
Supplementary Material for “Gradient Diversity: a Key Ingredient

for Scalable Distributed Learning”

1 Examples of Gradient Diversity

1.1 Proof of Remark 1: Generalized linear models

Let `′(·) be the derivative of `(·). Since we have

∇fi(w) = `′i(x
T
i w)xi,

by letting ai := `′i(x
T
i w) and a = [a1 · · · an]T, we obtain

BD(w) =
n
∑n

i=1 a
2
i ‖xi‖22

‖
∑n

i=1 aixi‖22
=
n
∑n

i=1 a
2
i ‖xi‖22

‖XTa‖22
≥
nmini=1,...,n ‖xi‖22

∑n
i=1 a

2
i

σ2
max(X)‖a‖22

≥ nmini=1,...,n ‖xi‖22
σ2

max(X)
,

which completes the proof.
We made a claim after the remark about instantiating it for random design matrices. We

provide the proof of that claim below.

1.2 Generalized Linear Function with Random Features

We have the following two results.

Proposition 1. Suppose that n ≥ d, and xi has i.i.d. σ-sub-Gaussian entries with zero mean.
Then, there exist universal constants c1, c2, c3 > 0, such that, with probability at least 1− c2ne

−c3d,
we have BD(w) ≥ c1d ∀ w ∈ W.

Proposition 2. Suppose that n ≥ d, and the entries of xi are i.i.d. uniformly distributed in
{−1, 1}. Then, there exist universal constants c4, c5, c6 > 0, such that, with probability at least
1− c5e

−c6n, we have BD(w) ≥ c4d ∀ w ∈ W.

Proof. By the concentration results of the maximum singular value of random matrices, we know
that when n ≥ d, there exist universal constants C1, C2, C3 > 0, such that

P{σ2
max(X) ≤ C1σ

2n} ≥ 1− C2e
−C3n. (1)

By the concentration results of sub-Gaussian random variables, we know that there exist universal
constants C4, C5 > 0 such that

P{‖xi‖22 ≥ C4σ
2d} ≥ 1− e−C5d,
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and then by union bound, we have

P
{

min
i=1,...,n

‖xi‖22 ≥ C4σ
2d

}
≥ 1− ne−C5d. (2)

Then, by combining (1) and (2) and using union bound, we obtain

P
{
nmini=1,...,n ‖xi‖22

σ2
max(X)

≥ C4

C1
d

}
≥ 1− C2e

−C3n − ne−C5d,

which yields the desired result.
Proposition 2 can be proved using the fact that for Rademacher entries, we have ‖xi‖22 = d with

probability one.

1.3 Proof of Remark 2: Sparse Conflict

We prove the following result for Example 2 in Section 4.1.

Proposition 3. Let ρ be the maximum degree of all the vertices in G. Then, we have ∀ w ∈ W,
BD(w) ≥ n/(ρ+ 1).

Proof. We adopt the convention that when (i, j) ∈ E, we also have (j, i) ∈ E. By definition, we
have

BD(w) =
n
∑n

i=1 ‖∇fi(w)‖22∑n
i=1 ‖∇fi(w)‖22 +

∑
i 6=j〈∇fi(w),∇fj(w)〉

=
n
∑n

i=1 ‖∇fi(w)‖22∑n
i=1 ‖∇fi(w)‖22 +

∑
(i,j)∈E〈∇fi(w),∇fj(w)〉

≥
n
∑n

i=1 ‖∇fi(w)‖22∑n
i=1 ‖∇fi(w)‖22 +

∑
(i,j)∈E

1
2‖∇fi(w)‖22 + 1

2‖∇fj(w)‖22
.

Since ρ is the maximum degree of the vertexes in G, we know that for each i ∈ [n], the
term 1

2‖∇fi(w)‖22 appears at most 2ρ times in the summation
∑

(i,j)∈E
1
2‖∇fi(w)‖22 + 1

2‖∇fj(w)‖22.
Therefore, we obtain ∑

(i,j)∈E

1

2
‖∇fi(w)‖22 +

1

2
‖∇fj(w)‖22 ≤ ρ

n∑
i=1

‖∇fi(w)‖22,

which completes the proof.

2 Convergence Rates

In this section, we prove our convergence results for different types of functions. To assist the
demonstration of the proofs of convergence rates, for any w ∈ W, we define the following two
quantities:

M2(w) :=
1

n

n∑
i=1

‖∇fi(w)‖22 and G(w) := ‖∇F (w)‖22 = ‖ 1

n

n∑
i=1

∇fi(w)‖22

One can check that the batch-size bound obeys BD(w) = M2(w)
G(w) .
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2.1 Proof of Lemma 1

We have

E[‖w(k+1)B −w∗‖22 | wkB] =E

‖wkB −w∗ − γ
(k+1)B−1∑
`=kB

∇fs`(wkB)‖22 | wkB


=‖wkB −w∗‖22 − 2γ

(k+1)B−1∑
`=kB

E[〈wkB −w∗,∇fs`(wkB)〉 | wkB]

+ γ2E

‖ (k+1)B−1∑
`=kB

∇fs`(wkB)‖22 | wkB

 .
Since s`’s are sampled i.i.d. uniformly from [n], we know that

E[‖w(k+1)B −w∗‖22 | wkB] =‖wkB −w∗‖22 − 2γB〈wkB −w∗,∇F (wkB)〉
+ γ2(BM2(wkB) +B(B − 1)G(wkB))

=‖wkB −w∗‖22 − 2γB〈wkB −w∗,∇F (wkB)〉

+ γ2B

(
1 +

B − 1

BD(wkB)

)
M2(wkB)

=‖wkB −w∗‖22 − 2γB〈wkB −w∗,∇F (wkB)〉+ γ2B(1 + δ)M2(wkB).
(3)

We also mention here that this result becomes inequality for the projected mini-batch SGD algo-
rithm, since Euclidean projection onto a convex set is non-expansive.

