
Supplementary Material of “HONES: A Fast and
Error-free Homotopy Method For Online Newton

Step”

A Roadmap of Appendices

The general idea of HONES algorithm has been presented in section 2. However, to implement it
efficiently, we need much more effort to explore the structure of the solution path and find common
quantities which are used by multiple sub-routines. To make the derivation well-organized, we start
from considering the case where only one of A and r is time-varying while the other parameter
is fixed. The case where A is time-varying and the case where r is time-varying are considered
separately in Appendix B and C. Then in Appendix D, we combine two components and state the
implementation for the general case.

In each following appendix, we will first define a list of case-specific intermediate variables, which are
the key ingredients to improve efficiency. Then we describe the whole procedure followed by details
of each sub-routine. Finally, we give a detailed complexity analysis at the end of each appendix.

B Implementation of HONES Algorithm With Time-Varying A and Fixed r

B-1 Intermediate Variables

Although (8)-(10) completely define the solution, they involves messy terms. To simplify the
notations, we define three lists of intermediate variables. We should emphasize that these variables
also play important roles in the algorithm design since they capture the quantities repeatly appeared
and unnecessary computation can be avoided by storing their values in memory.

The intermediate variables are defined as follows. First, let M be a n× n matrix such that

MSS = A−1
SS , MScS = −AScSA

−1
SS , M·,Sc = 0. (B-1)

For large-scale problem where n is prohibitively large, we can only store a n×|S|matrix by removing
the zero entries of M . This saves storage cost significantly. Then we define two vectors η, η̃ ∈ Rn
such that

ηS = MSSgS , ηSc = gSc +MScSgS , η̃S = MSS1S , η̃Sc = 1Sc +MScS1S ∈ Rn. (B-2)

Last we define four scalars.

D = 1TSA
−1
SS1S , Dg = 1TSA

−1
SSgS , Dgg = gTSA

−1
SSgS Dgr = −ηTS rS . (B-3)

Note that all variables are functions of λ if A is replaced by A+ λggT and we denote them by ·(λ).
For example,

D(λ) = 1TS (ASS + λgSg
T
S)−11S ,

and others can be defined in a similar fashion. The following lemma formulates these functions.

Lemma B-1 Let α(λ) = λ
1+λDgg

. Before any entry of (xS , µSc) hitting 0, it holds that

• M·,S(λ) = M·,S − α(λ)ηηTS ;

• η(λ) = η
1+λDgg

;

• η̃(λ) = η̃ − α(λ)Dgη;

• D(λ) = D − α(λ)D2
g;

• (Dg(λ), Dgg(λ), Dgr(λ)) = 1
1+λDgg

(Dg, Dgg, Dgr).

Proof By Sherman-Morrison-Woodbury formula,

MSS(λ) = (ASS + λgSg
T
S)−1 = A−1

SS − λ
A−1
SSgSg

T
SA

−1
SS

1 + λgTSA
−1
SSgS

= MSS − α(λ)ηSη
T
S .

This implies that

MScS(λ) = −(AScS + λgScgTS)(A−1
SS − α(λ)ηSη

T
S)

= MScS − λgScgTSA
−1
SS + λα(λ)gScgTS ηSη

T
S + α(λ)AScSηSη

T
S

= MScS − λgScηTS + λα(λ)DgggScηTS + α(λ)AScSηSη
T
S [Use Dgg = gTS ηS]

= MScS − (λ− λα(λ)Dgg)gScηTS + α(λ)AScSηSη
T
S

= MScS − α(λ)gScηTS + α(λ)AScSηSη
T
S [Use λ− λα(λ)Dgg = α(λ)]

= MScS − α(λ)(gSc −AScSA
−1
SSgS)ηTS

= MScS − α(λ)ηScηTS .

Putting pieces together, we obtain that

M·,S(λ) = M·,S − α(λ)ηηTS .

Based on M·,S(λ), it is straightforward to derive other variables. For η(λ),

ηS(λ) = MSS(λ)gS = ηS − α(λ)ηSη
T
S gS

= (1− α(λ)Dgg)ηS =
ηS

1 + λDgg
;

ηSc(λ) = gSc +MScS(λ)gS = ηSc − α(λ)ηScηTS gS

= (1− α(λ)Dgg)ηSc =
ηSc

1 + λDgg
.

Thus,
η(λ) =

η

1 + λDgg
.

Similarly„

η̃S(λ) = MSS(λ)1S = η̃S − α(λ)ηSη
T
S 1S

= η̃S − α(λ)DgηS ;

η̃Sc(λ) = 1Sc +MScS(λ)1S = 1Sc − α(λ)ηScηTS 1S
= η̃Sc − α(λ)DgηSc ,

and hence
η̃(λ) = η̃S − α(λ)Dgη.

The last four scalars are even easier to handle. In fact, D(λ) can be derived directly by

D(λ) = 1TS
(
MSS − α(λ)ηSη

T
S

)
1S = D − α(λ)D2

g

By reformulating the other three variables, the last statement can be proved,

(Dg(λ), Dgg(λ), Dgr(λ)) = (1TSηS(λ), gTS ηS(λ),−rTS ηS(λ))

=
1

1 + λDgg
(1TSηS , g

T
S ηS ,−rTS ηS)

=
1

1 + λDgg
(Dg, Dgg, Dgr).

2

B-2 Implementation

Lemma B-1 implies that given the function values of the intermediate variables at λ = 0, the function
values at a neighborhood of 0 can be calculated directly. Within time t, all intermediate variables
will be update correspondingly when the support changes. It has been shown in Theorem B-4 that
updating M requires n|S| operations while updating other variables only requires n operations.
When the problem transfer from time t to time t + 1, the variables (η,Dg, Dgg, Dgr) needs to be
recalculated since it depends on a new g(t+1). In contrast, (M, η̃,D) can be updated in the same way
as in time t. In summary, (M, η̃,D) is shared by for all times while (η,Dg, Dgg, Dgr) is only used
in a single time. For compact notations, we define Par1 and Par2 as

Par1 = {M, η̃,D}, Par2 = {η,Dg, Dgg, Dgr}. (B-4)

In addition, we denote v by the concatenation of xS and −µSc , i.e.

vS = xS , vSc = −µSc , (B-5)

as a n× 1 vector. It will be shown in the next subsection that v(λ) can be expressed in a concise way.

