Supplementary Document for Dimensionality Reduced ℓ^0 -Sparse Subspace Clustering

Yingzhen Yang Independent Researcher

1 Proofs

We reiterate the necessary equations and statements before presenting the proofs of theorems in this paper.

$$\min_{\mathbf{Z}} \|\mathbf{Z}\|_0 \quad s.t. \; \tilde{\mathbf{X}} = \tilde{\mathbf{X}} \mathbf{Z}, \; \operatorname{diag}(\mathbf{Z}) = \mathbf{0} \tag{1}$$

Lemma A. Under the assumptions of Theorem 1, for any $1 \leq k \leq K$, with probability 1, any $L \leq \tilde{d}_k$ points in the projected data $\tilde{X}^{(k)} \in \mathbb{R}^{p \times n_k}$ that lie in \tilde{S}_k are linearly independent.

Proof. For any set $\{\tilde{\mathbf{x}}_{j_\ell}\}_{\ell=1}^L \triangleq \mathbf{A} \subseteq \tilde{\mathbf{X}}^{(k)}$ that are linearly dependent, let $\mathcal{H}_\ell \triangleq \mathbf{H}_{\mathbf{A} \setminus \{\tilde{\mathbf{x}}_{j_\ell}\}}$ be the subspace spanned by $A \setminus \{\mathbf{x}_{j_\ell}\}$ for $1 \leq \ell \leq L$. Then dim $[\mathcal{H}_\ell] < L \leq \tilde{d}_k$, and

$$\Pr[\{\tilde{\mathbf{x}}_{j_{\ell}}\}_{\ell=1}^{L}: \{\tilde{\mathbf{x}}_{j_{\ell}}\}_{\ell=1}^{L} \text{ are linearly dependent}] \\ \leq \sum_{\ell=1}^{L} \Pr[\tilde{\mathbf{x}}_{j_{\ell}} \in \mathcal{H}_{\ell}]$$
(2)

Also, for any $1 \leq \ell \leq L$, according to Fubini's Theorem,

$$\begin{aligned} &\Pr[\tilde{\mathbf{x}}_{j_{\ell}} \in \mathcal{H}_{\ell}] = \Pr[\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_{k}] \\ &= \int_{\times_{\ell'=1}^{L} \mathcal{S}^{(j_{\ell'})}} \mathbb{I}_{\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_{k}} \otimes_{\ell'=1}^{L} d\mu^{(j_{\ell'})} \\ &= \int_{\times_{\ell'\neq\ell} \mathcal{S}^{(j_{\ell'})}} \Pr[\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_{k} | \{\mathbf{x}_{j_{\ell'}}\}_{\ell'\neq\ell}] \otimes_{\ell'\neq\ell} d\mu^{(j_{\ell'})} \end{aligned}$$

where $S^{(j)} \in \{S_k\}_{k=1}^K$ is the subspace that \mathbf{x}_j lies in, and $\mu^{(j)}$ is the probabilistic measure of the distribution in $S^{(j)}$. Note that $\mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_k$ is a subspace lie in \mathcal{S}_k with dimension less than d_k . To see this, suppose dim[$\mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_k$] = d_k , since $\mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_k \subseteq \mathcal{S}_k$, we have $\mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_k = \mathcal{S}_k$, and it follows that $\mathcal{H}_{\ell} = \tilde{\mathcal{S}}_k$ and dim[\mathcal{H}_{ℓ}] = \tilde{d}_k , contradicting with the fact that dim[\mathcal{H}_{ℓ}] $< \tilde{d}_k$. Since the data distribution in \mathcal{S}_k is continuous, the probability that the random data point $\mathbf{x}_{j_{\ell}}$ lie in a subspace of \mathcal{S}_k with dimension less than d_k is zero, i.e. $\Pr[\mathbf{x}_{j_{\ell}} \in \mathbf{P}^{(-1)}(\mathcal{H}_{\ell}) \cap \mathcal{S}_k] = 0$. According to the union bound (2), the conclusion of this lemma holds. \Box **Theorem 1.** (Subspace detection property holds almost surely for DR- ℓ^0 -SSC under the randomized models) Under either the semi-random model or the fullyrandom model, if $n_k \ge d_k + 1$ for any $1 \le k \le K$ and **P** is a subspace preserving transformation, then the subspace detection property for DR- ℓ^0 -SSC holds with probability 1 with the optimal solution \mathbf{Z}^* to (1).

Proof. We first prove the result under the semi-random model, wherein the subspaces are fixed and the data in each subspace are distributed at random.