2.2 Proof of Theorem 2

Recall that we have the iteration w(k+1)B = wkB − γ
∑(k+1)B−1

t=kB ∇fst(wkB). Since F (w) has β-
Lipschitz gradients, we have

F (w(k+1)B) ≤ F (wkB) + 〈∇F (wkB),w(k+1)B −wkB〉+
β

2
‖w(k+1)B −wkB‖22.

Then, we obtain〈
∇F (wkB), γ

(k+1)B−1∑
t=kB

∇fst(wkB)

〉
≤ F (wkB)− F (w(k+1)B) +

β

2

∥∥∥∥∥∥γ
(k+1)B−1∑
t=kB

∇fst(wkB)

∥∥∥∥∥∥
2

2

.

Now we take expectation on both sides. By iterative expectation, we know that for any t ≥ kB,

E[〈∇F (wkB),∇fst(wkB)〉] = E[‖∇F (wkB)‖22].

We also have

E

∥∥∥∥∥∥
(k+1)B−1∑
t=kB

∇fst(wkB)

∥∥∥∥∥∥
2

2

 = E[BM2(wkB) +B(B − 1)G(wkB)] ≤ B(1 + δ)M2.

3



Consequently,

γBE[‖∇F (wkB)‖22] ≤ E[F (wkB)]− E[F (w(k+1)B)] +
β

2
γ2B(1 + δ)M2. (4)

Summing up equation (4) for k = 0, . . . , T/B − 1 yields

γB

T/B−1∑
k=0

E[‖∇F (wkB)‖22] ≤ F (w0)− F ∗ +
β

2
γ2T (1 + δ)M2,

which simplifies to

min
k=0,...,T/B−1

E[‖∇F (wkB)‖22] ≤ F (w0)− F ∗

γT
+
β

2
γ(1 + δ)M2.

We can then derive the results by replacing γ and T with the particular choices.

2.3 Proof of Theorem 3

Substituting w = w(k+1)B and w′ = wkB in the condition for β-smoothness in Definition 1, we
obtain

F (w(k+1)B) ≤ F (wkB)− γ

〈
∇F (wkB),

(k+1)B−1∑
t=kB

∇fst(wkB)

〉
+
βγ2

2

∥∥∥∥∥∥
(k+1)B−1∑
t=kB

∇fst(wkB)

∥∥∥∥∥∥
2

2

. (5)

Condition on wkB and take expectations over the choice of st, t = kB, . . . , (k+ 1)B−1. We obtain

E[F (w(k+1)B) | wkB] ≤ F (wkB)− γB‖∇F (wkB)‖22 +
βγ2

2

(
BM2(wkB) +B(B − 1)G(wkB)

)
.

(6)

Then, we take expectation over all the randomness of the algorithm. Using the PL condition in
Definition 3 and the fact that B ≤ 1 + δBD(w) for all w ∈ WT , we write

E
[
F (w(k+1)B)− F ∗

]
≤ (1− 2γµB)E [F (wkB)− F ∗] + (1 + δ)

βBγ2M2

2
. (7)

Then, if B ≤ 1
2γµ , we have

E [F (wT )− F ∗] ≤ (1− 2γµB)T/B(F (w0)− F ∗) + (1 + δ)
βγM2

4µ
.

Using the fact that 1 − x ≤ e−x for any x ≥ 0, and choosing γ = 2εµ
M2β

, we obtain the desired
result.
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2.4 Proof of Theorem 4

According to Lemma 1, for every k = 0, 1, . . . , TB − 1, we have

E[‖w(k+1)B −w∗‖22 | wkB] ≤ ‖wkB −w∗‖22 − 2γB 〈∇F (wkB),wkB −w∗〉+ (1 + δ)γ2BM2.

Then, we take expectation over all the randomness of the algorithm. Let DkB = E[‖wkB −w∗‖22].
We have

E[〈∇F (wkB),wkB −w∗〉] ≤ 1

2γB
(DkB −D(k+1)B) + (1 + δ)

γ

2
M2. (8)

We use equation (8) to prove the convergence rate. We have by convexity

E

F
B
T

T
B
−1∑

k=0

wkB

− F (w∗)

 ≤ E

B
T

T
B
−1∑

k=0

F (wkB)− F (w∗)


=
B

T

T
B
−1∑

t=0

E[F (wkB)− F (w∗)]

≤ B

T

T
B
−1∑

t=0

E[〈∇F (wkB),wkB −w∗〉]

≤ D0

2γT
+ (1 + δ)

γM2

2
,

where the last inequality is obtained by summing inequality (8) over k = 0, 1, . . . , TB − 1. Then, we
can derive the results by replacing γ and T with the particular choices.

2.5 Proof of Theorem 5

According to Lemma 1, we have

E[‖w(k+1)B −w∗‖22 | wkB] ≤ ‖wkB −w∗‖22 − 2γB 〈∇F (wkB),wkB −w∗〉+ (1 + δ)γ2BM2(wkB).