Algorithm 1 describes the full implementation of HONES algorithm, which solves the online problem
(2) with r fixed. The sub-routines involved will be discussed separately in following subsections.
Roughly speaking, after initialization, we enter into the outer-loop and try to solve (1) at time t using
the information from time t−1. Starting from λ = 0, we search for the next λ that pushes one entry of
v to zero. FIND_LAMBDA fulfills this goal and also reports the corresponding entry j. If j ∈ S then
j is removed from S and otherwise j is added into S. Since (v, µ0,Par1,Par2) are all functions of λ,
we update them by UPDATE_BY_LAMBDA, in which λinc denotes the increment to reach the next
turning point from the current one. Unlike (v, µ0), (Par1,Par2) has discontinuity at each turning
point λ due to the change of support S. They are updated by UPDATE_SHRINK_SUPPORT and
UPDATE_EXPAND_SUPPORT depending on whether S is shrinked or expanded. The procedure
is repeated until λ cross over 1 and an inner-loop finishes. At the end, Par2 is recomputed for new
g(t+1), which is achieved by DIRECT_UPDATE.

B-3 FIND_LAMBDA

With the help of intermediate variables, we can express (xS , µSc , µ0) in a compact way.

Theorem B-4 Before any entry of (xS , µSc) hitting 0, it holds that

µ0(λ) = µ0 +
α(λ)

D − α(λ)D2
g

·Dg(Dgµ0 −Dgr). (B-6)

and

v(λ) ,

(
xS(λ)
−µSc(λ)

)
= v +

α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr) · (Dg η̃ −Dη), (B-7)

Proof First we prove (B-6). By definition,

µ0(λ) =
1− 1TSASS(λ)−1rS

1TSASS(λ)−11S
=

1− 1TSMSS(λ)rS
D(λ)

.

By Lemma B-1,

−MSS(λ)rS = −(MSS − α(λ)ηSη
T
S)rS

=−MSSrS − α(λ)ηSη
T
S rS = −MSSrS + α(λ)DgrηS .

Thus the numerator of µ0(λ) can be written as

1− 1TSyS + 1TS (MT
ScSySc −MSSrS)− α(λ)Dgr1TSηS = Dµ0 − α(λ)DgrDg.

The denominator of µ0(λ), by Lemma B-1, is formulated as

D(λ) = D − α(λ)D2
g .

3

Algorithm 1 HONES Algorithm for time-varing A and fixed r

Inputs: Initial matrix A(0), vectors r, matrix-update-vectors {g(t), t = 1, 2, . . .}.
Initialization:
x← as the optimum corresponding to A(0);
S ← supp(x);
Calculate (x, µ, µ0) via (8)-(10)
vS ← xS , vSc ← −µSc ;
Calculate intermediate variables (Par1,Par2) via (B-1)-(B-3) with g = g(1).

Procedure:
1: for t = 1, 2, · · · . do
2: λ← 0;
3: while λ < 1 do
4: (λinc, j, Snew)← FIND_LAMBDA(S, v, µ0; Par1,Par2);
5: λinc ← min{λinc, 1− λ};
6: λ← λ+ λinc;
7: (v, µ0; Par1,Par2)← UPDATE_BY_LAMBDA(λinc; v, µ0; Par1,Par2);
8: if Snew = S ∪ {j} then
9: (Par1,Par2)← UPDATE_EXPAND_SUPPORT(λ, S, j; r, g(t),Par1,Par2);

10: else if Snew = S \ {j} then
11: (Par1,Par2)← UPDATE_SHRINK_SUPPORT(S, j; r, g(t),Par1,Par2);
12: end if
13: S ← Snew.
14: end while
15: Par2 ← DIRECT_UPDATE(S, r, g(t+1); Par1,Par2);
16: A← A+ g(t)(g(t))T ;
17: x

(t)
S ← xS , x

(t)
Sc ← 0.

18: end for
Output: x(1), x(2), · · · .

Putting the pieces together results in

µ0(λ) =
Dµ0 − α(λ)DgrDg

D − α(λ)D2
g

= µ0 +
α(λ)

D − α(λ)D2
g

·Dg(Dgµ0 −Dgr).

Plug µ0(λ) into (8), we obtain that

xS(λ) = µ0(λ)η̃S(λ) +ASS(λ)−1rS

= A−1
SSrS + α(λ)DgrηS + (µ0(λ)− µ0)η̃S(λ) + µ0η̃S(λ)

= xS + α(λ)DgrηS + (µ0(λ)− µ0)η̃S(λ) + µ0(η̃S(λ)− η̃S)

= xS + α(λ)DgrηS +
α(λ)

D − α(λ)D2
g

·Dg(Dgµ0 −Dgr)η̃S(λ)− µ0α(λ)DgηS [Use LemmaB− 1]

= xS +
α(λ)

D − α(λ)D2
g

·Dg(Dgµ0 −Dgr)η̃S(λ)− α(λ)(Dgµ0 −Dgr)ηS

= xS +
α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr) · (Dg η̃S(λ)− (D − α(λ)D2
g)ηS)

= xS +
α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr) ·
(
Dg η̃S − α(λ)D2

gηS − (D − α(λ)D2
g)ηS

)
= xS +

α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr) · (Dg η̃S −DηS) .

Similarly, it follows from (9) that

−µSc(λ) = µ0(λ)η̃Sc(λ) + rSc +MScS(λ)rS
= −µSc − µ0η̃Sc + (MScS(λ)−MScS)rS + µ0(λ)η̃Sc(λ)

4

= −µSc − µ0η̃Sc + α(λ)DgrηSc + µ0(λ)η̃Sc(λ)

= −µSc + α(λ)DgrηSc + (µ0(λ)− µ0)η̃Sc(λ) + µ0(η̃Sc(λ)− η̃Sc)

= −µSc + α(λ)DgrηSc +
α(λ)

D − α(λ)D2
g

·Dg(Dgµ0 −Dgr)η̃Sc(λ)− µ0α(λ)DgηSc

= −µSc +
α(λ)

D − α(λ)D2
g

·Dg(Dgµ0 −Dgr)η̃Sc(λ)− α(λ)(Dgµ0 −Dgr)ηSc

= −µSc +
α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr)(Dg η̃Sc(λ)− (D − α(λ)D2
g)ηSc)

= −µSc +
α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr)(Dg η̃Sc − α(λ)D2
gηSc − (D − α(λ)D2

g)ηSc)

= −µSc +
α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr)(Dg η̃Sc −DηSc)

In sum, (
xS(λ)
−µSc(λ)

)
=

(
xS
−µSc

)
+

α(λ)

D − α(λ)D2
g

· (Dgµ0 −Dgr) · (Dg η̃ −Dη).

Theorem B-4 indicates that searching for next λ is equivalent to solve n linear equations. In fact,
(B-7) can be abbreviated as

v(λ) = v +
α(λ)

D − α(λ)D2
g

u =
Dv − (D2

gv − u)α(λ)

D − α(λ)D2
g

,

for u = (Dgµ0 −Dgr) · (Dg η̃ −Dη). Let

α = min+

{
Dvi

D2
gvi − ui

: i = 1, 2, . . . , n

}
where min+(Ω) denotes the minimum of all positive numbers contained in set Ω. Then the target λ
is the solution of α(λ) = α, i.e.