For any fixed $1 \leq i \leq n$, note that \mathbf{Z}^{*i} is the optimal solution to the following ℓ^0 sparse representation problem

$$\min_{\mathbf{Z}^{i}} \|\mathbf{Z}^{i}\|_{0} \quad s.t. \ \tilde{\mathbf{x}}_{i} = [\tilde{\mathbf{X}}^{(k)} \setminus \tilde{\mathbf{x}}_{i} \quad \tilde{\mathbf{X}}^{(-k)}] \mathbf{Z}^{i}, \ \mathbf{Z}_{ii} = 0 \quad (3)$$

where $\tilde{\mathbf{X}}^{(k)} = \mathbf{P}\mathbf{X}^{(k)}$, $\tilde{\mathbf{X}}^{(-k)} = \mathbf{P}\mathbf{X}^{(-k)}$, $\mathbf{X}^{(-k)}$ denotes the data that lie in all subspaces except \mathcal{S}_k . Let $\mathbf{Z}^{*i} = \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}$ where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are sparse codes corresponding to $\tilde{\mathbf{X}}^{(k)} \setminus \tilde{\mathbf{x}}_i$ and $\tilde{\mathbf{X}}^{(-k)}$ respectively.

Suppose $\beta \neq \mathbf{0}$, then $\tilde{\mathbf{x}}_i$ belongs to a subspace \mathcal{S}' spanned by the projected data points corresponding to nonzero elements of \mathbf{Z}^{*i} , and $\mathcal{S}' \neq \tilde{\mathcal{S}}_k$, dim $[\mathcal{S}'] \leq \tilde{d}_k$. To see this, if $\mathcal{S}' = \tilde{\mathcal{S}}_k$, then the projected data corresponding to nonzero elements of $\boldsymbol{\beta}$ belong to $\tilde{\mathcal{S}}_k$, which is contrary to the definition of $\mathbf{X}^{(-k)}$. Also, if dim $[\mathcal{S}'] > \tilde{d}_k$, then any \tilde{d}_k points in $\tilde{\mathbf{X}}^{(k)}$ can be used to linearly represent $\tilde{\mathbf{x}}_i$ almost surely according to Lemma A, contradicting with the optimality of \mathbf{Z}^{*i} .

Let $\mathcal{S}^{''} = \mathcal{S}^{'} \cap \tilde{\mathcal{S}}_k$, then dim $[\mathcal{S}^{''}] \leq \tilde{d}_k$ we now derive the following results according to the dimension of $\mathcal{S}^{''}$:

dim[S"] < d˜_k. By Fubini's Theorem, the probability that x̃_i lies in S" is

$$\Pr[\tilde{\mathbf{x}}_{i} \in \mathcal{S}^{''}] = \int_{\times_{i=1}^{n} \mathcal{S}^{(i)}} \mathbb{I}_{\tilde{\mathbf{x}}_{i} \in \mathcal{S}^{''}} \otimes_{i=1}^{n} d\mu^{(i)}$$
$$= \int_{\times_{j \neq i} \mathcal{S}^{(j)}} \Pr[\mathbf{x}_{i} \in \mathbf{P}^{(-1)}(\mathcal{S}^{''}) \cap \mathcal{S}_{k} | \{\mathbf{x}_{j}\}_{j \neq i}] \otimes_{j \neq i} d\mu^{(j)}$$
(4)

where $S^{(j)} \in \{S_k\}_{k=1}^K$ is the subspace that \mathbf{x}_j lies in, and $\mu^{(j)}$ is the probabilistic measure of the distribution in $S^{(j)}$.

Since dim $[\mathcal{S}''] < \tilde{d}_k$, $\mathbf{P}^{(-1)}(\mathcal{S}'') \cap \mathcal{S}_k$ must be a subspace in \mathcal{S}_k with dimension less than d_k . Otherwise, if dim $[\mathbf{P}^{(-1)}(\mathcal{S}'') \cap \mathcal{S}_k] = d_k$, then $\mathbf{P}^{(-1)}(\mathcal{S}'') \cap \mathcal{S}_k = \mathcal{S}_k$ and $\mathcal{S}'' = \tilde{\mathcal{S}}_k$, and it follows that dim $[\mathcal{S}''] = \tilde{d}_k$ which contradicts with the condition that dim $[\mathcal{S}''] < \tilde{d}_k$.