By strong convexity of F (w), we have

〈∇F (wkB),wkB −w∗〉 ≥ λ‖wkB −w∗‖22,
which yields

E[‖w(k+1)B −w∗‖22 | wkB] ≤ (1− 2γλB)‖wkB −w∗‖22 + (1 + δ)γ2BM2(wkB). (9)

Then, by taking expectations over the randomness of the whole algorithm on both sizes of (9),
we obtain

E[‖w(k+1)B −w∗‖22] ≤ (1− 2γλB)E[‖wkB −w∗‖22] + (1 + δ)γ2BM2.

Then if B ≤ 1
2γλ , we obtain

E[‖wT −w∗‖22] ≤ (1− 2γλB)T/B‖w0 −w∗‖22 + (1 + δ)
γM2

2λ
.

Using the fact that 1− x ≤ e−x for any x ≥ 0, we obtain

E[‖wT −w∗‖22] ≤ e−2γλTD0 + (1 + δ)
γM2

2λ
.

We complete the proof by taking γ = ελ
M2 .
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3 Lower Bound

In this section, we prove the lower bound on convergence for strongly convex functions.

3.1 Proof of Theorem 6

We set fi(w) = λ
2‖w−xi‖22, and thus F (w) = 1

n

∑n
i=1

λ
2‖w−xi‖22. We chooseW = {w : ‖w‖2 ≤ 1},

and xi’s such that ‖xi‖2 = 1 for all i = 1, . . . , n, and
∑n

i=1 xi = 0.
One can check that ∇fi(w) = λ(w − xi), ∇F (w) = λw, and

M2(w) =
1

n

n∑
i=1

‖∇fi(w)‖22 =
1

n

n∑
i=1

λ2‖w − xi‖22 =
1

n

n∑
i=1

λ2(‖w‖22 + ‖xi‖22).

Since M2(w) = 1
n

∑n
i=1 λ

2(‖w‖22 + ‖xi‖22) ∈ [λ2, 2λ2] for all w ∈ W, we know that we have
M2(w) ≥ 1

2M
2 for all w ∈ W.

Since W is a bounded set, the projection step has to be taken in order to guarantee that
wNk

∈ W. However, one can show that, if the initial guess w0 is in the convex hull of x1, . . . ,xn
(denoted by C ⊂ W), then, without using projection, the obtained model parameter wNk

always
stays inside C. More specifically, we have the following result.

Proposition 4. Suppose that Bk ≤ 1
λγ for all k = 1, . . . ,K, and w0 ∈ C. Then, without using

projection, wNk
∈ C for all k.

Proof. We prove this result using induction. Suppose that wNk−1
∈ C. Then, we have

wNk
=wNk−1

− γ
Nk−1∑
`=Nk−1

∇fs`(wNk−1
) = wNk−1

− γ
Nk−1∑
`=Nk−1

λ(wNk−1
− xs`)

=(1− γλBk)wNk−1
+ γλBk

 1

Bk

Nk−1∑
`=Nk−1

xs`

 .

Since wNk−1
, 1
Bk

∑Nk−1
`=Nk−1

xs` ∈ C, we prove Lemma 4.

From now on we assume w0 ∈ C and do not consider projection. According to equation (3) in
the proof of Lemma 1, we have1

E[‖wNk
−w∗‖22 | wNk−1

] =‖wNk−1
−w∗‖22 − 2γBk〈wNk−1

−w∗,∇F (wNk−1
)〉

+ γ2Bk

(
1 +

Bk − 1

BD(wNk−1
)

)
M2(wNk−1

)

≥(1− 2γλBk)‖wNk−1
−w∗‖22 +

1

2
γ2M2Bk

(
1 +

Bk − 1

BD(wNk−1
)

)
.

1We still keep w∗ although w∗ = 0.
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Then, we take expectation over the randomness of the whole algorithm and obtain

E[‖wNk
−w∗‖22] ≥(1− 2γλBk)E[‖wNk−1

−w∗‖22] +
1

2
γ2M2Bk

(
1 + (Bk − 1)E

[
1

BD(wNk−1
)

])
≥(1− 2γλBk)E[‖wNk−1

−w∗‖22] +
1

2
γ2M2Bk

(
1 + (Bk − 1)

1

E[BD(wNk−1
)]

)
≥(1− 2γλBk)E[‖wNk−1

−w∗‖22] +
1

2
(1 + δ)γ2M2Bk,

where the second inequality is due to Jensen’s inequality, and the third inequality is due to the fact
that Bk ≥ 1 + δE[BD(wNk−1

)].
Rolling out the above recursion, and denoting αk = 2γλBk ∈ [0, 1], we have

E
[
‖wNK

−w∗‖22
]
≥ ‖w0 −w∗‖22

(
K∏
k=1

(1− αk)

)
+

1

2
(1 + δ)γ2M2

[
BK +

K−1∑
k=1

K∏
i=k+1

(1− αi)Bk

]

= ‖w0 −w∗‖22

(
K∏
i=1

(1− αi)

)
+

1

4
(1 + δ)

γM2

λ

[
αK +

K−1∑
k=1

K∏
i=k+1

(1− αi)αk

]
.