λ =
α

1− αDgg
.

We should emphasize that the right-handed side might be negative if αDgg ≥ 1 in which case v never
hits 0. Thus, we should set λ to be infinity. The implementation of FIND_LAMBDA is stated in
Algorithm 2

B-4 Variables Update

B-4.1 UPDATE_BY_LAMBDA

Once the next λ has been calculated, all variables can be updated via Lemma B-1 and Theorem B-4.

B-4.2 UPDATE_EXPAND_SUPPORT

Suppose S is updated to S ∪ {j} for some j ∈ Sc. Denote S̃ by S ∪ {j} and we add a supscript + to
each variable to denote the value after update. The key tool is the following formula showing the
relation between matrix inverses after adding one row and one column.

Proposition 1 Let Ãjj = Ajj −AjSA−1
SSASj ,

A−1

S̃S̃
=

(
A−1
SS 0
0 0

)
+

1

Ãjj
·
(
−A−1

SSASj
1

)
(−AjSA−1

SS 1).

Similar to section 4.1, the key is to update M and other variables are easy to update based on M .
Denote a class of operator {Rj : j ∈ Sc} for matrix W ∈ Rn×n,Rj(W) sets the j-th row and j-th

5

Algorithm 2 FIND_LAMBDA

Input: Support S, iterate v =

(
xS
−µSc

)
, µ0, intermediate variables Par1,Par2.

Procedure:
1: u← (Dgµ0 −Dgr)(Dg η̃ −Dη);

2: α← min+

{
Dvi

D2
gvi−ui

: i = 1, 2, . . . , n
}

;

3: j ← argmin+

{
Dvi

D2
gvi−ui

: i = 1, 2, . . . , n
}

;
4: if αDgg < 1 then
5: λinc ← α

1−αDgg
;

6: else
7: λinc ←∞;
8: end if
9: if j ∈ S then

10: Snew = S \ {j};
11: else
12: Snew = S ∪ {j}.
13: end if
Output: λinc, j, Snew.

Algorithm 3 UPDATE_BY_LAMBDA

Input: Increment λinc; iterate v =

(
xS
−µSc

)
, µ0; intermediate variables Par1,Par2.

Procedure:
1: α0 ← 1

1+λinc·Dgg
;

2: α← λinc · α0;
3: α̃← α

D−αD2
g

;
4: v ← v + α̃ · (Dgµ0 −Dgr)(Dg η̃ −Dη);
5: µ0 ← µ0 + α̃ ·Dg(Dgµ0 −Dgr);
6: D ← D − αD2

g ;
7: (Dg, Dgg, Dgr)← α0(Dg, Dgg, Dgr).
8: M·,S ←M·,S − αηηTS ;
9: η̃ ← η̃ − αDgη;

10: η ← α0η;
Output: v, µ0,Par1,Par2.

column of W to be zero and for vector z ∈ Rn×1,Rj(z) sets the j-th coordinate of z to be zero. One
property ofRj to be used is that For any matrix-vector pair (W, z),

Rj(W)z = Rj(Wz)− zjRj(Wj) (B-8)

where Wj is j-th column of W .

Theorem B-5 Let γ and γ̃ be two n× 1 vectors with

γS̃ = γ̃S̃ = (MjS 1)T , γS̃c = −AS̃cj −AS̃cSM
T
jS , γ̃S̃c = 0.

Then
M+ = Rj(M) +

1

Ãjj
· γγ̃T .

Proof By definition,
M+

S̃S̃
= A−1

S̃S̃
, M+

S̃cS̃
= −AS̃cS̃A

−1

S̃S̃
.

By Proposition 1,

M+

S̃S̃
=

(
MSS 0

0 0

)
+

1

Ãjj

(
MT
jS

1

)
(MjS 1) =

(
MSS 0

0 0

)
+

1

Ãjj
γS̃ γ̃

T
S̃
,

6

and

M+

S̃cS̃
= −(AS̃cS AS̃cj)

{(
MSS 0

0 0

)
+

1

Ãjj

(
MT
jS

1

)
(MjS 1)

}

= (MS̃cS 0) +
1

Ãjj
γS̃c γ̃

T
S̃
.

Note that M·,S̃c is always a zero matrix by definition, the above results imply that

M+ = Rj(M) +
1

Ãjj
· γγ̃T .

The update of other parameters can be derived as a consequence of Theorem B-5. Theorem B-6
summarizes the result.

Theorem B-6 Let bj,S = −rT
S̃
γS̃ , then

• η+ = Rj(η) +
ηj
Ãjj

γ;

• η̃+ = Rj(η̃) +
η̃j
Ãjj

γ;

• D+ = D +
η̃2j
Ãjj

• D+
g = Dg +

ηj η̃j
Ãjj

;

• D+
gg = Dgg +

η2j
Ãjj

;

• D+
gr = Dgr +

ηjbj,S
Ãjj

;

Proof Since Mj = 0, (B-8) implies that for any z ∈ Rn×1

Rj(Mz) = Rj(M)z.

By definition,

η =

(
0
gSc

)
+Mg, η̃ =

(
0

1Sc

)
+M1.

Also notice that γ̃T
S̃
gS̃ = gj +MT

jSgS = ηj and γT
S̃

1S̃ = 1 +MjS1S = η̃j , thus,

η+ =

(
0
gS̃c

)
+M+g =

(
0
gS̃c

)
+Rj(M)g +

γ̃T g

Ãjj
γ

=

(
0
gS̃c

)
+Rj(Mg) +

γ̃T
S̃
gS̃

Ãjj
γ

=

(
0
gS̃c

)
+Rj(η)−Rj

((
0
gSc

))
+

ηj

Ãjj
γ

=

(
0
gS̃c

)
+Rj(η)−

(
0
gS̃c

)
+

ηj

Ãjj
γ

= Rj(η) +
ηj

Ãjj
γ.

The update of η̃ can be obtained by replacing g by 1 in the above derivation. The four scalars
D,Dg, Dgg, Dgr can be updated as follows.

D+ = 1T
S̃
η̃+
S̃

= 1T
S̃

(
Rj(η̃)S̃ +

η̃j

Ãjj
γS̃

)
= D +

η̃2j

Ãjj
;

7

D+
g = 1T

S̃
η+
S̃

= 1T
S̃

(
Rj(η)S̃ +

ηj

Ãjj
γS̃

)
= Dg +

η̃jηj

Ãjj
;

D+
gg = gT

S̃
η+
S̃

= gT
S̃

(
Rj(η)S̃ +

ηj

Ãjj
γS̃

)
= Dgg +

η2j

Ãjj
;

D+
gr = −rT

S̃
η+
S̃

= −rT
S̃

(
Rj(ηS̃) +

ηj

Ãjj
γS̃

)
= Dgr −

ηj

Ãjj
rT
S̃
γS̃

= Dgr +
ηjbj,S

Ãjj
.

