \tilde{d}_{k}$ by the argument in the proof of Theorem 1. Since the data points (or columns) in $\tilde{\boldsymbol{X}}_{\mathbf{Z}^{* i}}$ are linearly independent, it can be verified the data points in $\boldsymbol{X}_{\mathbf{Z}^{* i}}$ are also linearly independent. Therefore,

$$
\tilde{\mathbf{x}}_{i} \in \mathbf{H}_{\tilde{\boldsymbol{X}}_{\mathbf{Z}^{* i}}} \Rightarrow \mathbf{x}_{i} \in \mathbf{P}^{(-1)}\left(\mathbf{H}_{\tilde{\boldsymbol{X}}_{\mathbf{Z}^{* i}}}\right) \Rightarrow \mathbf{x}_{i} \in \mathbf{P}^{(-1)}\left(\mathbf{P}\left(\mathbf{H}_{\boldsymbol{X}_{\mathbf{Z}^{* i}}}\right)\right)
$$

And it follows that \mathbf{x}_{i} lies in an external subspace $\mathbf{H}_{\boldsymbol{X}_{\mathbf{Z}^{* i}}}$ spanned by linearly independent points in $\boldsymbol{X}_{\mathbf{Z}^{* i}}$ under the mapping $\mathbf{P}^{(-1)} \circ \mathbf{P}$, and $\operatorname{dim}\left[\mathbf{H}_{\boldsymbol{X}_{\mathbf{z}^{* i}}}\right]=$ $\operatorname{dim}\left[\mathcal{S}^{\prime}\right] \leq \tilde{d}_{k}$. Therefore, $\boldsymbol{\beta}=\mathbf{0}$. Perform the above analysis for all $1 \leq i \leq n$, we can prove that the subspace detection property holds for all $1 \leq i \leq n$.

Lemma 1. (Corollary 10.9 in [1]) Let $p_{0} \geq 2$ and $p^{\prime}=p-p_{0} \geq 4$, then with probability at least $1-6 e^{-p}$, then the spectral norm of $\boldsymbol{X}-\hat{\boldsymbol{X}}$ is bounded by

$$
\begin{equation*}
\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|_{2} \leq C_{p, p_{0}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{p, p_{0}}=\left(1+17 \sqrt{1+\frac{p_{0}}{p^{\prime}}}\right) \sigma_{p_{0}+1}+\frac{8 \sqrt{p}}{p^{\prime}+1}\left(\sum_{j>p_{0}} \sigma_{j}^{2}\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

and $\sigma_{1} \geq \sigma_{2} \geq \ldots$ are the singular values of \boldsymbol{X}.
Lemma 2. (Perturbation of distance to subspaces) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ are two matrices and $\operatorname{rank}(\mathbf{A})=r$, $\operatorname{rank}(\mathbf{B})=$ s. Also, $\mathbf{E}=\mathbf{A}-\mathbf{B}$ and $\|\mathbf{E}\|_{2} \leq C$, where $\|\cdot\|_{2}$ indicates the spectral norm. Then for any point $\mathbf{x} \in \mathbb{R}^{m}$, the difference of the distance of \mathbf{x} to the column space of \mathbf{A} and \mathbf{B}, i.e. $\left|d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\mathbf{B}}\right)\right|$, is bounded by

$$
\begin{equation*}
\left|d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\mathbf{B}}\right)\right| \leq \frac{C\|\mathbf{x}\|_{2}}{\min \left\{\sigma_{r}(\mathbf{A}), \sigma_{s}(\mathbf{B})\right\}} \tag{8}
\end{equation*}
$$