Now the number of gradient updates is given by
∑K

k=1Bk = T , and consequently,
∑K

k=1 αk = 2γλT .
Since we consider the case when T ≥ c

γλ for some universal constant c > 0 (and SGD only converges

in this regime), so we have
∑K

k=1 αk ≥ 2c.
Substituting the value of step-size γ, we see that in order to complete the proof, it suffices to

show that the quantity

J(α) = αK +
K−1∑
k=1

K∏
i=k+1

(1− αi)αk

is lower bounded as Ω(1). In order to show this, note that J(α) can be equivalently expressed as
the CDF of a geometric distribution with non-uniform probabilities of success αk. We could further
see that

J(α) = 1−
K∏
k=1

(1− αk) ≥ 1−

[
1

K

K∑
k=1

(1− αk)

]K
≥ 1− (1− 2c/K)K ,

and the last term is lower bounded by a constant for all K ≥ 1.
A second bound that was implicit in our convergence rates is also sharp, as shown in the

following section.

3.2 Necessity of B ≤ O( 1
λγ
)

In this section, we show that, up to a constant factor, the condition B ≤ 1
2γλ in Theorem 5 and 6, is

actually necessary for mini-batch SGD to converge when F (w) is strongly convex. More precisely,
we can show that, when B > 2

γλ , mini-batch SGD diverges.

Proposition 5. Suppose that F (w) is λ-strongly convex. Condition on the model parameter wkB

obtained after k iterations. Suppose that wkB − γ
∑

i∈I ∇fi(wkB) ∈ W for all I ∈ [n]B. Then, if
B > 2

γλ , we have

E
[
‖w(k+1)B −w∗‖2 | wkB

]
> ‖wkB −w∗‖2.
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Proof. We have

E
[
‖w(k+1)B −wkB‖2 | wkB

]
≥
∥∥E[w(k+1)B −wkB | wkB]

∥∥
2

= γ

∥∥∥∥∥∥
(k+1)B−1∑
t=kB

E[∇fst(wkB) | wkB]

∥∥∥∥∥∥
2

= γB‖∇F (wkB)‖2
≥ γBλ‖wkB −w∗‖2,

where the first step follows by Jensen’s inequality, and the last by strong convexity.
This allows us to conclude that if B > 2

γλ , E
[
‖w(k+1)B −wkB‖2 | wkB

]
> 2‖wkB−w∗‖2. Then,

by triangle inequality,

E
[
‖w(k+1)B −w∗‖2 | wkB

]
≥ E

[
‖w(k+1)B −wkB‖2 | wkB

]
− ‖wkB −w∗‖2 > ‖wkB −w∗‖2,

and thus mini-batch SGD diverges.

We now turn to showing that various heuristics for SGD are also diversity-inducing.

4 Proof of Theorem 7

For DropConnect, we have

Bdrop
D (w) = n

∑n
i=1 E[‖Di∇fi(w)‖22]

E[‖
∑n

i=1 Di∇fi(w)‖22]

=
n
∑n

i=1(1− p)‖∇fi(w)‖22∑n
i=1(1− p)‖∇fi(w)‖22 + (1− p)2

∑
j 6=k〈∇fj(w),∇fk(w)〉

.

(10)

Recall that

BD(w) =
n
∑n

i=1 ‖∇fi(w)‖22∑n
i=1 ‖∇fi(w)‖22 +

∑
j 6=k〈∇fj(w),∇fk(w)〉

,

and we can see that for any w such that
∑

j 6=k〈∇fj(w),∇fk(w)〉 ≥ 0, we must have BD(w) ≤ n.
In this case, we have

Bdrop
D (w) ≥

n
∑n

i=1(1− p)‖∇fi(w)‖22∑n
i=1(1− p)‖∇fi(w)‖22 + (1− p)

∑
j 6=k〈∇fj(w),∇fk(w)〉

= BD(w).

On the other hand, if
∑

j 6=k〈∇fj(w),∇fk(w)〉 < 0, we must have BD(w) > n, and one can simply

check that we also have Bdrop
D (w) > n.

For stochastic gradient Langevin dynamics, we have

Bsgld
D (w) =

n
∑n

i=1 E[‖∇fi(w) + ξi‖22]

E[‖
∑n

i=1(∇fi(w) + ξi)‖22]
=
n
∑n

i=1 ‖∇fi(w)‖22 + n2dσ2

‖
∑n

i=1∇fi(w)‖22 + ndσ2
. (11)

Therefore, as long as BD(w) =
n
∑n

i=1 ‖∇fi(w)‖22
‖
∑n

i=1∇fi(w)‖22
≤ n, we have Bsgld

D (w) ≥ BD(w). In addition,

if BD(w) > n, then Bsgld
D (w) > n.
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For quantization, one can simply check that for any i ∈ [n], we have E[‖Q(∇fi(w))‖22] =
‖∇fi(w)‖2‖∇fi(w)‖1, and for any j 6= k, we have E[〈Q(∇fj(w)), Q(∇fk(w))〉] = 〈∇fj(w),∇fk(w)〉.
Consequently,

Bquant
D (w) =

n
∑n

i=1 E[‖Q(∇fi(w))‖22]

E[‖
∑n

i=1Q(∇fi(w))‖22]

=
n
∑n

i=1 ‖∇fi(w)‖2‖∇fi(w)‖1∑n
i=1 ‖∇fi(w)‖2‖∇fi(w)‖1 +

∑
j 6=k〈∇fj(w),∇fk(w)〉

.

