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1 Proofs

We reiterate the necessary equations and statements
before presenting the proofs of theorems in this paper.

min
Z
‖Z‖0 s.t. X̃ = X̃Z, diag(Z) = 0 (1)

Lemma A. Under the assumptions of Theorem 1, for
any 1 ≤ k ≤ K, with probability 1, any L ≤ d̃k points
in the projected data X̃(k) ∈ IRp×nk that lie in S̃k are
linearly independent.

Proof. For any set {x̃j`}L`=1 , A ⊆ X̃(k) that are

linearly dependent, let H` , HA\{x̃j`
} be the subspace

spanned by A \ {xj`} for 1 ≤ ` ≤ L. Then dim[H`] <
L ≤ d̃k, and

Pr[{x̃j`}
L
`=1 : {x̃j`}

L
`=1 are linearly dependent]

≤
L∑

`=1

Pr[x̃j` ∈ H`] (2)

Also, for any 1 ≤ ` ≤ L, according to Fubini’s Theorem,

Pr[x̃j` ∈ H`] = Pr[xj` ∈ P(−1)(H`) ∩ Sk]

=

∫
×L

`′=1
S(j

`′ )
1Ixj`

∈P(−1)(H`)∩Sk⊗
L
`′=1dµ

(j`′ )

=

∫
×`′ 6=`S

(j
`′ )

Pr[xj` ∈ P(−1)(H`) ∩ Sk|{xj`′ }`′ 6=`]⊗`′ 6=`dµ
(j`′ )

where S(j) ∈ {Sk}Kk=1 is the subspace that xj lies in,
and µ(j) is the probabilistic measure of the distribution
in S(j). Note that P(−1)(H`) ∩ Sk is a subspace lie in
Sk with dimension less than dk. To see this, suppose
dim[P(−1)(H`) ∩ Sk] = dk, since P(−1)(H`) ∩ Sk ⊆ Sk,
we have P(−1)(H`) ∩ Sk = Sk, and it follows that
H` = S̃k and dim[H`] = d̃k, contradicting with the fact
that dim[H`] < d̃k. Since the data distribution in Sk is
continuous, the probability that the random data point
xj` lie in a subspace of Sk with dimension less than dk
is zero, i.e. Pr[xj` ∈ P(−1)(H`) ∩ Sk] = 0. According
to the union bound (2), the conclusion of this lemma
holds.

Theorem 1. (Subspace detection property holds al-
most surely for DR-`0-SSC under the randomized mod-
els) Under either the semi-random model or the fully-
random model, if nk ≥ dk + 1 for any 1 ≤ k ≤ K and
P is a subspace preserving transformation, then the
subspace detection property for DR-`0-SSC holds with
probability 1 with the optimal solution Z∗ to (1).

Proof. We first prove the result under the semi-random
model, wherein the subspaces are fixed and the data
in each subspace are distributed at random.

For any fixed 1 ≤ i ≤ n, note that Z∗i is the opti-
mal solution to the following `0 sparse representation
problem

min
Zi
‖Zi‖0 s.t. x̃i = [X̃(k) \ x̃i X̃(−k)]Zi, Zii = 0 (3)

where X̃(k) = PX(k), X̃(−k) = PX(−k), X(−k) de-
notes the data that lie in all subspaces except Sk. Let

Z∗i =

[
α
β

]
where α and β are sparse codes corre-

sponding to X̃(k) \ x̃i and X̃(−k) respectively.

Suppose β 6= 0, then x̃i belongs to a subspace S ′

spanned by the projected data points corresponding
to nonzero elements of Z∗i, and S ′ 6= S̃k, dim[S ′ ] ≤
d̃k. To see this, if S ′ = S̃k, then the projected data
corresponding to nonzero elements of β belong to S̃k,
which is contrary to the definition of X(−k). Also,
if dim[S ′ ] > d̃k, then any d̃k points in X̃(k) can be
used to linearly represent x̃i almost surely according
to Lemma A, contradicting with the optimality of Z∗i.