Proof. Note that the projection of \mathbf{x} onto the subspace $\mathbf{H}_{\mathbf{A}}$ is $\mathbf{A A}^{+} \mathbf{x}$ where \mathbf{A}^{+}is the Moore-Penrose pseudoinverse of the matrix \mathbf{A}, so $d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)$ equals to the distance between \mathbf{x} and its projection, namely $d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)=$ $\left\|\mathbf{x}-\mathbf{A A}^{+} \mathbf{x}\right\|_{2}$. Similarly, $d\left(\mathbf{x}, \mathbf{H}_{\mathbf{B}}\right)=\left\|\mathbf{x}-\mathbf{B B}^{+} \mathbf{x}\right\|_{2}$.
It follows that

$$
\begin{align*}
\left|d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\mathbf{B}}\right)\right| & =\left|\left\|\mathbf{x}-\mathbf{A} \mathbf{A}^{+} \mathbf{x}\right\|_{2}-\left\|\mathbf{x}-\mathbf{B B}^{+} \mathbf{x}\right\|_{2}\right| \\
\leq\left\|\mathbf{A A}^{+} \mathbf{x}-\mathbf{B B}^{+} \mathbf{x}\right\|_{2} & \leq\left\|\mathbf{A} \mathbf{A}^{+}-\mathbf{B B}^{+}\right\|_{2}\|\mathbf{x}\|_{2} \tag{9}
\end{align*}
$$

According to the perturbation bound on the orthogonal projection in $[2,3]$,

$$
\begin{equation*}
\left\|\mathbf{A A}^{+}-\mathbf{B B}^{+}\right\|_{2} \leq \max \left\{\left\|\mathbf{E A}^{+}\right\|_{2},\left\|\mathbf{E B}^{+}\right\|_{2}\right\} \tag{10}
\end{equation*}
$$

Since $\left\|\mathbf{E A}^{+}\right\|_{2} \leq\|\mathbf{E}\|_{2}\left\|\mathbf{A}^{+}\right\|_{2} \leq \frac{C}{\sigma_{r}(\mathbf{A})},\left\|\mathbf{E B}^{+}\right\|_{2} \leq$ $\|\mathbf{E}\|_{2}\left\|\mathbf{B}^{+}\right\|_{2} \leq \frac{C}{\sigma_{s}(\mathbf{B})}$, combining (9) and (10), we have

$$
\left|d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\mathbf{B}}\right)\right| \leq \max \left\{\frac{C}{\sigma_{r}(\mathbf{A})}, \frac{C}{\sigma_{s}(\mathbf{B})}\right\}\|\mathbf{x}\|_{2}
$$

$$
\begin{equation*}
=\frac{C\|\mathbf{x}\|_{2}}{\min \left\{\sigma_{r}(\mathbf{A}), \sigma_{s}(\mathbf{B})\right\}} \tag{11}
\end{equation*}
$$

Theorem 3. Under the deterministic model, suppose $n_{k} \geq d_{k}+1, \boldsymbol{X}^{(k)}$ is in general position, $\sigma_{\tilde{d}_{k}}>C_{p, p_{0}}$ for any $1 \leq k \leq K$, and $C_{p, p_{0}}$ is defined by (7) with $p_{0} \geq 2$. Suppose that data $\boldsymbol{X}^{(k)}$ are in general position with margin τ_{k} such that $\tau_{k}>1+\frac{C_{p, p_{0}}}{\sigma_{\tilde{d}_{k}}-C_{p, p_{0}}}$. Moreover, all the data points in $\boldsymbol{X}^{(k)}$ are γ_{k}-away from the external subspaces of dimension no greater than \tilde{d}_{k} for any $1 \leq k \leq K$ with $\gamma_{k}>1+\frac{C_{p, p_{0}}}{\sigma_{\tilde{d}_{k}}-C_{p, p_{0}}}$. Then with probability at least $1-6 e^{-p}$, the subspace detection property for $D R-\ell^{0}-S S C$ holds with the optimal solution \mathbf{Z}^{*} to (1), using the linear projection $\mathbf{P}=\mathbf{Q}^{\top}$.