The implementation of UPDATE_EXPAND_SUPPORT is summarized in Algorithm 4. Note that
both Ãjj and γS̃c depends on λ and it is easy to see that

Ãjj(λ) = Ajj + λg2j +MjS(ASj + λgjgS) = Ajj +MjSASj + λgjηj

γS̃c(λ)← −(AS̃cj + λgS̃cgj)− (AS̃cS + λgS̃cg
T
S)MT

jS = −AS̃cj −AS̃cSM
T
jS − ληjgS̃c .

Algorithm 4 UPDATE_EXPAND_SUPPORT
Inputs: Current λ, original support S, new index j, matrix A, vectors y, r, g, intermediate variables
Par1,Par2.
Procedure:

1: Ãjj ← Ajj +MjSASj + λgjηj ;
2: γS̃ ← (MjS , 1)T , γS̃c ← −AS̃cj −AS̃cSM

T
jS − ληjgS̃c ;

3: γ̃S̃ ← (MjS , 1)T , γ̃S̃c ← 0;
4: b← −rT

S̃
γS̃ ;

5: D ← D +
η̃2j
Ãjj

;

6: Dg ← Dg +
ηj η̃j
Ãjj

;

7: Dgg ← Dgg +
η2j
Ãjj

;

8: Dgr ← Dgr +
ηjb

Ãjj
;

9: M·,S̃ ← Rj(M·,S̃) + 1
Ãjj

γγ̃T
S̃

;

10: η ← Rj(η) +
ηj
Ãjj

γ.

11: η̃ ← Rj(η̃) +
η̃j
Ãjj

γ;

Output: Par1,Par2.

B-4.3 UPDATE_SHRINK_SUPPORT

Suppose S is updated to S \ {j} for some j ∈ Sc. Denote S̃ by S \ {j} and we add a supscript − to
each variable to denote the value after update. Similar to last subsection, we start from deriving M−

and apply the result to calculate other variables.

Theorem B-7 Let β and β̃ be two n× 1 vectors with

βS̃ = β̃S̃ = MS̃j , βS̃c =

(
−1
MScj

)
β̃S̃c = 0.

Then

M− = Rj(M)− 1

Mjj
· ββ̃T .

8

Proof By definition, (
MS̃S̃ MS̃j

MjS̃ Mjj

)
= A−1

SS =

(
AS̃S̃ AS̃j
AjS̃ Ajj

)−1

.

Then Proposition 1 implies that(
MS̃S̃ MS̃j

MjS̃ Mjj

)
=

(
A−1

S̃S̃
0

0 0

)
+

1

Ajj −AjS̃A
−1

S̃S̃
AS̃j

·
(
−A−1

S̃S̃
AS̃j

1

)
(−AjS̃A

−1

S̃S̃
1).

(B-9)
This entails that

A−1

S̃S̃
= MS̃S̃ −

MS̃jMjS̃

Mjj
, −AjS̃A

−1

S̃S̃
=
MjS̃

Mjj
. (B-10)

On the other hand,

(MScS̃ MScj) = −AScSA
−1
SS = −(AScS̃ AScj)

(
MS̃S̃ MS̃j

MjS̃ Mjj

)
= −(AScS̃MS̃S̃ +AScjMjS̃ AScS̃MS̃j +AScjMjj). (B-11)

If follows from (B-9), (B-10) and (B-11) that

−AScS̃A
−1

S̃S̃
= −AScS̃

(
MS̃S̃ −

MS̃jMjS̃

Mjj

)
= MScS̃ +AScjMjS̃ +

AScS̃MS̃jMjS̃

Mjj

= MScS̃ + (AScjMjj +AScS̃MS̃j)
MjS̃

Mjj

= MScS̃ −
MScjMjS̃

Mjj
. (B-12)

Putting (B-10) and (B-11) together, we obtain that

M−
·,S̃ =

(
A−1

S̃S̃

−AS̃cS̃A
−1

S̃S̃

)
=

 A−1

S̃S̃

−AjS̃A
−1

S̃S̃

−AScS̃A
−1

S̃S̃

 = Rj(M)·,S̃ −
1

Mjj
· ββ̃T

S̃
.

Since M·,S̃c is a zero matrix,

M− = Rj(M)− 1

Mjj
· ββ̃T .

Theorem B-8 Let b̃j,S = −rT
S̃
βS̃ − rjMjj , then

• η− = Rj(η)− ηj
Mjj

β;

• η̃− = Rj(η̃)− η̃j
Mjj

β;

• D− = D − η̃2j
Mjj

;

• D−
g = Dg − ηj η̃j

Mjj
;

• D−
gg = Dgg −

η2j
Mjj

;

• D−
gr = Dgr − ηj b̃j,S

Mjj
.

9

Algorithm 5 UPDATE_SHRINK_SUPPORT
Inputs: Original support S, new index j, matrix A, vector y, r, g, intermediate variables Par1,Par2.
Procedure:

1: βS̃ ←MT
jS̃
, βS̃c ←

(
−1
MS̃cj

)
, β̃S̃ ←MT

jS̃
, β̃S̃c ← 0;

2: b̃← −rT
S̃
βS̃ − rjMjj ;

3: D ← D − η̃2j
Mjj

;

4: Dg ← Dg − ηj η̃j
Mjj

;

5: Dgg ← Dgg −
η2j
Mjj

;

6: Dgr ← Dgr − ηj b̃
Mjj

;

7: M·,S̃ ← Rj(M·,S̃)− 1
Mjj

ββ̃T
S̃
, M·,j ← 0;

8: η ← Rj(η)− ηj
Mjj

β;

9: η̃ ← Rj(η̃)− η̃j
Mjj

β.

Output: Par1,Par2.

Proof By (B-8),
Rj(M)g = Rj(Mg)− gjRj(M·,j)

Let ej is the j-th basis vector with j-th entry equal to 1 and all other entries equal to 0. Then

η− =

(
0
gS̃c

)
+M−g =

(
0
gS̃c

)
+Rj(M)g − β̃T g

Mjj
β

=

(
0
gS̃c

)
+Rj(Mg)− gjRj(M·,j)−

β̃T
S̃
gS̃

Mjj
β

=

(
0
gS̃c

)
+Rj(Mg)− gjej − gjβ −

β̃T
S̃
gS̃

Mjj
β

=

(
0
gS̃c

)
+Rj(Mg)− gjej −

MjSgS
Mjj

β

=

(
0
gS̃c

)
+Rj(η)−Rj

((
0
gSc

))
− gjej −

ηj
Mjj

β

=

(
0
gS̃c

)
+Rj(η)−

(
0
gSc

)
− gjej −

ηj
Mjj

β

= Rj(η)− ηj
Mjj

β.