Let S ′′ = S ′ ∩ S̃k, then dim[S ′′ ] ≤ d̃k we now derive
the following results according to the dimension of S ′′ :

• dim[S ′′ ] < d̃k. By Fubini’s Theorem, the probability

that x̃i lies in S ′′ is

Pr[x̃i ∈ S
′′

] =

∫
×n

i=1S
(i)

1Ix̃i∈S
′′⊗n

i=1dµ
(i)

=

∫
×j 6=iS(j)

Pr[xi ∈ P(−1)(S
′′

) ∩ Sk|{xj}j 6=i]⊗j 6=idµ
(j)

(4)
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where S(j) ∈ {Sk}Kk=1 is the subspace that xj lies
in, and µ(j) is the probabilistic measure of the dis-
tribution in S(j).

Since dim[S ′′ ] < d̃k, P(−1)(S ′′) ∩ Sk must be a sub-
space in Sk with dimension less than dk. Otherwise,
if dim[P(−1)(S ′′)∩Sk] = dk, then P(−1)(S ′′)∩Sk =
Sk and S ′′ = S̃k, and it follows that dim[S ′′ ] = d̃k
which contradicts with the condition that dim[S ′′ ] <
d̃k.

Therefore, dim[P(−1)(S ′′) ∩ Sk] < dk, and the prob-
ability that xi lies in a subspace of dimension less
than dk in Sk is zero by the similar argument used
in the proof of Lemma A. So we have Pr[xi ∈
P(−1)(S ′′) ∩ Sk|{xj}j 6=i] = 0, and it follows that

the integral in (4) vanishes, namely Pr[x̃i ∈ S
′′
] = 0.

• dim[S ′′ ] = d̃k. In this case, S ′′ = S ′ = S̃k, which in-
dicates that the data points corresponding to nonzero
elements of β belong to S̃k, contradicting with the
definition of X̃(−k).

Therefore, with probability 1, β = 0. By the union
bound over all 1 ≤ i ≤ n , the conclusion of Theorem 1
holds for the semi-random model.

In the case of fully-random model, note that the sub-
space detection property holds with probability 1 for
any subspaces {Sk}Kk=1. It follows that with probabil-
ity 1 over the subspaces and the data, the subspace
detection property holds with probability 1.

Theorem 2. (Subspace detection property holds for
DR-`0-SSC under the deterministic model) Under the
deterministic model, suppose nk ≥ dk + 1, X(k) is in
general position for any 1 ≤ k ≤ K. Furthermore, if
all the data points in X(k) are away from the external
subspaces under the linear transformation P ∈ IRp×d

for any 1 ≤ k ≤ K, then the subspace detection property
for DR-`0-SSC holds with the optimal solution Z∗ to
(1).

Proof. Similar to the proof of Theorem 1, Z∗i is the op-
timal solution to the following `0 sparse representation
problem

min
Zi
‖Zi‖0 s.t. x̃i = [X̃(k) \ x̃i X̃(−k)]Zi, Zii = 0 (5)

where X̃(k) = PX(k), X̃(−k) = PX(−k), X(−k) de-
notes the data that lie in all subspaces except Sk. Let

Z∗i =

[
α
β

]
where α and β are sparse codes corre-

sponding to X̃(k) \ x̃i and X̃(−k) respectively.

Suppose β 6= 0, then x̃i belongs to a subspace S ′ =
HX̃Z∗i

spanned by the projected data points corre-

sponding to nonzero elements of Z∗i, and S ′ 6= S̃k,

dim[S ′ ] ≤ d̃k by the argument in the proof of Theo-

rem 1. Since the data points (or columns) in X̃Z∗i are
linearly independent, it can be verified the data points
in XZ∗i are also linearly independent. Therefore,

x̃i ∈ HX̃
Z∗i
⇒ xi ∈ P(−1)(HX̃

Z∗i
)⇒ xi ∈ P(−1)(P(HX

Z∗i
))

And it follows that xi lies in an external subspace
HXZ∗i

spanned by linearly independent points in XZ∗i

under the mapping P(−1) ◦ P, and dim[HXZ∗i
] =

dim[S ′ ] ≤ d̃k. Therefore, β = 0. Perform the above
analysis for all 1 ≤ i ≤ n, we can prove that the
subspace detection property holds for all 1 ≤ i ≤ n.