Therefore, dim[$\mathbf{P}^{(-1)}(\mathcal{S}'') \cap \mathcal{S}_k$] $< d_k$, and the probability that \mathbf{x}_i lies in a subspace of dimension less than d_k in \mathcal{S}_k is zero by the similar argument used in the proof of Lemma A. So we have $\Pr[\mathbf{x}_i \in$ $\mathbf{P}^{(-1)}(\mathcal{S}'') \cap \mathcal{S}_k | \{\mathbf{x}_j\}_{j \neq i} \} = 0$, and it follows that the integral in (4) vanishes, namely $\Pr[\mathbf{\tilde{x}}_i \in \mathcal{S}''] = 0$.

• dim $[\mathcal{S}''] = \tilde{d}_k$. In this case, $\mathcal{S}'' = \mathcal{S}' = \tilde{\mathcal{S}}_k$, which indicates that the data points corresponding to nonzero elements of $\boldsymbol{\beta}$ belong to $\tilde{\mathcal{S}}_k$, contradicting with the definition of $\tilde{\boldsymbol{X}}^{(-k)}$.

Therefore, with probability 1, $\beta = 0$. By the union bound over all $1 \le i \le n$, the conclusion of Theorem 1 holds for the semi-random model.

In the case of fully-random model, note that the subspace detection property holds with probability 1 for any subspaces $\{S_k\}_{k=1}^{K}$. It follows that with probability 1 over the subspaces and the data, the subspace detection property holds with probability 1.

Theorem 2. (Subspace detection property holds for DR- ℓ^0 -SSC under the deterministic model) Under the deterministic model, suppose $n_k \ge d_k + 1$, $\mathbf{X}^{(k)}$ is in general position for any $1 \le k \le K$. Furthermore, if all the data points in $\mathbf{X}^{(k)}$ are away from the external subspaces under the linear transformation $\mathbf{P} \in \mathbb{R}^{p \times d}$ for any $1 \le k \le K$, then the subspace detection property for $DR-\ell^0$ -SSC holds with the optimal solution \mathbf{Z}^* to (1).

Proof. Similar to the proof of Theorem 1, \mathbf{Z}^{*i} is the optimal solution to the following ℓ^0 sparse representation problem

$$\min_{\mathbf{Z}^{i}} \|\mathbf{Z}^{i}\|_{0} \quad s.t. \ \tilde{\mathbf{x}}_{i} = [\tilde{\mathbf{X}}^{(k)} \setminus \tilde{\mathbf{x}}_{i} \quad \tilde{\mathbf{X}}^{(-k)}] \mathbf{Z}^{i}, \ \mathbf{Z}_{ii} = 0 \quad (5)$$

where $\tilde{\mathbf{X}}^{(k)} = \mathbf{P}\mathbf{X}^{(k)}, \ \tilde{\mathbf{X}}^{(-k)} = \mathbf{P}\mathbf{X}^{(-k)}, \ \mathbf{X}^{(-k)}$ denotes the data that lie in all subspaces except \mathcal{S}_k . Let $\mathbf{Z}^{*i} = \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{bmatrix}$ where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are sparse codes corresponding to $\tilde{\mathbf{X}}^{(k)} \setminus \tilde{\mathbf{x}}_i$ and $\tilde{\mathbf{X}}^{(-k)}$ respectively.

Suppose $\beta \neq \mathbf{0}$, then $\tilde{\mathbf{x}}_i$ belongs to a subspace $\mathcal{S}' = \mathbf{H}_{\tilde{\mathbf{X}}_{\mathbf{Z}^{*i}}}$ spanned by the projected data points corresponding to nonzero elements of \mathbf{Z}^{*i} , and $\mathcal{S}' \neq \tilde{\mathcal{S}}_k$,

 $\dim[\mathcal{S}'] \leq d_k$ by the argument in the proof of Theorem 1. Since the data points (or columns) in $\tilde{X}_{\mathbf{Z}^{*i}}$ are linearly independent, it can be verified the data points in $X_{\mathbf{Z}^{*i}}$ are also linearly independent. Therefore,

$$\tilde{\mathbf{x}}_i \in \mathbf{H}_{\tilde{\boldsymbol{X}}_{\mathbf{Z}^{*\,i}}} \Rightarrow \mathbf{x}_i \in \mathbf{P}^{(-1)}(\mathbf{H}_{\tilde{\boldsymbol{X}}_{\mathbf{Z}^{*\,i}}}) \Rightarrow \mathbf{x}_i \in \mathbf{P}^{(-1)}(\mathbf{P}(\mathbf{H}_{\mathbf{X}_{\mathbf{Z}^{*\,i}}}))$$