Proof. Suppose there is $1 \leq k \leq K$ and a point $\mathbf{x} \in$ $\boldsymbol{X}^{(k)}$ such that $d(\mathbf{x}, \mathbf{H})=0$ for some $\mathbf{H} \in \mathbf{P}^{(-1)}$ 。 $\mathbf{P}\left(\mathcal{H}_{\mathbf{x}, \tilde{d}_{k}}\right)$, then there exist $L \leq \tilde{d}_{k}$ independent points $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L} \subseteq \boldsymbol{X}$ such that $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L} \nsubseteq \boldsymbol{X}^{(k)}$ and $\mathbf{x} \notin$ $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L}, \tilde{\mathbf{x}} \in \mathbf{P}\left(\mathbf{H}_{\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L}}\right)=\mathbf{H}_{\left\{\tilde{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}}$. Now we define $\overline{\mathbf{t}}=\mathbf{P}^{\top} \tilde{\mathbf{t}}=\mathbf{Q Q}^{\top} \mathbf{t}$ for any $\mathbf{t} \in \mathbb{R}^{d}$. Since the rows of \mathbf{P} are linearly independent, $\tilde{\mathbf{x}} \in \mathbf{H}_{\left\{\tilde{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}} \Leftrightarrow$ $\overline{\mathbf{x}} \in \mathbf{H}_{\left\{\overline{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}}$
Let $\mathbf{A} \in \mathbb{R}^{d \times L}=\left[\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{L}}\right]$ be the matrix with $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L}$ as it columns, and $\overline{\mathbf{A}} \in \mathbb{R}^{d \times L}=\left[\overline{\mathbf{x}}_{i_{1}}, \ldots, \overline{\mathbf{x}}_{i_{L}}\right]$ be the matrix with $\left\{\overline{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}$ as it columns. Note that

$$
\|\mathbf{A}-\overline{\mathbf{A}}\|_{2} \leq\left\|\boldsymbol{X}-\mathbf{Q Q}^{\top} \boldsymbol{X}\right\|_{2}=\|\boldsymbol{X}-\overline{\boldsymbol{X}}\|_{2} \leq C_{p, p_{0}}
$$

By Weyl [4], $\left|\sigma_{i}(\mathbf{A})-\sigma_{i}(\overline{\mathbf{A}})\right| \leq\|\mathbf{A}-\overline{\mathbf{A}}\|_{2}$. Then we have $\sigma_{L}(\overline{\mathbf{A}}) \geq \sigma_{L}(\mathbf{A})-\|\mathbf{A}-\overline{\overline{\mathbf{A}}}\|_{2} \geq \sigma_{L}(\mathbf{A})-C_{p, p_{0}} \geq$ $\sigma_{\tilde{d}_{k}}-C_{p, p_{0}}>0$. It follows that $\operatorname{rank}(\overline{\mathbf{A}})=L$. In addition, $\sigma_{L}(\mathbf{A}) \geq \sigma_{\tilde{d}_{k}}$.
Therefore, according to Lemma 2,

$$
\begin{align*}
& \left|d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)\right| \leq \frac{C_{p, p_{0}}\|\mathbf{x}\|_{2}}{\min \left\{\sigma_{L}(\mathbf{A}), \sigma_{L}(\overline{\mathbf{A}})\right\}} \\
& \leq \frac{C_{p, p_{0}}}{\sigma_{\bar{d}_{k}}-C_{p, p_{0}}} \tag{12}
\end{align*}
$$

Moreover, we have

$$
\begin{gather*}
\left|d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)\right| \leq\|\overline{\mathbf{x}}-\mathbf{x}\|_{2} \\
=\left\|\mathbf{Q} \mathbf{Q}^{\top} \mathbf{x}-\mathbf{x}\right\|_{2} \leq\|\mathbf{x}\|_{2} \leq 1 \tag{13}
\end{gather*}
$$

where $\mathbf{e}_{\mathbf{x}} \in \mathbb{R}^{n},\left(\mathbf{e}_{\mathbf{x}}\right)_{i}=1$ for the index i such that $\mathbf{x}_{i}=\mathbf{x}$, and $\left(\mathbf{e}_{\mathbf{x}}\right)_{j}=0$ for all $j \neq i$. For the first inequality in (13), note that for any $\varepsilon>0$, there exists $\mathbf{y} \in \mathbf{H}_{\overline{\mathbf{A}}}$ such that $d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)+\varepsilon>d(\overline{\mathbf{x}}, \mathbf{y})$. It follows that $\|\overline{\mathbf{x}}-\mathbf{x}\|_{2}+d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)+\varepsilon>\|\overline{\mathbf{x}}-\mathbf{x}\|_{2}+\| \overline{\mathbf{x}}-$ $\mathbf{y}\left\|_{2} \geq\right\| \mathbf{x}-\mathbf{y} \|_{2} \geq d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)$ for any $\varepsilon>0$. Therefore,
$\|\overline{\mathbf{x}}-\mathbf{x}\|_{2} \geq d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)-d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)$. Similarly, $\|\overline{\mathbf{x}}-\mathbf{x}\|_{2} \geq$ $d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)$.
Combining (12) and (13), we have