Substitute g by 1, we obtain the update for η̃. Together with (B-10) and the fact that j ∈ S, we obtain
that

D− = 1T
S̃
η̃−
S̃

= 1T
S̃

(
η̃S̃ −

η̃j
Mjj

βS̃

)
= D − η̃j −

η̃j
Mjj

(1T
S̃
MS̃j)

= D − η̃j
Mjj

(Mjj + 1T
S̃
MS̃j) = D −

η̃2j
Mjj

;

D−
g = 1T

S̃
η−
S̃

= 1T
S̃

(
ηS̃ −

ηj
Mjj

βS̃

)
= Dg − ηj −

ηj
Mjj

(1T
S̃
MS̃j)

= Dg −
ηj
Mjj

(Mjj + 1T
S̃
MS̃j) = Dg −

ηj η̃j
Mjj

;

D−
gg = gT

S̃
η−
S̃

= gT
S̃

(
ηS̃ −

ηj
Mjj

βS̃

)
= Dgg − gjηj −

ηj
Mjj

(gT
S̃
MS̃j)

10

= Dgg −
ηj
Mjj

(gjMjj + gT
S̃
MS̃j) = Dgg −

η2j
Mjj

;

D−
gr = −rT

S̃
η−
S̃

= −rT
S̃

(
ηS̃ −

ηj
Mjj

βS̃

)
= −rTS ηS + rjηj +

ηj
Mjj

rT
S̃
βS̃

= Dgr −
ηj b̃j,S
Mjj

.

The implementation of UPDATE_SHRINK_SUPPORT is summarized in Algorithm 5.

B-4.4 DIRECT_UPDATE

At the beginning of each time t, we need to recompute Par2 = {η,Dg, Dgg, Dgr}. The implementa-
tion is summarized in Algorithm 6.

Algorithm 6 DIRECT_UPDATE
Inputs: Support S, vector y, r, g, intermediate variables Par1,Par2.
Procedure:

1: ηS ←MSSgS , ηSc ← gSc +MScSgS ;
2: Dg ← 1TSηS ;
3: Dgg ← ηTS gS ;
4: Dgr ← −ηSrS .

Output: Par2.

B-5 Update of A

As will be shown in next subsection, the complexities of all above sub-routines are at most O(ns)
where s = |S|. However, the complexity of line 16 isO(n2) which might dominate when the solution
is sparse and the number of turning points is small. Fortunately, UPDATE_EXPAND_SUPPORT is
the only sub-routine which extracts information from A. In fact, in line 1 and line 2,(

Ãjj
γS̃c

)
=

(
Ajj +MjSASj
−AS̃cj −AS̃cSM

T
jS

)
+ ληj

(
gj
gS̃c

)
.

This only requires the j-th column of A. Let S∗ be the union of all supports appeared in Algorithm
1. Suppose we know S∗ apriori, we can only update the columns of A with indices in S∗. In other
words, we update A·,S∗ by A·,S∗ + λggTS∗

at the beginning of each step and hence the complexity is
reduced to O(n|S∗|).

Although agnostic to S∗ in reality, we can initialize it by supp(xk) for some positive k, e.g. k = 1,
and keep track it by adding index into S∗ once the index is not included in S∗. Once a new index j
is detected, we update j-th column of A by using all previous g(t). The implementation is stated in
Algorithm 7.

B-6 Complexity Analysis

In this subsection, we analyze the complexity of the algorithm. We distinguish four types of
computation, namely matrix-vector product, outer-product of two vectors, inner-product of two
vectors and vector-scalar product. Denote by W ∈ Rm×p, (z, z̃) ∈ Rp × Rq and a ∈ R the generic
matrix, vector and scalar respectively. As a convention, the complexity is defined as the number of
scalar-scalar multiplications. The addition is omitted here for simplicity. Note that the complexities of
Wz, zz̃T , zT z and az are mp, pq, p and p, respectively. The results for a single step are summarized
in Table 1 where s∗ = |S∗| be the size of S∗ at the final round. We should emphasize that our
complexity analysis is exact.

1S∗ might be updated, in which step nt-computations are involved in line 17 of Algorithm 7. However, on
average, ns∗ computations are involved since s∗ represents the size of S∗ at the last round.

11

Algorithm 7 HONES Algorithm for time-varing A and fixed r with sparse update of A

Inputs: Initial matrix A(0), vectors r, matrix-update-vectors {g(t), t = 1, 2, . . .}.
Initialization:
x← as the optimum corresponding to A(0);
S ← supp(x), S∗ ← S;
Calculate (x, µ, µ0) via (8)-(10)
vS ← xS , vSc ← −µSc ;
Calculate intermediate variables (Par1,Par2) via (B-1)-(B-3) based on g(1).

Procedure:
1: for t = 1, 2, · · · . do
2: λ← 0;
3: while λ < 1 do
4: (λinc, j, Snew)← FIND_LAMBDA(S, v; Par1,Par2);
5: λinc ← min{λinc, 1− λ};
6: λ← λ+ λinc;
7: (v, µ0; Par1,Par2)← UPDATE_BY_LAMBDA(λinc; v, µ0; Par1,Par2);
8: if Snew = S ∪ {j} then
9: (Par1,Par2)← UPDATE_EXPAND_SUPPORT(λ, S, j;A, r, g(t); Par1,Par2);

10: if j 6∈ S∗ then
11: G← (g(1), . . . , g(t−1));
12: A·,j ← A·,j +GGTj,·;
13: S∗ = S∗ ∪ {j};
14: end if
15: else if Snew = S \ {j} then
16: (Par1,Par2)← UPDATE_SHRINK_SUPPORT(S, j; r, g(t); Par1,Par2);
17: end if
18: S ← Snew.
19: end while
20: Par2 ← DIRECT_UPDATE(S, r, g(t+1); Par1,Par2);
21: A·,S∗ ← A·,S∗ + g(t)(g

(t)
S∗

)T ;

22: x
(t)
S ← xS , x

(t)
Sc ← 0.

23: end for
Output: x(1), x(2), · · · ..

Table 1: Computation complexity of each sub-routine in Algorithm 1.