And it follows that \mathbf{x}_i lies in an external subspace $\mathbf{H}_{\mathbf{X}_{\mathbf{Z}^{*i}}}$ spanned by linearly independent points in $\mathbf{X}_{\mathbf{Z}^{*i}}$ under the mapping $\mathbf{P}^{(-1)} \circ \mathbf{P}$, and dim $[\mathbf{H}_{\mathbf{X}_{\mathbf{Z}^{*i}}}] = \dim[\mathcal{S}'] \leq \tilde{d}_k$. Therefore, $\boldsymbol{\beta} = \mathbf{0}$. Perform the above analysis for all $1 \leq i \leq n$, we can prove that the subspace detection property holds for all $1 \leq i \leq n$.

Lemma 1. (Corollary 10.9 in [1]) Let $p_0 \ge 2$ and $p' = p - p_0 \ge 4$, then with probability at least $1 - 6e^{-p}$, then the spectral norm of $\mathbf{X} - \hat{\mathbf{X}}$ is bounded by

$$\|\boldsymbol{X} - \boldsymbol{X}\|_2 \le C_{p,p_0} \tag{6}$$

where

$$C_{p,p_0} = \left(1 + 17\sqrt{1 + \frac{p_0}{p'}}\right)\sigma_{p_0+1} + \frac{8\sqrt{p}}{p'+1}\left(\sum_{j>p_0}\sigma_j^2\right)^{\frac{1}{2}} \quad (7)$$

and $\sigma_1 \geq \sigma_2 \geq \ldots$ are the singular values of X.

Lemma 2. (Perturbation of distance to subspaces) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ are two matrices and rank $(\mathbf{A}) = r$, rank $(\mathbf{B}) = s$. Also, $\mathbf{E} = \mathbf{A} - \mathbf{B}$ and $\|\mathbf{E}\|_2 \leq C$, where $\|\cdot\|_2$ indicates the spectral norm. Then for any point $\mathbf{x} \in \mathbb{R}^m$, the difference of the distance of \mathbf{x} to the column space of \mathbf{A} and \mathbf{B} , i.e. $|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})|$, is bounded by

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})| \le \frac{C \|\mathbf{x}\|_2}{\min\{\sigma_r(\mathbf{A}), \sigma_s(\mathbf{B})\}}$$
(8)

Proof. Note that the projection of **x** onto the subspace $\mathbf{H}_{\mathbf{A}}$ is $\mathbf{A}\mathbf{A}^{+}\mathbf{x}$ where \mathbf{A}^{+} is the Moore-Penrose pseudoinverse of the matrix \mathbf{A} , so $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}})$ equals to the distance between **x** and its projection, namely $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) = \|\mathbf{x} - \mathbf{A}\mathbf{A}^{+}\mathbf{x}\|_{2}$. Similarly, $d(\mathbf{x}, \mathbf{H}_{\mathbf{B}}) = \|\mathbf{x} - \mathbf{B}\mathbf{B}^{+}\mathbf{x}\|_{2}$. It follows that

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})| = |\|\mathbf{x} - \mathbf{A}\mathbf{A}^{+}\mathbf{x}\|_{2} - \|\mathbf{x} - \mathbf{B}\mathbf{B}^{+}\mathbf{x}\|_{2}|$$

$$\leq \|\mathbf{A}\mathbf{A}^{+}\mathbf{x} - \mathbf{B}\mathbf{B}^{+}\mathbf{x}\|_{2} \leq \|\mathbf{A}\mathbf{A}^{+} - \mathbf{B}\mathbf{B}^{+}\|_{2}\|\mathbf{x}\|_{2}$$
(9)

According to the perturbation bound on the orthogonal projection in [2, 3],

$$\|\mathbf{A}\mathbf{A}^{+} - \mathbf{B}\mathbf{B}^{+}\|_{2} \le \max\{\|\mathbf{E}\mathbf{A}^{+}\|_{2}, \|\mathbf{E}\mathbf{B}^{+}\|_{2}\}$$
 (10)

Since $\|\mathbf{E}\mathbf{A}^+\|_2 \leq \|\mathbf{E}\|_2 \|\mathbf{A}^+\|_2 \leq \frac{C}{\sigma_r(\mathbf{A})}, \|\mathbf{E}\mathbf{B}^+\|_2 \leq \|\mathbf{E}\|_2 \|\mathbf{B}^+\|_2 \leq \frac{C}{\sigma_s(\mathbf{B})}$, combining (9) and (10), we have