Lemma 1. (Corollary 10.9 in [1]) Let p0 ≥ 2 and
p′ = p− p0 ≥ 4, then with probability at least 1− 6e−p,
then the spectral norm of X − X̂ is bounded by

‖X − X̂‖2 ≤ Cp,p0 (6)

where

Cp,p0 =
(
1 + 17

√
1 +

p0

p′
)
σp0+1 +

8
√
p

p′ + 1
(
∑
j>p0

σ2
j )

1
2 (7)

and σ1 ≥ σ2 ≥ . . . are the singular values of X.

Lemma 2. (Perturbation of distance to subspaces)
Let A, B ∈ IRm×n are two matrices and rank(A) = r,
rank(B) = s. Also, E = A−B and ‖E‖2 ≤ C, where
‖ · ‖2 indicates the spectral norm. Then for any point
x ∈ IRm, the difference of the distance of x to the
column space of A and B, i.e. |d(x,HA)− d(x,HB)|,
is bounded by

|d(x,HA)− d(x,HB)| ≤ C‖x‖2
min{σr(A), σs(B)} (8)

Proof. Note that the projection of x onto the subspace
HA is AA+x where A+ is the Moore-Penrose pseudo-
inverse of the matrix A, so d(x,HA) equals to the dis-
tance between x and its projection, namely d(x,HA) =
‖x−AA+x‖2. Similarly, d(x,HB) = ‖x−BB+x‖2.

It follows that

|d(x,HA)− d(x,HB)| = |‖x−AA+x‖2 − ‖x−BB+x‖2|
≤ ‖AA+x−BB+x‖2 ≤ ‖AA+ −BB+‖2‖x‖2 (9)

According to the perturbation bound on the orthogonal
projection in [2, 3],

‖AA+ −BB+‖2 ≤ max{‖EA+‖2, ‖EB+‖2} (10)

Since ‖EA+‖2 ≤ ‖E‖2‖A+‖2 ≤ C
σr(A) , ‖EB+‖2 ≤

‖E‖2‖B+‖2 ≤ C
σs(B) , combining (9) and (10), we have

|d(x,HA)− d(x,HB)| ≤ max{ C

σr(A)
,

C

σs(B)
}‖x‖2
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=
C‖x‖2

min{σr(A), σs(B)} (11)

Theorem 3. Under the deterministic model, suppose
nk ≥ dk+1, X(k) is in general position, σd̃k > Cp,p0 for
any 1 ≤ k ≤ K, and Cp,p0 is defined by (7) with p0 ≥ 2.
Suppose that data X(k) are in general position with

margin τk such that τk > 1 +
Cp,p0

σd̃k
−Cp,p0

. Moreover, all

the data points in X(k) are γk-away from the external
subspaces of dimension no greater than d̃k for any

1 ≤ k ≤ K with γk > 1 +
Cp,p0

σd̃k
−Cp,p0

. Then with

probability at least 1 − 6e−p, the subspace detection
property for DR-`0-SSC holds with the optimal solution
Z∗ to (1), using the linear projection P = Q>.