(Wz)-type (zz̃T)-type (zT z)-type (az)-type

FIND_LAMBDA 0 0 n 2n
UPDATE_BY_LAMBDA 0 ns 0 4n
UPDATE_EXPAND_SUPPORT s(n− s− 1) n(s+ 1) n 2n
UPDATE_SHRINK_SUPPORT 0 n(s− 1) n 2n
DIRECT_UPDATE ns 0 n+ s 0
Update 1 of A. 0 ns∗ 0 0

12

For given t, denote k+A by the number of turning points which add element to S and k−A by the number
of turning points which delete element from S. Let kA = k+A + k−A be the total number of turning
points and s be the maximum size of S in the iteration Then the complexity of HONES for a single
time t is at most

ns(3k+A + 2k−A) + n(12k+A + 10k−A) +O(kA),

Therefore, the complexity at time t is at most

C1t ≤ ns∗+ns(3k+A+2k−A+1)+n(12k+A+10k−A+2)+O(kA) ≤ ns∗+ns(3kA+1)+n(12kA+2)+O(kA).

C Implementation of HONES Algorithm With Time-Varying r and Fixed A

C-1 Intermediate Variables

Similar to Appendix B, we define Par1 = {M, η̃,D}where the parameters are defined in (B-1)-(B-3).
Moreover, we define a vector ξ such that

ξS = −A−1
SS`S , ξSc = −`Sc +AScSA

−1
SS`S ,

and a scalar D` as
D` = 1TS ξS .

We write Par3 for {ξ,D`} for convenience.

C-2 Implementation

Algorithm 8 describes the full implementation in this case and the sub-routines will be discussed
separately in following subsections.

Algorithm 8 HONES Algorithm for constant A, y and time-varying r

Inputs: Initial matrix A, vector r(0), vector-update-vector {`(t) = r(t) − r(t−1) : t = 1, 2, . . .}.
Initialization:
x← as the optimum corresponding to r(0).
S ← supp(x);
Calculate (x, µ, µ0) via (8)-(10)
vS ← xS , vSc ← −µSc ;
Calculate intermediate variables Par1,Par3 via (B-1)-(B-3) based on `(1).

Procedure:
1: for t = 1, 2, · · · . do
2: λ˜← 0;
3: while λ˜ < 1 do
4: (λ˜inc, j, Snew)← FIND_UTILDE_LAMBDA(S, v; Par1,Par3);
5: λ˜inc ← min{λ˜inc, 1− λ˜};6: (v, µ0; Par1,Par3)← UPDATE_BY_UTILDE_LAMBDA(λ˜inc; v, µ0,Par1,Par3);
7: if Snew = S ∪ {j} then
8: (Par1,Par3)← UPDATE_UTILDE_EXPAND_SUPPORT(S, j, A, `; Par1,Par3);
9: else if Snew = S \ {j} then

10: (Par1,Par3)← UPDATE_UTILDE_SHRINK_SUPPORT(S, j, `; Par1,Par3);
11: end if
12: S ← Snew;
13: λ˜← λ˜ + λ˜inc.
14: end while
15: Par3 ← DIRECT_UTILDE_UPDATE(S,Par1, h

(t+1));
16: x

(t)
S ← xS , x

(t)
Sc ← 0.

17: end for
Output: x(1), x(2), · · · .

13

C-3 FIND_UTILDE_LAMBDA

Define v as in (B-5). Then Theorem E-11 implies that

v(λ˜) = v(0)−
(
ξ − D`

D
η̃

)
λ˜, µ0(λ˜) = µ0 +

D`

D
λ˜.

Thus, searching for λ˜ is equivalent to solve simple linear equations. Algorithm 9

Algorithm 9 FIND_UTILDE_LAMBDA

Input: Support S, iterate v =

(
xS
−µSc

)
, intermediate variables Par1,Par3.

Procedure:

1: λ˜inc ← min+

{
vi

ξi−
D`
D η̃i

: i = 1, 2, . . . , n

}
;

2: j ← argmin+

{
vi

ξi−
D`
D η̃i

: i = 1, 2, . . . , n

}
;

3: if j ∈ S then
4: Snew = S \ {j};
5: else
6: Snew = S ∪ {j}.
7: end if

Output: λ˜inc, j, Snew.

C-4 Variables Update

C-4.1 UPDATE_BY_UTILDE_LAMBDA

Note that all intermediate variables are not affected by λ˜, we only need to update v and µ0 accordingly.

Algorithm 10 UPDATE_BY_UTILDE_LAMBDA

Input: Increment λ˜inc; iterate v =

(
xS
−µSc

)
, µ0; intermediate variables Par1,Par3.

Procedure:
1: v ← v −

(
ξ − D`

D η̃
)
λ˜inc;

2: µ0 ← µ0 + D`

D λ˜inc.
Output: v, µ0.

C-4.2 UPDATE_UTILDE_EXPAND_SUPPORT

Since M is exactly the same as in Appendix B, we can directly apply Theorem B-5 to obtain an
update of M and the updates of other parameters as a consequence.

Theorem C-9 Let γ and γ̃ be defined in Theorem B-5, i.e.

γS̃ = γ̃S̃ = (MjS 1)T , γS̃c = −AS̃cj −AS̃cSM
T
jS , γ̃S̃c = 0,

then

• M+ = Rj(M) + 1
Ãjj

γγ̃T ;

• η̃+ = Rj(η̃) +
η̃j
Ãjj

γ;

• D+ = D +
η̃2j
Ãjj

;

14

• ξ+ = Rj(ξ) +
ξj
Ãjj

γ;

• D+
` = D` +

ξj η̃j
Ãjj

.

Proof The update of M , η̃ and Dhas been proved in Theorem B-5. For any subset S, let IS denote
the matrix with j-th diagonal element equal to 1 for any j ∈ S and all other elements equal to 0.
Then ξ and ξ+ can be rewritten as

ξ = − (M + ISc) `, ξ+ = −
(
M+ + IS̃c

)
`.

Note that ISc − IS̃c = eje
T
j where ej is the j-th basis vector, then we have

ξ+ − ξ =
(
M −M+ + eje

T
j

)
` =

(
M −Rj(M)− 1

Ãjj
γγ̃T + eje

T
j

)
` = − γ̃

T `

Ãjj
γ + (`j −MjS`S)ej

=⇒ ξ+ = ξ − γ̃T `

Ãjj
γ + (`j −MjS`S)ej = Rj(ξ)−

γ̃T `

Ãjj
γ.

Note that γ̃T ` = `j +MjS`S = −ξj , we obtain that

ξ+ = Rj(ξ) +
ξj

Ãjj
γ.

For D+
` , we have

D+
` = 1T

S̃
ξ+
S̃

= D` +
ξj

Ãjj
· 1T
S̃
γS̃ = D` +

ξj η̃j

Ãjj
.

The implementation of UPDATE_TILDE_EXPAND_SUPPORT is summarized in Algorithm 11.