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})| \le \max\{\frac{C}{\sigma_r(\mathbf{A})}, \frac{C}{\sigma_s(\mathbf{B})}\} \|\mathbf{x}\|_2$$

$$= \frac{C \|\mathbf{x}\|_2}{\min\{\sigma_r(\mathbf{A}), \sigma_s(\mathbf{B})\}}$$
(11)

Theorem 3. Under the deterministic model, suppose $n_k \geq d_k+1$, $\mathbf{X}^{(k)}$ is in general position, $\sigma_{\tilde{d}_k} > C_{p,p_0}$ for any $1 \leq k \leq K$, and C_{p,p_0} is defined by (7) with $p_0 \geq 2$. Suppose that data $\mathbf{X}^{(k)}$ are in general position with margin τ_k such that $\tau_k > 1 + \frac{C_{p,p_0}}{\sigma_{\tilde{d}_k} - C_{p,p_0}}$. Moreover, all the data points in $\mathbf{X}^{(k)}$ are γ_k -away from the external subspaces of dimension no greater than \tilde{d}_k for any $1 \leq k \leq K$ with $\gamma_k > 1 + \frac{C_{p,p_0}}{\sigma_{\tilde{d}_k} - C_{p,p_0}}$. Then with probability at least $1 - 6e^{-p}$, the subspace detection property for DR- ℓ^0 -SSC holds with the optimal solution \mathbf{Z}^* to (1), using the linear projection $\mathbf{P} = \mathbf{Q}^\top$.

Proof. Suppose there is $1 \leq k \leq K$ and a point $\mathbf{x} \in \mathbf{X}^{(k)}$ such that $d(\mathbf{x}, \mathbf{H}) = 0$ for some $\mathbf{H} \in \mathbf{P}^{(-1)} \circ \mathbf{P}(\mathcal{H}_{\mathbf{x}, \tilde{d}_k})$, then there exist $L \leq \tilde{d}_k$ independent points $\{\mathbf{x}_{i_j}\}_{j=1}^L \subseteq \mathbf{X}$ such that $\{\mathbf{x}_{i_j}\}_{j=1}^L \not\subseteq \mathbf{X}^{(k)}$ and $\mathbf{x} \notin \{\mathbf{x}_{i_j}\}_{j=1}^L$, $\tilde{\mathbf{x}} \in \mathbf{P}(\mathbf{H}_{\{\mathbf{x}_{i_j}\}_{j=1}^L}) = \mathbf{H}_{\{\tilde{\mathbf{x}}_{i_j}\}_{j=1}^L}$. Now we define $\bar{\mathbf{t}} = \mathbf{P}^\top \tilde{\mathbf{t}} = \mathbf{Q}\mathbf{Q}^\top \mathbf{t}$ for any $\mathbf{t} \in \mathbf{R}^d$. Since the rows of \mathbf{P} are linearly independent, $\tilde{\mathbf{x}} \in \mathbf{H}_{\{\tilde{\mathbf{x}}_{i_j}\}_{j=1}^L} \Leftrightarrow \bar{\mathbf{x}} \in \mathbf{H}_{\{\tilde{\mathbf{x}}_{i_j}\}_{j=1}^L}$

Let $\mathbf{A} \in \mathbb{R}^{d \times L} = [\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_L}]$ be the matrix with $\{\mathbf{x}_{i_j}\}_{j=1}^L$ as it columns, and $\mathbf{\bar{A}} \in \mathbb{R}^{d \times L} = [\mathbf{\bar{x}}_{i_1}, \dots, \mathbf{\bar{x}}_{i_L}]$ be the matrix with $\{\mathbf{\bar{x}}_{i_j}\}_{j=1}^L$ as it columns. Note that

$$\|\mathbf{A}-ar{\mathbf{A}}\|_2 \leq \|m{X}-\mathbf{Q}\mathbf{Q}^{ op}m{X}\|_2 = \|m{X}-ar{m{X}}\|_2 \leq C_{p,p_0}$$

By Weyl [4], $|\sigma_i(\mathbf{A}) - \sigma_i(\bar{\mathbf{A}})| \leq ||\mathbf{A} - \bar{\mathbf{A}}||_2$. Then we have $\sigma_L(\bar{\mathbf{A}}) \geq \sigma_L(\mathbf{A}) - ||\mathbf{A} - \bar{\mathbf{A}}||_2 \geq \sigma_L(\mathbf{A}) - C_{p,p_0} \geq \sigma_{\tilde{d}_k} - C_{p,p_0} > 0$. It follows that rank $(\bar{\mathbf{A}}) = L$. In addition, $\sigma_L(\mathbf{A}) \geq \sigma_{\tilde{d}_k}$.