(12)

We define

∆quant
D (w) :=

∑n
i=1 ‖∇fi(w)‖2‖∇fi(w)‖1∑n

i=1 ‖∇fi(w)‖2‖∇fi(w)‖1 +
∑

j 6=k〈∇fj(w),∇fk(w)〉
,

and

∆D(w) :=

∑n
i=1 ‖∇fi(w)‖22∑n

i=1 ‖∇fi(w)‖22 +
∑

j 6=k〈∇fj(w),∇fk(w)〉
,

and we have Bquant
D (w) = n∆quant

D (w) and BD = n∆D(w). One can now check that due to the fact
that ‖v‖2‖v‖1 ≥ ‖v‖22 for any vector v, when ∆D(w) ∈ (0, 1), we have ∆quant

D (w) > ∆D(w), and
when ∆D(w) > 1, we have ∆quant

D (w) > 1.

5 Stability

Let us begin by defining some useful notation. We let

M
2
(w,w′) :=

1

n

n∑
i=1

‖∇fi(w)−∇fi(w′)‖22 and G(w,w′) := ‖∇F (w)−∇F (w′)‖22.

One can see that BD(w,w′) = M
2
(w,w′)

G(w,w′)
. We also define

BD = inf
w 6=w′

BD(w,w′).

Before turning to the proofs, we first provide some background.

5.1 Background on Stability and Generalization

Recall that in supervised learning problems, our goal is to learn a parametric model with small
population risk R(w) := Ez∼D[f(w; z)]. In order to do so, we use empirical risk minimization,
and hope to obtain a model that has both small empirical risk and small population risk to avoid
overfitting. Formally, let A be a possibly randomized algorithm which maps the training data to
the parameter space as w = A(S). We define the expected generalization error of the algorithm as

εgen(A) := |ES,A[RS(A(S))−R(A(S))]| .

Bousquet and Ellisseef show that there is a fundamental connection between the generalization
error and algorithmic stability. An algorithm is said to be stable if it produces similar models given
similar training data. We summarize their result as follows.

9



Proposition 6. Let S = (z1, . . . , zn) and S ′ = (z′1, . . . , z
′
n) be two independent random samples

from D, and let S(i) = (z1, . . . , zi−1, z
′
i, zi+1, . . . , zn) be the sample that is identical to S except in

the i-th data point where we replace zi with z′i. Then, we have

ES,A[RS(A(S))−R(A(S))] = ES,S′,A

[
1

n

n∑
i=1

f(A(S(i)); z′i)−
1

n

n∑
i=1

f(A(S); z′i)

]
.

With the notation in Proposition 6, we define the following quantity that characterizes the
algorithmic stability of the learning algorithm given the data points:

εstab(S,S ′) = EA

[
1

n

n∑
i=1

f(A(S(i)); z′i)−
1

n

n∑
i=1

f(A(S); z′i)

]
, (13)

where we condition on the data sets S and S ′ and take expectation over the randomness of the
learning algorithm (mini-batch SGD). Recall from Theorem 6 that

εgen(A) =
∣∣ES,S′ [εstab(S,S ′)

]∣∣ ≤ ES,S′
[∣∣εstab(S,S ′)

∣∣] . (14)

We bound εgen(A) by first showing a bound on εstab(S,S ′) that depends on the sample (S,S ′), then
using equation (14) to obtain, as a corollary, results for generalization error.

For convex and strongly convex functions, we have the following two results on stability.

Proposition 7 (stability of convex functions). Fix sample (S,S ′). Suppose that for any z ∈ Z,
f(w; z) is convex, L-Lipschitz and β-smooth in W. Provided the step-size and batch-size satisfy

γ ≤ 2

β
(

1 + 1
n−11B>1 + B−1

BD(w,w′)

) , (15)

for all w 6= w′, we have |εstab(S,S ′)| ≤ 2γL2 T
n .

Proposition 8 (stability of strongly convex functions). Fix the sample (S,S ′). Suppose that for
any z ∈ Z, f(w; z) is L-Lipschitz, β-smooth, and λ-strongly convex in W, and that B ≤ 1

2γλ .
Provided the step-size and batch-size satisfy

γ ≤ 2

(β + λ)
(

1 + 1
n−11B>1 + B−1

BD(w,w′)

) , (16)

for all w 6= w′, we have |εstab(S,S ′)| ≤ 4L2

λn .

We also note that Theorem 9 and Theorem 10 in our main paper can be derived as Corollaries
of Proposition 7 and 8, respectively. In following sections, we provide the details.

5.2 Proofs of Proposition 7 and Theorem 9

We first recall the problem setting. Suppose that there are two sample sets S and S(I) which
differ at one data point located at a random position I, which is uniformly distributed in [n]. We
run the same (projected) parallel mini-batch SGD on both data sets, and after the k-th parallel
iteration, we obtain wkB and w̃kB, respectively. After a total number of T gradient updates, i.e.,

10



T/B parallel iterations, we obtain wT and w̃T . Let st, t = 0, 1, . . . , T −1 be the sequence of indices
of samples used by the algorithm. In our setting, st are i.i.d. uniformly distributed in {1, 2, . . . , n}.
Let zst ∈ S and z̃st ∈ S(I), t = 0, . . . , T − 1 be the data point used in the algorithms running on
the two data sets, respectively. Then, we know that with probability 1 − 1

n , zst = z̃st , and with
probability 1

n , zst 6= z̃st . We simplify the notations of the risk function associated with zst and z̃st
by fst(w) := f(w; zst), and f̃st(w) := f(w; z̃st), respectively.