Algorithm 11 UPDATE_UTILDE_EXPAND_SUPPORT
Inputs: Original support S, new index j, matrix A, vector `, intermediate variables Par1,Par3.
Procedure:

1: Ãjj ← Ajj +MjSASj ;
2: γS̃ ← (MjS , 1)T , γS̃c ← −AS̃cj −AS̃cSM

T
jS ;

3: γ̃S̃ ← (MjS , 1)T , γ̃S̃c ← 0;

4: D ← D +
η̃2j
Ãjj

;

5: D` ← D` +
ξj η̃j
Ãjj

;

6: ξ ← Rj(ξ) +
ξj
Ãjj

γ;

7: η̃ ← Rj(η̃) +
η̃j
Ãjj

γ;

8: M·,S̃ ← Rj(M·,S̃) + 1
Ãjj

γγ̃T
S̃

.

Output: Par1,Par3.

C-4.3 UPDATE_UTILDE_SHRINK_SUPPORT

Since M is exactly the same as in Appendix B, we can directly apply Theorem B-7 to obtain an
update of M and the updates of other parameters as a consequence.

Theorem C-10 Let β and β̃ be defined in Theorem B-7, i.e.

βS̃ = β̃S̃ = MS̃j , βS̃c =

(
−1
MScj

)
β̃S̃c = 0,

then

15

• M− = Rj(M)− 1
Mjj
· ββ̃T ;

• η̃− = Rj(η̃)− η̃j
Mjj

β;

• D− = D − η̃2j
Mjj

;

• ξ− = Rj(ξ)− ξj
Mjj

β;

• D−
` = Dh − ξj η̃j

Mjj
.

Proof The update of M , η̃ and D has been proved in Theorem B-7 and Theorem B-8. For any subset
S, let IS denote the matrix with j-th diagonal element equal to 1 for any j ∈ S and all other elements
equal to 0. Then ξ and ξ− can be rewritten as

ξ = − (M + ISc) `, ξ− = −
(
M− + IS̃c

)
`.

Note that IS̃c − ISc = eje
T
j where ej is the j-th basis vector, then we have

ξ− − ξ =
(
M −M− − ejeTj

)
` =

(
1

Mjj
ββ̃T +M −Rj(M)− ejeTj

)
`

=
βT
S̃
`S̃

Mjj
β +

(
M −Rj(M)− ejeTj

)
` ,

βT
S̃
`S̃

Mjj
δ + ξ̃.

By definition of ξ̃

ξ̃S̃ = `jMS̃j , ξ̃j = MjS̃`S̃ + `jMjj − `j = −ξj − `j , ξ̃Sc = `jMScj ,

and thus,
ξ̃ = `jβ − ξjej .

This implies that

ξ− = ξ − ξjej +
βT
S̃
`S̃ + `jMjj

Mjj
β = Rj(ξ)−

ξj
Mjj

β.

For D−
` , we have

D−
` = 1T

S̃
ξ−
S̃

= D` − ξj −
ξj
Mjj

· 1T
S̃
βS̃ = D` −

ξj(1T
S̃
βS̃ +Mjj)

Mjj
= D` −

ξj η̃j
Mjj

.

The implementation of UPDATE_TILDE_SHRINK_SUPPORT is summarized in Algorithm 12.

Algorithm 12 UPDATE_UTILDE_SHRINK_SUPPORT
Inputs: Original support S, new index j, vector `, intermediate variables Par1,Par3.
Procedure:

1: βS̃ ←MT
jS̃
, βS̃c ←

(
−1
MS̃cj

)
, β̃S̃ ←MT

jS̃
, β̃S̃c ← 0;

2: D ← D − η̃2j
Mjj

;

3: D` ← D` − ξj η̃j
Mjj

;

4: ξ ← Rj(ξ)− ξj
Mjj

β;

5: η̃ ← Rj(η̃)− η̃j
Mjj

β;

6: M·,S̃ ← Rj(M·,S̃)− 1
Mjj

ββ̃T
S̃
, M·,j ← 0.

Output: Par1,Par3.

16

Algorithm 13 DIRECT_UTILDE_UPDATE
Inputs: Support S, vector-update-vector `, intermediate variables M .
Procedure:

1: ξS ← −MSS`S , ξSc ← −`Sc −MScS`S ;
2: D` ← 1TS ξS .

Output: ξ,D`.

C-4.4 DIRECT_UTILDE_UPDATE

At the beginning of each time t, we need to recompute ξ and D`. The implementation is summarized
in Algorithm 13.

C-5 Complexity Analysis

Similar to Appendix B, we can analyze the computation complexity. The analysis here is much
simpler than the last case since the implementation is quite straightforward. Table 2 summarizes the
results.

Table 2: Computation complexity of each sub-routine in Algorithm 8.

(Wz)-type (zz̃T)-type (zT z)-type (az)-type

FIND_UTILDE_LAMBDA 0 0 2n 0
UPDATE_BY_UTILDE_LAMBDA 0 0 0 n
UPDATE_UTILDE_EXPAND_SUPPORT (n− s− 1)s n(s+ 1) s 2n
UPDATE_UTILDE_SHRINK_SUPPORT 0 n(s− 1) 0 2n
DIRECT_UTILDE_UPDATE ns 0 s 0

Let k+r and k−r be the number of turning points that S is expanded and shrinked respectively and
kr = k+r + k−r be the total number of tuning points, then the complexity is

C2t ≤ ns+n+ 3nkr +n(2s+ 3)k+r +n(s+ 1)k−r +O(kr) = ns(2kr + 1) +n(6kr + 1) +O(kr).

D Implementation of HONES Algorithm With Time-Varying A, r

D-1 Intermediate Variables

Based on the results in Appendix B and Appendix C, we can concatenate Algorithm 1 and Algorithm
8. Thus we define Par1,Par2,Par3 as Par1 = {M, η̃,D},Par2 = {η,Dg, Dgg, Dgr},Par3 =
{ξ,D`} where all parameters are defined in previous appendices.

D-2 Implementation

Note that only two sub-routines involves the matrix A, namely UPDATE_EXPAND_SUPPORT and
UPDATE_UTILDE_EXPAND_SUPPORT, and moreover they only involve the j-th column of A.
Thus, we can use the sparse update of A as in Algorithm 7 for acceleration. Algorithm 14 below
describes the implementation.

D-3 Complexity Analysis

The complexity of Algorithm 14 is just the sum of that of Algorithm 1 and Algorithm 8, i.e.

Ct = C1t + C2t = ns∗ + ns(3kA + 2kr + 2) + n(12kA + 6kr + 3) +O(kA + kr).

17

Algorithm 14 HONES Algorithm for time-varing A, r with sparse update of A

Inputs: Initial parameters A(0), vectors {r(t) : t = 1, 2, . . .},
matrix-update-vectors {g(t), t = 1, 2, . . .}.