Proof. Suppose there is 1 ≤ k ≤ K and a point x ∈
X(k) such that d(x,H) = 0 for some H ∈ P(−1) ◦
P(Hx,d̃k

), then there exist L ≤ d̃k independent points

{xij}Lj=1 ⊆ X such that {xij}Lj=1 6⊆ X(k) and x /∈
{xij}Lj=1, x̃ ∈ P(H{xij

}Lj=1
) = H{x̃ij

}Lj=1
. Now we

define t̄ = P>t̃ = QQ>t for any t ∈ IRd. Since the
rows of P are linearly independent, x̃ ∈ H{x̃ij

}Lj=1
⇔

x̄ ∈ H{x̄ij
}Lj=1

Let A ∈ IRd×L = [xi1 , . . . ,xiL ] be the matrix with
{xij}Lj=1 as it columns, and Ā ∈ IRd×L = [x̄i1 , . . . , x̄iL ]

be the matrix with {x̄ij}Lj=1 as it columns. Note that

‖A− Ā‖2 ≤ ‖X −QQ>X‖2 = ‖X − X̄‖2 ≤ Cp,p0

By Weyl [4], |σi(A) − σi(Ā)| ≤ ‖A − Ā‖2. Then we
have σL(Ā) ≥ σL(A)− ‖A− Ā‖2 ≥ σL(A)− Cp,p0 ≥
σd̃k − Cp,p0 > 0. It follows that rank(Ā) = L. In
addition, σL(A) ≥ σd̃k .

Therefore, according to Lemma 2,

|d(x,HA)− d(x,HĀ)| ≤ Cp,p0‖x‖2
min{σL(A), σL(Ā)}

≤ Cp,p0

σd̃k
− Cp,p0

(12)

Moreover, we have

|d(x̄,HĀ)− d(x,HĀ)| ≤ ‖x̄− x‖2
= ‖QQ>x− x‖2 ≤ ‖x‖2 ≤ 1 (13)

where ex ∈ IRn, (ex)i = 1 for the index i such that
xi = x, and (ex)j = 0 for all j 6= i. For the first
inequality in (13), note that for any ε > 0, there exists
y ∈ HĀ such that d(x̄,HĀ) + ε > d(x̄,y). It follows
that ‖x̄ − x‖2 + d(x̄,HĀ) + ε > ‖x̄ − x‖2 + ‖x̄ −
y‖2 ≥ ‖x− y‖2 ≥ d(x,HĀ) for any ε > 0. Therefore,

‖x̄−x‖2 ≥ d(x,HĀ)−d(x̄,HĀ). Similarly, ‖x̄−x‖2 ≥
d(x̄,HĀ)− d(x,HĀ).

Combining (12) and (13), we have

|d(x̄,HĀ)− d(x,HA)| ≤ 1 +
Cp,p0

σd̃k
− Cp,p0

(14)

Since x ∈ X(k) is γk-away from the an external
subspaces of dimension no greater than d̃k, we have
d(x,HA) ≥ γk. Therefore, d(x̄,HĀ) ≥ γk − 1 −

Cp,p0

σd̃k
−Cp,p0

> 0. It follows that x̄ /∈ HĀ, and x̃ /∈
H{x̃ij

}Lj=1
. This contradiction indicates that all the

data points in X(k) are away from the external sub-
spaces under the linear transformation P for any
1 ≤ k ≤ K. It can also be verified that data X̃(k)

are in generation position by similar argument and
the definition of general position with margin. There-
fore, the conclusion of this theorem follows by applying
Theorem 2.

Lemma 3. (Lemma 6 in [5], adjusted with our no-
tations) Suppose P satisfies the `2-norm preserving
property. If 0 < ε ≤ 1

2 , then for any two vectors

u ∈ IRd, v ∈ IRd, with probability at least 1− 4e−
pε2

c ,

|u>P>Pv − u>v| ≤ ‖u‖2‖v‖2ε (15)

Lemma 4. Suppose P satisfies the `2-norm preserving
property. If 0 < ε ≤ 1

2 , then for any vector v ∈ IRd,

with probability at least 1− 4de−
pε2

c ,

|v̄ − v|2 ≤
√
d‖v‖2ε (16)

where v̄ = P>Pv.