We now prove Proposition 7. Throughout this proof, we only consider the case where B > 1
and omit the indicator function 1B>1. We condition on the data sets and the event that the choice
of γ is “good”, as shown in (15). Specifically, we condition on the samples S and S ′, and the event
Γ:

Γ =

{
γ ≤ 2

β(1 + 1
n−1 + B−1

BD
)

}
=

{
BD ≥

B − 1
2
γβ − 1− 1

n−1

}
. (17)

Recall the definition of η:

η = P

{
inf

w 6=w′
BD(w,w′) <

B − 1
2
γβ − 1− 1

n−11B>1

}
. (18)

We know that η = P{Γ̄}, and so our goal is to bound |εstab(S,S ′)| conditioned on the event Γ.
Since we assume that f(w; z) is L-Lipschitz on W, we have∣∣εstab(S,S ′)

∣∣ ≤ LEI,A|Γ [‖A(S(I))−A(S)‖2
]

= LEI,A|Γ [‖wT − w̃T ‖2] , (19)

and thus it suffices to bound EI,A|Γ [‖wT − w̃T ‖2].
Consider the samples used in the (k + 1)-th parallel iteration in the two algorithm instances,

i.e., {zst}
(k+1)B−1
t=kB , and {z̃st}

(k+1)B−1
t=kB . Let Hk+1 be the the number of samples that differ between

the two minibatches in iteration k + 1. According to our sampling scheme, Hk+1 ∼ bin(B, 1
n). We

condition on the event that Hk+1 = h. Without loss of generality, we assume that zst = z̃st for all
t = kB, . . . , (k+ 1)B− h− 1, and zst 6= z̃st for all t = (k+ 1)B− h, . . . , (k+ 1)B− 1. Consider the
first B − h terms. For the unconstrained optimization, we have

‖w(k+1)B−h−w̃(k+1)B−h‖22 = ‖(wkB−γ
(k+1)B−h−1∑

t=kB

∇fst(wkB))−(w̃kB−γ
(k+1)B−h−1∑

t=kB

∇f̃st(w̃kB))‖22.

(20)
For the algorithm with projection, the B gradient update steps are the same as the unconstrained
algorithm, and projection step is conducted once all the gradient updates are finished. Therefore,
equation (20) also holds for projected algorithm.
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Since fst(w) = f̃st(w) for all t = kB, . . . , (k + 1)B − h− 1, we further have

‖w(k+1)B−h − w̃(k+1)B−h‖22

=‖wkB − w̃kB‖22 − 2〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉

+ γ2‖
(k+1)B−h−1∑

t=kB

∇fst(wkB)−∇fst(w̃kB)‖22

=‖wkB − w̃kB‖22 − 2〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉

+ γ2

(k+1)B−h−1∑
t=kB

‖∇fst(wkB)−∇fst(w̃kB)‖22

+ 2γ2

(k+1)B−h−1∑
i=kB

(k+1)B−h−1∑
j=i+1

〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj (wkB)−∇fsj (w̃kB)〉.

(21)

We denote the sequence of indices selected by the mini-batch SGD algorithm up to the t-th sampled
data point by At, i.e., At = {s0, . . . , st−1}. In the following steps, we condition on AkB and the
event that Hk+1 = h, and take expectation over the randomness of the SGD algorithm in the
(k + 1)-th parallel iteration and the random choice of I.

We consider each term in equation (21). For the term ‖∇fst(wkB)−∇fst(w̃kB)‖22, conditioned
on the event that zst = z̃st , we know that st is uniformly distributed in [n]\{I}. Since I is uniformly
distributed in [n], we know that the marginal distribution of st is uniform on the set [n]. We have

EI,A|Hk+1,AkB ,Γ[‖∇fst(wkB)−∇fst(w̃kB)‖22] = M
2
(wkB, w̃kB).

Then, we find the conditional expectation of 〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj (wkB)−∇fsj (w̃kB)〉.
The following lemma does precisely this.

Proposition 9. For any i, j such that kB ≤ i, j ≤ (k + 1)B − h− 1 and i 6= j, we have

EI,A|Hk+1,AkB ,Γ[〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj (wkB)−∇fsj (w̃kB)〉]

=
1

(n− 1)2
M

2
(wkB, w̃kB) +

n(n− 2)

(n− 1)2
G(wkB, w̃kB).

(22)

We prove Proposition 9 in Appendix 5.4. Combining this lemma with the result of equation (21),
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we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖22]

= ‖wkB − w̃kB‖22 − 2EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)M
2
(wkB, w̃kB)

+ γ2(B − h)(B − h− 1)

[
1

(n− 1)2
M

2
(wkB, w̃kB) +

n(n− 2)

(n− 1)2
G(wkB, w̃kB)

]

≤ ‖wkB − w̃kB‖22 − 2EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB, γ

(k+1)B−h−1∑
t=kB

∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)M
2
(wkB, w̃kB) + γ2(B − h)

[
1

n− 1
M

2
(wkB, w̃kB) + (B − 1)

M
2
(wkB, w̃kB)

BD(wkB, w̃kB)

]

≤ ‖wkB − w̃kB‖22 − 2γ

(k+1)B−h−1∑
t=kB

EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)(1 +
1

n− 1
+
B − 1

BD

)M
2
(wkB, w̃kB).

(23)
By the co-coercive property of convex and smooth functions, we know that

〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉 ≥ 1

β
‖∇fst(wkB)−∇fst(w̃kB)‖22.

We thus obtain

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖22]

≤ ‖wkB − w̃kB‖22 − (2
γ

β
− γ2(1 +

1

n− 1
+
B − 1

BD

))(B − h)M
2
(wkB, w̃kB).

(24)

Since we condition on the event Γ, we have that γ obeys the relation in equation (17). Consequently,

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖22] ≤ ‖wkB − w̃kB‖22.