Initialization:
x← as the optimum corresponding to A(0), r(0).
S ← supp(x), S∗ ← S;
Calculate (x, µ, µ0) via (8)-(10)
v ← (xS ,−µSc);
Calculate intermediate variables (Par1,Par2) via (B-1)-(B-3) based on r(0), g(1);

Procedure:
1: for t = 1, 2, · · · . do
2: λ← 0;
3: while λ < 1 do
4: (λinc, j, Snew)← FIND_LAMBDA(S, v; Par1,Par2);
5: λinc ← min{λinc, 1− λ};
6: λ← λ+ λinc;
7: (v, µ0; Par1,Par2)← UPDATE_BY_LAMBDA(λinc; v, µ0,Par1,Par2);
8: if Snew = S ∪ {j} then
9: (Par1,Par2)← UPDATE_EXPAND_SUPPORT(λ, S, j;A, r(t−1), g(t),Par1,Par2);

10: if j 6∈ S∗ then
11: G← (g(1), . . . , g(t−1));
12: A·,j ← A·,j +GGTj,·;
13: S∗ = S∗ ∪ {j};
14: end if
15: else if Snew = S \ {j} then
16: (Par1,Par2)← UPDATE_SHRINK_SUPPORT(S, j; r(t−1), g(t),Par1,Par2);
17: end if
18: S ← Snew;
19: end while
20: A·,S∗ ← A·,S∗ + g(t)(g

(t)
S∗

)T ;
21: `(t) ← r(t) − r(t−1);
22: Par3 ← DIRECT_UTILDE_UPDATE(S,Par1, `

(t));
23: λ˜← 0;
24: while λ˜ < 1 do
25: (λ˜inc, j, Snew)← FIND_UTILDE_LAMBDA(v; Par1,Par3);
26: λ˜inc ← min{λ˜inc, 1− λ˜};27: (v, µ0)← UPDATE_BY_UTILDE_LAMBDA(λ˜inc; v, µ0,Par1,Par3);
28: if Snew = S ∪ {j} then
29: (Par1,Par3)← UPDATE_UTILDE_EXPAND_SUPPORT(S, j, A, `(t); Par1,Par3);
30: if j 6∈ S∗ then
31: G← (g(1), `(t)dots, g(t−1));
32: A·,j ← A·,j +GGTj,·;
33: S∗ = S∗ ∪ {j};
34: end if
35: else if Snew = S \ {j} then
36: (Par1,Par3)← UPDATE_UTILDE_SHRINK_SUPPORT(S, j, `(t); Par1,Par3);
37: end if
38: S ← Snew;
39: λ˜← λ˜ + λ˜inc.
40: end while
41: Par2 ← DIRECT_UPDATE(S, r(t), g(t+1); Par1,Par2);
42: x

(t)
S ← xS , x

(t)
Sc ← 0.

43: end for
Output: x(1), x(2), · · · .

18

E Dealing With General Linear Constraints

Now we consider the problem with general linear constraints:

min
1

2
xTA(t)x− (r(t))Tx, s.t. Bx = b, x ≥ 0

where B ∈ Rm×n and A(t) is a stream with

A(t+1) = A(t) + g(t)(g(t))T .

Similar to (8)-(10), the KKT condition for a single problem (with the supscript (t) erased temporarily)
can be written as

Ax−BTµ0 − µ− r = 0; (E-13)
Bx = b; (E-14)
µixi = 0, µi ≥ 0, xi ≥ 0,∀i = 1, . . . , n, (E-15)

where µ0 ∈ Rm, µ ∈ Rn. Partitioning the matrix A by the support of x, we have(
ASS ASSc

AScS AScSc

)(
xS
0

)
=

(
BTS
BTSc

)
µ0 +

(
0
µSc

)
+

(
rS
rSc

)
.

As a consequence, we can solve xS and µSc by

xS = A−1
SSB

T
S µ0 +A−1

SSrS ; (E-16)

µSc = AScSxS −BTScµ0 − rSc = −(BTSc −AScSA
−1
SSB

T
S)µ0 − (rSc −AScSA

−1
SSrS). (E-17)

Using the constraint E-14, we can solve µ0 as

µ0 = (BSA
−1
SSB

T
S)−1(b−BSA−1

SSrS). (E-18)

Noticing that (E-16)-(E-18) share similar forms to (8)-(10), we can easily derive a counterpart of
Theorem E-11.

Theorem E-11

1. Fixing λ˜, there exists vectors u1, u2 ∈ Rn+m and scalars D1, D2 ∈ R, which only depend
on S, such that (

xS(λ)
−µSc(λ)
µ0(λ)

)
=

u1 − u2λ
D1 −D2λ

. (E-19)

2. Fixing λ, there exists vectors u˜1, u˜2 ∈ Rn+m, which only depend on S, such that(
xS(λ˜)
−µSc(λ˜)
µ0(λ˜)

)
= u˜1 − u˜2λ˜. (E-20)

Proof

1. By Lemma B-1, we have

ASS(λ)−1 = A−1
SS − α(λ)gSg

T
S

and
AScS(λ)ASS(λ)−1 = AScSA

−1
SS − α(λ)gScgTS .

As a result,

µ0(λ) =
(
BSA

−1
SSB

T
S − α(λ) ·BSgS(BSgS)T

)−1
(b−BSA−1

SSrS + (gTS rS)α(λ) ·BSgS)

19

=

(
(BSA

−1
SSB

T
S)−1 +

α(λ)(BSA
−1
SSB

T
S)−1BSgSg

T
SB

T
S (BSA

−1
SSB

T
S)−1

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

)
·

(b−BSA−1
SSrS + (gTS rS)α(λ) ·BSgS)

= µ0 +
α(λ)(BSA

−1
SSB

T
S)−1BSgSg

T
SB

T
S µ0

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

+
α(λ)(BSA

−1
SSB

T
S)−1BSgS

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

· gTS rS

= µ0 +
α(λ)(BSA

−1
SSB

T
S)−1BSgS

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

· gTS (BTS µ0 + rS).

Similarly,

xS(λ) =
(
A−1
SS − α(λ)gSg

T
S

)
BTS

(
µ0 +

α(λ)(BSA
−1
SSB

T
S)−1BSgS

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

· gTS (BTS µ0 + rS)

)
+
(
A−1
SS − α(λ)gSg

T
S

)
rS

= xS − α(λ)gS · gTS (BTS µ0 + rS)+

+
(
A−1
SS − α(λ)gSg

T
S

)
·

α(λ)BTS (BSA
−1
SSB

T
S)−1BSgS

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

· gTS (BTS µ0 + rS)

= xS −
α(λ)

1− α(λ)gTSB
T
S (BSA

−1
SSB

T
S)−1BSgS

· gTS (BTS µ0 + rS) ·
(
I −A−1

SSB
T
S (BSA

−1
SSB

T
S)−1BS

)
gS ,

and

µSc(λ) = −
(
BTSc −AScSA

−1
SSB

T
S + α(λ)gScgTSB

T
S

)

20