Proof. Choosing ei ∈ IRn where (ei)i = 1 and (ei)j = 0
for all j 6= i. Applying Lemma 3 with u = ei, then

with probability at least 1− 4e−
pε2

c ,

|ei
>P>Pv − ei

>v|
= |v̄i − vi| ≤ ‖ei‖2‖v‖2ε = ‖v‖2ε (17)

By the union bound, with probability at least 1 −
4de−

pε2

c ,

|v̄ − v|2 ≤
√
d‖v‖2ε (18)

Theorem 4. Let P satisfy the `2-norm preserving
property. Under the deterministic model, suppose nk ≥



Supplementary Document for Dimensionality Reduced `0-Sparse Subspace Clustering

dk + 1, σd̃k >
√
dd̃kε for 0 < ε ≤ 1

2 . Suppose that

data X(k) are in general position with margin τk such

that τk >
√
dε(1 +

√
d̃k

σd̃k
−
√
dd̃kε

). Moreover, all the data

points in X(k) are γk-away from the external subspaces
of dimension no greater than d̃k for any 1 ≤ k ≤ K

with γk >
√
dε(1 +

√
d̃k

σd̃k
−
√
dd̃kε

). Then with probability

at least 1− 4nde−
pε2

c , the subspace detection property
for DR-`0-SSC holds with the optimal solution Z∗ to
(1).

Proof. Suppose there is 1 ≤ k ≤ K and a point
x ∈ X(k) such that d(x,H) = 0 for some H ∈
P(−1) ◦ P(Hx,d̃k

), then there exist L ≤ d̃k indepen-

dent points {xij}Lj=1 ⊆ X such that {xij}Lj=1 6⊆ X(k)

and x /∈ {xij}Lj=1. It follows that x̃ ∈ P(H{xij
}Lj=1

) =

H{x̃ij
}Lj=1

.

For any vector t ∈ IRd, define t̄ = P>Pt. Let A ∈
IRd×L = [xi1 , . . . ,xiL ] be the matrix with {xij}Lj=1 as

it columns, and Ā ∈ IRd×L = [x̄i1 , . . . , x̄iL ] be the
matrix with {x̄ij}Lj=1 as it columns. Then x̄ ∈ HĀ.

Since x ∈ X(k) is γk-away from the an external sub-
spaces of dimension no greater than d̃k, λjxij ∈ HA,
we have d(x,HA) ≥ γk.

According to Lemma 4, with probability at least 1−
4de−

pε2

c , ‖x̄ij − xij‖2 ≤
√
d‖xij‖2ε =

√
dε. By union

bound, with probability at least 1− 4Lde−
pε2

c ,

‖A− Ā‖2 ≤ ‖A− Ā‖F =
√
dLε (19)

By similar argument in the proof of Theomrem 3,
|σi(A)− σi(Ā)| ≤ ‖A− Ā‖2. Then we have σL(Ā) ≥
σd̃k −

√
dLε > 0. It follows that rank(Ā) = L. Also,

σL(A) ≥ σd̃k . Based on Lemma 2 and (12), we have

|d(x,HA)− d(x,HĀ)| ≤
√
dLε‖x‖2

min{σL(A), σL(Ā)}

≤
√
dLε

σd̃k
−
√
dLε

(20)

In addition,

|d(x̄,HĀ)− d(x,HĀ)| ≤ ‖x̄− x‖2 ≤
√
dε (21)

Combining (12) and (13), we have

|d(x̄,HĀ)− d(x,HA)| ≤
√
dε(1 +

√
L

σd̃k
−
√
dLε

) (22)

Since x ∈ X(k) is γk-away from the an external
subspaces of dimension no greater than d̃k, we have
d(x,HA) ≥ γk. Therefore, d(x̄,HĀ) ≥ γk −

√
dε(1 +√

L
σd̃k
−
√
dLε

) > 0. It follows that x̄ /∈ HĀ, and x̃ /∈
H{x̃ij

}Lj=1
. This contradiction shows that all the data

points in X(k) are away from the external subspaces
under the linear transformation P for any 1 ≤ k ≤ K.
It can also be verified that data X̃(k) are in generation
position by similar argument and the definition of gen-
eral position with margin. Therefore, the conclusion of
this theorem follows by applying Theorem 2.
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