Therefore, according to Lemma 2,

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}})| \leq \frac{C_{p, p_0} \|\mathbf{x}\|_2}{\min\{\sigma_L(\mathbf{A}), \sigma_L(\bar{\mathbf{A}})\}}$$
$$\leq \frac{C_{p, p_0}}{\sigma_{\tilde{d}_k} - C_{p, p_0}}$$
(12)

Moreover, we have

$$\begin{aligned} |d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) - d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}})| &\leq \|\bar{\mathbf{x}} - \mathbf{x}\|_2 \\ &= \|\mathbf{Q}\mathbf{Q}^\top \mathbf{x} - \mathbf{x}\|_2 \leq \|\mathbf{x}\|_2 \leq 1 \end{aligned}$$
(13)

where $\mathbf{e}_{\mathbf{x}} \in \mathbb{R}^{n}$, $(\mathbf{e}_{\mathbf{x}})_{i} = 1$ for the index *i* such that $\mathbf{x}_{i} = \mathbf{x}$, and $(\mathbf{e}_{\mathbf{x}})_{j} = 0$ for all $j \neq i$. For the first inequality in (13), note that for any $\varepsilon > 0$, there exists $\mathbf{y} \in \mathbf{H}_{\bar{\mathbf{A}}}$ such that $d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) + \varepsilon > d(\bar{\mathbf{x}}, \mathbf{y})$. It follows that $\|\bar{\mathbf{x}} - \mathbf{x}\|_{2} + d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) + \varepsilon > \|\bar{\mathbf{x}} - \mathbf{x}\|_{2} + \|\bar{\mathbf{x}} - \mathbf{y}\|_{2} \ge \|\mathbf{x} - \mathbf{y}\|_{2} \ge d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}})$ for any $\varepsilon > 0$. Therefore,

 $\begin{aligned} \|\bar{\mathbf{x}} - \mathbf{x}\|_2 &\geq d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}}) - d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}). \text{ Similarly, } \|\bar{\mathbf{x}} - \mathbf{x}\|_2 \geq \\ d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) - d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}}). \end{aligned}$

Combining (12) and (13), we have

$$|d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{A}})| \le 1 + \frac{C_{p, p_0}}{\sigma_{\tilde{d}_k} - C_{p, p_0}}$$
(14)

Since $\mathbf{x} \in \mathbf{X}^{(k)}$ is γ_k -away from the an external subspaces of dimension no greater than \tilde{d}_k , we have $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) \geq \gamma_k$. Therefore, $d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) \geq \gamma_k - 1 - \frac{C_{p,p_0}}{\sigma_{\bar{d}_k} - C_{p,p_0}} > 0$. It follows that $\bar{\mathbf{x}} \notin \mathbf{H}_{\bar{\mathbf{A}}}$, and $\tilde{\mathbf{x}} \notin \mathbf{H}_{\{\bar{\mathbf{x}}_i\}_{j=1}^{L}}$. This contradiction indicates that all the data points in $\mathbf{X}^{(k)}$ are away from the external subspaces under the linear transformation \mathbf{P} for any $1 \leq k \leq K$. It can also be verified that data $\tilde{\mathbf{X}}^{(k)}$ are in generation position by similar argument and the definition of general position with margin. Therefore, the conclusion of this theorem follows by applying Theorem 2.

Lemma 3. (Lemma 6 in [5], adjusted with our notations) Suppose **P** satisfies the ℓ^2 -norm preserving property. If $0 < \varepsilon \leq \frac{1}{2}$, then for any two vectors $\mathbf{u} \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^d$, with probability at least $1 - 4e^{-\frac{p\varepsilon^2}{c}}$,

$$|\mathbf{u}^{\top}\mathbf{P}^{\top}\mathbf{P}\mathbf{v} - \mathbf{u}^{\top}\mathbf{v}| \le \|\mathbf{u}\|_2 \|\mathbf{v}\|_2 \varepsilon$$
(15)

Lemma 4. Suppose **P** satisfies the ℓ^2 -norm preserving property. If $0 < \varepsilon \leq \frac{1}{2}$, then for any vector $\mathbf{v} \in \mathbb{R}^d$, with probability at least $1 - 4de^{-\frac{p\varepsilon^2}{c}}$,

$$\|\bar{\mathbf{v}} - \mathbf{v}\|_2 \le \sqrt{d} \|\mathbf{v}\|_2 \varepsilon \tag{16}$$

where $\bar{\mathbf{v}} = \mathbf{P}^\top \mathbf{P} \mathbf{v}$.