Then by Jensen’s inequality, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2] ≤ ‖wkB − w̃kB‖2. (25)

For the last h terms, since the loss functions are all L-Lipschitz, we obtain

‖w(k+1)B − w̃(k+1)B‖2 ≤ ‖w(k+1)B−h − w̃(k+1)B−h‖2 + 2γLh. (26)

Then, combining with equation (25), we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ ‖wkB − w̃kB‖2 + 2γLh. (27)

Recall that Hk+1 is a binomial random variable. Taking expectation over Hk+1 yields

EI,A|AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ ‖wkB − w̃kB‖2 + 2γL
B

n
.
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Then we take expectation over the randomness of the first k parallel iterations and obtain

EI,A|Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ EI,A|Γ[‖wkB − w̃kB‖2] + 2γL
B

n
. (28)

Summing up (28) for k = 0, 1, . . . , TB − 1 and taking expectation over the data sets, we have

EI,A|Γ[‖wT − w̃T ‖2] ≤ 2γL
T

n
. (29)

Combining equations (19) and (29), we complete the proof of Proposition 7, i.e., when the event Γ
occurs, we have ∣∣εstab(S,S ′)

∣∣ ≤ LEI,A|Γ [‖wT − w̃T ‖2] ≤ 2γL2T

n
. (30)

To prove Theorem 9, we notice that when Γ does not occur, we simply have∣∣εstab(S,S ′)
∣∣ ≤ LEI,A|Γ̄[‖wT − w̃T ‖2] ≤ 2γL2T. (31)

Using equations (30) and (31) along with the definition of η, we obtain

εgen ≤ ES,S′|Γ
[∣∣εstab(S,S ′)

∣∣]P{Γ}+ ES,S′|Γ̄
[∣∣εstab(S,S ′)

∣∣]P{Γ̄}
≤ 2γL2T

n
(1− η) + 2γL2Tη,

which completes the proof.

5.3 Proof of Proposition 8 and Theorem 10

The proof of Proposition 8 follows an argument similar to the proof of Proposition 7. We define
the analogous event Γ to signal that the step size is “good”, according to equation (16); note that
this is slightly different from convex risk functions:

Γ =

{
γ ≤ 2

(β + λ)(1 + 1
n−1 + B−1

BD
)

}
=

{
BD ≥

B − 1
2

γ(β+λ) − 1− 1
n−1

}
. (32)

Recall the definition of η:

η = P

{
inf

w 6=w′
BD(w,w′) <

B − 1
2

γ(β+λ) − 1− 1
n−11B>1

}
, (33)

we know that η = P{Γ̄}. To prove Proposition 8, our goal is still to bound EI,A|Γ [‖wT − w̃T ‖2].
Since the result in (23) still holds for strongly convex functions, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖22]

≤ ‖wkB − w̃kB‖22 − 2γ

(k+1)B−h−1∑
t=kB

EI,A|Hk+1,AkB ,Γ[〈wkB − w̃kB,∇fst(wkB)−∇fst(w̃kB)〉]

+ γ2(B − h)(1 +
1

n− 1
+
B − 1

BD

)M
2
(wkB, w̃kB),

(34)
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where Hk+1 is defined in the same way as in the proof of Proposition 7. For strongly convex
functions, we have the following co-coercive property:

〈wkB− w̃kB,∇fst(wkB)−∇fst(w̃kB)〉 ≥ βλ

β + λ
‖wkB− w̃kB‖22 +

1

β + λ
‖∇fst(wkB)−∇fst(w̃kB)‖22,

which gives us

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖22]

≤
(

1− 2γ(B − h)
βλ

β + λ

)
‖wkB − w̃kB‖22 − γ(B − h)

[
2

β + λ
− γ(1 +

1

n− 1
+
B − 1

BD

)

]
M

2
(wkB , w̃kB).

(35)

Since we only consider the regime where B ≤ 1
2γλ , one can check that 1 − 2γ(B − h) βλ

β+λ > 0 for
any h = 0, . . . , B. Conditioned on the data sets and the event Γ, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖22] ≤
(

1− 2γB
βλ

β + λ

)
‖wkB − w̃kB‖22. (36)

With Jensen’s inequality and the fact that
√

1− x ≤ 1− x
2 for any x ∈ [0, 1], we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B−h − w̃(k+1)B−h‖2] ≤
(

1− γB βλ

β + λ

)
‖wkB − w̃kB‖2. (37)

For the last h terms, we have

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤ ‖w(k+1)B−h − w̃(k+1)B−h‖2 + 2γLh. (38)

Combined with equation (37), we obtain

EI,A|Hk+1,AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤
(

1− γB βλ

β + λ

)
‖wkB − w̃kB‖2 + 2γLh,

and by taking expectation over h we have

EI,A|AkB ,Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤
(

1− γB βλ

β + λ

)
‖wkB − w̃kB‖2 + 2γL

B

n
.