$$
\begin{equation*}
\left|d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)\right| \leq 1+\frac{C_{p, p_{0}}}{\sigma_{\tilde{d}_{k}}-C_{p, p_{0}}} \tag{14}
\end{equation*}
$$

Since $\mathbf{x} \in \boldsymbol{X}^{(k)}$ is γ_{k}-away from the an external subspaces of dimension no greater than \tilde{d}_{k}, we have $d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right) \geq \gamma_{k}$. Therefore, $d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right) \geq \gamma_{k}-1-$ $\frac{C_{p, p_{0}}}{\sigma_{\tilde{d}_{k}}-C_{p, p_{0}}}>0$. It follows that $\overline{\mathbf{x}} \notin \mathbf{H}_{\overline{\mathbf{A}}}$, and $\tilde{\mathbf{x}} \notin$ $\mathbf{H}_{\left\{\tilde{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}}$. This contradiction indicates that all the data points in $\boldsymbol{X}^{(k)}$ are away from the external subspaces under the linear transformation \mathbf{P} for any $1 \leq k \leq K$. It can also be verified that data $\tilde{\boldsymbol{X}}^{(k)}$ are in generation position by similar argument and the definition of general position with margin. Therefore, the conclusion of this theorem follows by applying Theorem 2.

Lemma 3. (Lemma 6 in [5], adjusted with our notations) Suppose \mathbf{P} satisfies the ℓ^{2}-norm preserving property. If $0<\varepsilon \leq \frac{1}{2}$, then for any two vectors $\mathbf{u} \in \mathbb{R}^{d}, \mathbf{v} \in \mathbb{R}^{d}$, with probability at least $1-4 e^{-\frac{p \varepsilon^{2}}{c}}$,

$$
\begin{equation*}
\left|\mathbf{u}^{\top} \mathbf{P}^{\top} \mathbf{P} \mathbf{v}-\mathbf{u}^{\top} \mathbf{v}\right| \leq\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2} \varepsilon \tag{15}
\end{equation*}
$$

Lemma 4. Suppose \mathbf{P} satisfies the ℓ^{2}-norm preserving property. If $0<\varepsilon \leq \frac{1}{2}$, then for any vector $\mathbf{v} \in \mathbb{R}^{d}$, with probability at least $1-4 d e^{-\frac{p \varepsilon^{2}}{c}}$,

$$
\begin{equation*}
|\overline{\mathbf{v}}-\mathbf{v}|_{2} \leq \sqrt{d}\|\mathbf{v}\|_{2} \varepsilon \tag{16}
\end{equation*}
$$

where $\overline{\mathbf{v}}=\mathbf{P}^{\top} \mathbf{P} \mathbf{v}$.

Proof. Choosing $\mathbf{e}_{i} \in \mathbb{R}^{n}$ where $\left(\mathbf{e}_{i}\right)_{i}=1$ and $\left(\mathbf{e}_{i}\right)_{j}=0$ for all $j \neq i$. Applying Lemma 3 with $\mathbf{u}=\mathbf{e}_{i}$, then with probability at least $1-4 e^{-\frac{p \varepsilon^{2}}{c}}$,

$$
\begin{align*}
& \left|\mathbf{e}_{i}^{\top} \mathbf{P}^{\top} \mathbf{P} \mathbf{v}-\mathbf{e}_{i}^{\top} \mathbf{v}\right| \\
& =\left|\overline{\mathbf{v}}_{i}-\mathbf{v}_{i}\right| \leq\left\|\mathbf{e}_{i}\right\|_{2}\|\mathbf{v}\|_{2} \varepsilon=\|\mathbf{v}\|_{2} \varepsilon \tag{17}
\end{align*}
$$