Proof. Choosing $\mathbf{e}_i \in \mathbb{R}^n$ where $(\mathbf{e}_i)_i = 1$ and $(\mathbf{e}_i)_j = 0$ for all $j \neq i$. Applying Lemma 3 with $\mathbf{u} = \mathbf{e}_i$, then with probability at least $1 - 4e^{-\frac{p\epsilon^2}{c}}$,

$$\begin{aligned} |\mathbf{e}_{i}^{\top} \mathbf{P}^{\top} \mathbf{P} \mathbf{v} - \mathbf{e}_{i}^{\top} \mathbf{v}| \\ &= |\bar{\mathbf{v}}_{i} - \mathbf{v}_{i}| \le \|\mathbf{e}_{i}\|_{2} \|\mathbf{v}\|_{2} \varepsilon = \|\mathbf{v}\|_{2} \varepsilon \end{aligned}$$
(17)

By the union bound, with probability at least $1 - 4de^{-\frac{p\varepsilon^2}{c}}$,

$$|\bar{\mathbf{v}} - \mathbf{v}|_2 \le \sqrt{d} \|\mathbf{v}\|_2 \varepsilon \tag{18}$$

Theorem 4. Let **P** satisfy the ℓ^2 -norm preserving property. Under the deterministic model, suppose $n_k \geq$

 $d_k + 1, \ \sigma_{\tilde{d}_k} > \sqrt{d\tilde{d}_k} \varepsilon \ for \ 0 < \varepsilon \leq \frac{1}{2}.$ Suppose that data $\mathbf{X}^{(k)}$ are in general position with margin τ_k such that $\tau_k > \sqrt{d\varepsilon}(1 + \frac{\sqrt{\tilde{d}_k}}{\sigma_{\tilde{d}_k} - \sqrt{d\tilde{d}_k}\varepsilon})$. Moreover, all the data points in $\mathbf{X}^{(k)}$ are γ_k -away from the external subspaces of dimension no greater than \tilde{d}_k for any $1 \leq k \leq K$ with $\gamma_k > \sqrt{d\varepsilon}(1 + \frac{\sqrt{\tilde{d}_k}}{\sigma_{\tilde{d}_k} - \sqrt{d\tilde{d}_k}\varepsilon})$. Then with probability at least $1 - 4nde^{-\frac{p\varepsilon^2}{c}}$, the subspace detection property for $DR-\ell^0$ -SSC holds with the optimal solution \mathbf{Z}^* to (1).

Proof. Suppose there is $1 \leq k \leq K$ and a point $\mathbf{x} \in \mathbf{X}^{(k)}$ such that $d(\mathbf{x}, \mathbf{H}) = 0$ for some $\mathbf{H} \in \mathbf{P}^{(-1)} \circ \mathbf{P}(\mathcal{H}_{\mathbf{x}, \tilde{d}_k})$, then there exist $L \leq \tilde{d}_k$ independent points $\{\mathbf{x}_{i_j}\}_{j=1}^L \subseteq \mathbf{X}$ such that $\{\mathbf{x}_{i_j}\}_{j=1}^L \not\subseteq \mathbf{X}^{(k)}$ and $\mathbf{x} \notin \{\mathbf{x}_{i_j}\}_{j=1}^L$. It follows that $\tilde{\mathbf{x}} \in \mathbf{P}(\mathbf{H}_{\{\mathbf{x}_{i_j}\}_{j=1}^L}) = \mathbf{H}_{\{\tilde{\mathbf{x}}_{i_j}\}_{j=1}^L}$.

For any vector $\mathbf{t} \in \mathbb{R}^d$, define $\overline{\mathbf{t}} = \mathbf{P}^\top \mathbf{P} \mathbf{t}$. Let $\mathbf{A} \in \mathbb{R}^{d \times L} = [\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_L}]$ be the matrix with $\{\mathbf{x}_{i_j}\}_{j=1}^L$ as it columns, and $\overline{\mathbf{A}} \in \mathbb{R}^{d \times L} = [\overline{\mathbf{x}}_{i_1}, \dots, \overline{\mathbf{x}}_{i_L}]$ be the matrix with $\{\overline{\mathbf{x}}_{i_j}\}_{j=1}^L$ as it columns. Then $\overline{\mathbf{x}} \in \mathbf{H}_{\overline{\mathbf{A}}}$.