Taking expectation over AkB yields

EI,A|Γ[‖w(k+1)B − w̃(k+1)B‖2] ≤
(

1− γB βλ

β + λ

)
EI,A|Γ[‖wkB − w̃kB‖2] + 2γL

B

n
. (39)

Iterating equation (39) yields

EI,A|Γ[‖wT − w̃T ‖2] ≤ 4L

λn
. (40)

Combining equations (19) and (40), we prove Proposition 8, i.e., when Γ occurs,∣∣εstab(S,S ′)
∣∣ ≤ LEI,A|Γ [‖wT − w̃T ‖2] ≤ 4L2

λn
. (41)

To prove Theorem 10, we notice the fact that, when Γ does not occur, we simply have∣∣εstab(S,S ′)
∣∣ ≤ LEI,A|Γ̄[‖wT − w̃T ‖2] ≤ 2γL2T. (42)
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Combining equations (41) and (42) with the definition of η then yields

εgen ≤ ES,S′|Γ
[∣∣εstab(S,S ′)

∣∣]P{Γ}+ ES,S′|Γ̄
[∣∣εstab(S,S ′)

∣∣]P{Γ̄}
≤ 4L2

λn
(1− η) + 2γL2Tη,

which completes the proof.

5.4 Proof of Proposition 9

One can interpret M
2
(w,w′) and G(w,w′) as follows. Let P1 be a distribution on [n] × [n] with

PMF

p1(u, v) =
1

n
1u=v, (43)

and P2 be the uniform distribution on [n]× [n], i.e.,

p2(u, v) =
1

n2
(44)

for all (u, v) ∈ [n]× [n]. Then, we know that

M
2
(w,w′) = E(i,j)∼P1

[〈∇fi(w)−∇fi(w′),∇fj(w)−∇fj(w′)〉],

and
G(w,w′) = E(i,j)∼P2

[〈∇fi(w)−∇fi(w′),∇fj(w)−∇fj(w′)〉].

Then we find the joint distribution P3 of (si, sj) where kB ≤ i, j ≤ (k + 1)B − h − 1 and i 6= j.
Since zst = z̃st , we know that st 6= I for all t = kB, . . . , (k + 1)B − h− 1. Then conditioned on I,
(si, sj) is uniformly distributed in ([n] \ {I})× ([n] \ {I}). For any u ∈ [n], we have

p3(u, u) = P{si = u, sj = u} =
1

n

n∑
`=1

P{si = u, sj = u | I = `}

=
1

n

∑
`=u

P{si = u, sj = u | I = `} =
1

n(n− 1)
.

For any (u, v) ∈ [n]× [n] such that u 6= v, we have

p3(u, v) = P{si = u, sj = v} =
1

n

n∑
`=1

P{si = u, sj = v | I = `}

=
1

n

∑
` 6=u,v

P{si = u, sj = v | I = `}

=
n− 2

n(n− 1)2
.

Then, we know that

p3(u, v) =
1

(n− 1)2
p1(u, v) +

n(n− 2)

(n− 1)2
p2(u, v).
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Therefore, for any i, j such that kB ≤ i, j ≤ (k + 1)B − h− 1 and i 6= j, we have

EI,A|Hk+1,AkB ,Γ[〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj (wkB)−∇fsj (w̃kB)〉]
= E(si,sj)∼P3

[〈∇fsi(wkB)−∇fsi(w̃kB),∇fsj (wkB)−∇fsj (w̃kB)〉]

=
1

(n− 1)2
M

2
(wkB, w̃kB) +

n(n− 2)

(n− 1)2
G(wkB, w̃kB).

5.5 Examples of Differential Gradient Diversity and Diversity-inducing Mech-
anisms

We now prove auxiliary results for differential gradient diversity that were stated in the main paper.

Generalized Linear Functions We can show that for generalized linear functions, the lower
bound in Theorem 1 still holds, i.e., , for any w,w′ ∈ W, w 6= w′, we have

BD(w,w′) ≥ mini=1,...,n ‖xi‖22
σ2

max(X)
.

To see this, one can simply replace ∇fi(w) with ∇fi(w) − ∇fi(w′) in Appendix 1.1, and define
ai = `′i(x

T
i w) − `′i(xT

i w′). The same arguments in Appendix 1.1 still go through. Consequently,
for i.i.d. σ-sub-Gaussian features, we have BD(w,w′) ≥ c1d ∀ w,w′ ∈ W with probability at least
1− c2ne

−c3d; and for Rademacher entries, we have BD(w,w′) ≥ c4d ∀ w,w′ ∈ W with probability
greater than 1− c5e

−c6n.

Sparse Conflicts The result for gradient diversity still holds for BD(w,w′), i.e., for all w,w′ ∈
W, BD(w,w′) ≥ n/(ρ+ 1), where ρ is the maximum degree of all the vertices in the conflict graph
G. To see this, one should notice that the support of ∇fi(w) only depends on the data point,
instead of the model parameter, and thus, in general, ∇fi(w) and ∇fi(w)−∇fi(w′) have the same
support. Then, one can simply replace ∇fi(w) with ∇fi(w) − ∇fi(w′) in Appendix 1.3 and the
same arguments still go through.

DropConnect When we analyze the stability of mini-batch SGD, we apply the same algorithm
to two different samples S and S(I) that only differ at one data point. Since the algorithm is the
same, the random matrices D1, . . . ,Dn are also the same in the two instances. Therefore, one can
replace ∇fi(w) with ∇fi(w) −∇fi(w′), and the same arguments still work. Then, we know that

when BD(w,w′) ≤ n, we have B
drop
D (w,w′) ≥ BD(w,w′), and when BD(w,w′) > n, we have

B
drop
D (w,w′) > n.

Stochastic Gradient Langevin Dynamics For SGLD, we can make similar arguments as in
dropout, since the additive noise vectors ξ1, . . . , ξn are the same for the two instances. One can then

show that when BD(w,w′) ≤ n, we have B
sgld
D (w,w′) ≥ BD(w,w′), and when BD(w,w′) > n, we

have B
sgld
D (w,w′) > n.
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