By the union bound, with probability at least $1-$ $4 d e^{-\frac{p \varepsilon^{2}}{c}}$,

$$
\begin{equation*}
|\overline{\mathbf{v}}-\mathbf{v}|_{2} \leq \sqrt{d}\|\mathbf{v}\|_{2} \varepsilon \tag{18}
\end{equation*}
$$

Theorem 4. Let \mathbf{P} satisfy the ℓ^{2}-norm preserving property. Under the deterministic model, suppose $n_{k} \geq$
$d_{k}+1, \sigma_{\tilde{d}_{k}}>\sqrt{d \tilde{d}_{k}} \varepsilon$ for $0<\varepsilon \leq \frac{1}{2}$. Suppose that data $\boldsymbol{X}^{(k)}$ are in general position with margin τ_{k} such that $\tau_{k}>\sqrt{d} \varepsilon\left(1+\frac{\sqrt{\tilde{d}_{k}}}{\sigma_{\tilde{d}_{k}}-\sqrt{d \tilde{d}_{k}} \varepsilon}\right)$. Moreover, all the data points in $\boldsymbol{X}^{(k)}$ are γ_{k}-away from the external subspaces of dimension no greater than \tilde{d}_{k} for any $1 \leq k \leq K$ with $\gamma_{k}>\sqrt{d} \varepsilon\left(1+\frac{\sqrt{\tilde{d}_{k}}}{\sigma_{\tilde{d}_{k}}-\sqrt{d \tilde{d}_{k}} \varepsilon}\right)$. Then with probability at least $1-4 n d e^{-\frac{p \varepsilon^{2}}{c}}$, the subspace detection property for $D R-\ell^{0}-S S C$ holds with the optimal solution \mathbf{Z}^{*} to (1).

Proof. Suppose there is $1 \leq k \leq K$ and a point $\mathbf{x} \in \boldsymbol{X}^{(k)}$ such that $d(\mathbf{x}, \mathbf{H})=0$ for some $\mathbf{H} \in$ $\mathbf{P}^{(-1)} \circ \mathbf{P}\left(\mathcal{H}_{\mathbf{x}, \tilde{d}_{k}}\right)$, then there exist $L \leq \tilde{d}_{k}$ independent points $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L} \subseteq \boldsymbol{X}$ such that $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L} \nsubseteq \boldsymbol{X}^{(k)}$ and $\mathbf{x} \notin\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L}$. It follows that $\tilde{\mathbf{x}} \in \mathbf{P}\left(\mathbf{H}_{\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L}}\right)=$ $\mathbf{H}_{\left\{\tilde{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}}$.
For any vector $\mathbf{t} \in \mathbb{R}^{d}$, define $\overline{\mathbf{t}}=\mathbf{P}^{\top} \mathbf{P t}$. Let $\mathbf{A} \in$ $\mathbb{R}^{d \times L}=\left[\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{L}}\right]$ be the matrix with $\left\{\mathbf{x}_{i_{j}}\right\}_{j=1}^{L}$ as it columns, and $\overline{\mathbf{A}} \in \mathbb{R}^{d \times L}=\left[\overline{\mathbf{x}}_{i_{1}}, \ldots, \overline{\mathbf{x}}_{i_{L}}\right]$ be the matrix with $\left\{\overline{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}$ as it columns. Then $\overline{\mathbf{x}} \in \mathbf{H}_{\overline{\mathbf{A}}}$.
Since $\mathbf{x} \in \boldsymbol{X}^{(k)}$ is γ_{k}-away from the an external subspaces of dimension no greater than $\tilde{d}_{k}, \lambda_{j} \mathbf{x}_{i_{j}} \in \mathbf{H}_{\mathbf{A}}$, we have $d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right) \geq \gamma_{k}$.
According to Lemma 4, with probability at least 1 $4 d e^{-\frac{p \varepsilon^{2}}{c}},\left\|\overline{\mathbf{x}}_{i_{j}}-\mathbf{x}_{i_{j}}\right\|_{2} \leq \sqrt{d}\left\|\mathbf{x}_{i_{j}}\right\|_{2} \varepsilon=\sqrt{d} \varepsilon$. By union bound, with probability at least $1-4 L d e^{-\frac{p \varepsilon^{2}}{c}}$,

$$
\begin{equation*}
\|\mathbf{A}-\overline{\mathbf{A}}\|_{2} \leq\|\mathbf{A}-\overline{\mathbf{A}}\|_{F}=\sqrt{d L} \varepsilon \tag{19}
\end{equation*}
$$