Since $\mathbf{x} \in \mathbf{X}^{(k)}$ is γ_k -away from the an external subspaces of dimension no greater than \tilde{d}_k , $\lambda_j \mathbf{x}_{i_j} \in \mathbf{H}_{\mathbf{A}}$, we have $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) \geq \gamma_k$.

According to Lemma 4, with probability at least $1 - 4de^{-\frac{p\varepsilon^2}{c}}$, $\|\bar{\mathbf{x}}_{i_j} - \mathbf{x}_{i_j}\|_2 \le \sqrt{d} \|\mathbf{x}_{i_j}\|_2 \varepsilon = \sqrt{d}\varepsilon$. By union bound, with probability at least $1 - 4Lde^{-\frac{p\varepsilon^2}{c}}$,

$$\|\mathbf{A} - \bar{\mathbf{A}}\|_2 \le \|\mathbf{A} - \bar{\mathbf{A}}\|_F = \sqrt{dL}\varepsilon \tag{19}$$

By similar argument in the proof of Theomrem 3, $|\sigma_i(\mathbf{A}) - \sigma_i(\bar{\mathbf{A}})| \leq ||\mathbf{A} - \bar{\mathbf{A}}||_2$. Then we have $\sigma_L(\bar{\mathbf{A}}) \geq \sigma_{\bar{d}_k} - \sqrt{dL}\varepsilon > 0$. It follows that rank $(\bar{\mathbf{A}}) = L$. Also, $\sigma_L(\mathbf{A}) \geq \sigma_{\bar{d}_k}$. Based on Lemma 2 and (12), we have

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}})| \leq \frac{\sqrt{dL}\varepsilon \|\mathbf{x}\|_{2}}{\min\{\sigma_{L}(\mathbf{A}), \sigma_{L}(\bar{\mathbf{A}})\}} \leq \frac{\sqrt{dL}\varepsilon}{\sigma_{\tilde{d}_{k}} - \sqrt{dL}\varepsilon}$$
(20)

In addition,

$$|d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) - d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}})| \le \|\bar{\mathbf{x}} - \mathbf{x}\|_2 \le \sqrt{d\varepsilon}$$
(21)

Combining (12) and (13), we have

$$|d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) - d(\mathbf{x}, \mathbf{H}_{\bar{\mathbf{A}}})| \le \sqrt{d\varepsilon} (1 + \frac{\sqrt{L}}{\sigma_{\tilde{d}_k} - \sqrt{dL\varepsilon}}) \quad (22)$$

Since $\mathbf{x} \in \mathbf{X}^{(k)}$ is γ_k -away from the an external subspaces of dimension no greater than \tilde{d}_k , we have $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) \geq \gamma_k$. Therefore, $d(\bar{\mathbf{x}}, \mathbf{H}_{\bar{\mathbf{A}}}) \geq \gamma_k - \sqrt{d\varepsilon}(1 + \frac{\sqrt{L}}{\sigma_{\bar{d}_k} - \sqrt{dL\varepsilon}}) > 0$. It follows that $\bar{\mathbf{x}} \notin \mathbf{H}_{\bar{\mathbf{A}}}$, and $\tilde{\mathbf{x}} \notin \mathbf{H}_{\{\bar{\mathbf{x}}_{i_j}\}_{j=1}^L}$. This contradiction shows that all the data points in $\mathbf{X}^{(k)}$ are away from the external subspaces under the linear transformation \mathbf{P} for any $1 \leq k \leq K$. It can also be verified that data $\tilde{\mathbf{X}}^{(k)}$ are in generation position by similar argument and the definition of general position with margin. Therefore, the conclusion of this theorem follows by applying Theorem 2.

References

- N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Rev.*, 53(2):217–288, May 2011.
- [2] Yan Mei Chen, Xiao Shan Chen, and Wen Li. On perturbation bounds for orthogonal projections. *Numerical Algorithms*, 73(2):433–444, Oct 2016.
- [3] G. W. Stewart. On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM *Review*, 19(4):634–662, 1977.
- [4] H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). *Mathematische Annalen*, 71:441–479, 1912.
- [5] Lijun Zhang, Tianbao Yang, Rong Jin, and Zhi-Hua Zhou. Sparse learning for large-scale and highdimensional data: A randomized convex-concave optimization approach. In Algorithmic Learning Theory -27th International Conference, ALT 2016, Bari, Italy, October 19-21, 2016, Proceedings, pages 83–97, 2016.