By similar argument in the proof of Theomrem 3, $\left|\sigma_{i}(\mathbf{A})-\sigma_{i}(\overline{\mathbf{A}})\right| \leq\|\mathbf{A}-\overline{\mathbf{A}}\|_{2}$. Then we have $\sigma_{L}(\overline{\mathbf{A}}) \geq$ $\sigma_{\tilde{d}_{k}}-\sqrt{d L} \varepsilon>0$. It follows that $\operatorname{rank}(\overline{\mathbf{A}})=L$. Also, $\sigma_{L}(\mathbf{A}) \geq \sigma_{\tilde{d}_{k}}$. Based on Lemma 2 and (12), we have

$$
\begin{align*}
& \left|d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)\right| \leq \frac{\sqrt{d L} \varepsilon\|\mathbf{x}\|_{2}}{\min \left\{\sigma_{L}(\mathbf{A}), \sigma_{L}(\overline{\mathbf{A}})\right\}} \\
& \leq \frac{\sqrt{d L} \varepsilon}{\sigma_{\tilde{d}_{k}}-\sqrt{d L} \varepsilon} \tag{20}
\end{align*}
$$

In addition,

$$
\begin{equation*}
\left|d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\overline{\mathbf{A}}}\right)\right| \leq\|\overline{\mathbf{x}}-\mathbf{x}\|_{2} \leq \sqrt{d} \varepsilon \tag{21}
\end{equation*}
$$

Combining (12) and (13), we have

$$
\begin{equation*}
\left|d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right)-d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right)\right| \leq \sqrt{d} \varepsilon\left(1+\frac{\sqrt{L}}{\sigma_{\tilde{d}_{k}}-\sqrt{d L} \varepsilon}\right) \tag{22}
\end{equation*}
$$

Since $\mathbf{x} \in \boldsymbol{X}^{(k)}$ is γ_{k}-away from the an external subspaces of dimension no greater than \tilde{d}_{k}, we have $d\left(\mathbf{x}, \mathbf{H}_{\mathbf{A}}\right) \geq \gamma_{k}$. Therefore, $d\left(\overline{\mathbf{x}}, \mathbf{H}_{\overline{\mathbf{A}}}\right) \geq \gamma_{k}-\sqrt{d} \varepsilon(1+$ $\left.\frac{\sqrt{L}}{\sigma_{\tilde{d}_{k}}-\sqrt{d L} \varepsilon}\right)>0$. It follows that $\overline{\mathbf{x}} \notin \mathbf{H}_{\overline{\mathbf{A}}}$, and $\tilde{\mathbf{x}} \notin$ $\mathbf{H}_{\left\{\tilde{\mathbf{x}}_{i_{j}}\right\}_{j=1}^{L}}$. This contradiction shows that all the data points in $\boldsymbol{X}^{(k)}$ are away from the external subspaces under the linear transformation \mathbf{P} for any $1 \leq k \leq K$. It can also be verified that data $\tilde{\boldsymbol{X}}^{(k)}$ are in generation position by similar argument and the definition of general position with margin. Therefore, the conclusion of this theorem follows by applying Theorem 2.

References

[1] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217-288, May 2011.
[2] Yan Mei Chen, Xiao Shan Chen, and Wen Li. On perturbation bounds for orthogonal projections. Numerical Algorithms, 73(2):433-444, Oct 2016.
[3] G. W. Stewart. On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Review, 19(4):634-662, 1977.
[4] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen, 71:441-479, 1912.
[5] Lijun Zhang, Tianbao Yang, Rong Jin, and ZhiHua Zhou. Sparse learning for large-scale and highdimensional data: A randomized convex-concave optimization approach. In Algorithmic Learning Theory 27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, pages 83-97, 2016.

