A Supplementary: On the Equivalence of Tensor Regression and Gaussian Process

A. 1 Eigenvalue problem

Let $\mathbf{K}=\tilde{\mathbf{U}} \tilde{\mathbf{U}}^{\top}$, take derivative over $\tilde{\mathbf{U}}$, we obtain the stationary point condition: $\mathbf{y} \mathbf{y}^{\top}(\mathbf{K}+\mathbf{D})^{-1} \tilde{\mathbf{U}}=\tilde{\mathbf{U}}$, Given the decomposition of $\tilde{\mathbf{U}}=\mathbf{U}_{x} \boldsymbol{\Sigma}_{x} \mathbf{V}_{x}^{\top}$, similar to (Lawrence, 2004), we have

$$
\begin{aligned}
\mathbf{y} \mathbf{y}^{\top}(\mathbf{K}+\mathbf{D})^{-1} \tilde{\mathbf{U}} & =\tilde{\mathbf{U}} \\
\mathbf{y y}^{\top}(\mathbf{K}+\mathbf{D})^{-1} \mathbf{U}_{x} \boldsymbol{\Sigma}_{x} \mathbf{V}_{x}^{\top} & =\mathbf{U}_{x} \boldsymbol{\Sigma}_{x} \mathbf{V}_{x}^{\top} \\
\mathbf{y y}^{\top} \mathbf{U}_{x}\left(\boldsymbol{\Sigma}_{x}+\mathbf{D} \boldsymbol{\Sigma}_{x}^{-1}\right)^{-1} \mathbf{V}_{x}^{\top} & =\mathbf{U}_{x} \boldsymbol{\Sigma}_{x} \mathbf{V}_{x}^{\top} \\
\mathbf{y} \mathbf{y}^{\top} \mathbf{U}_{x} & =\mathbf{U}_{x}\left(\boldsymbol{\Sigma}_{x}^{2}+\mathbf{D}\right)
\end{aligned}
$$

which is a eigenvalue problem in the transformed space.

A. 2 Derivatives for the Optimization

Given that $\mathbf{y} \sim N(\mathbf{0}, \mathbf{K}+\mathbf{D})$, where $\mathbf{K}=\phi(\mathbf{X}) \otimes_{m=1}^{M} \mathbf{K}_{m} \phi(\mathbf{X})^{\top}$.
Decompose $\mathbf{K}_{m}=\mathbf{U}_{m} \mathbf{U}_{m}^{\top}$, we have $\mathbf{K}=\phi(\mathbf{X})\left(\otimes_{m=1}^{M} \mathbf{U}_{m}\right)\left(\otimes_{m=1}^{M} \mathbf{U}_{m}^{\top}\right) \phi(\mathbf{X})^{\top}$.
Let $\tilde{\mathbf{U}}=\phi(\mathbf{X})\left(\otimes_{m=1}^{M} \mathbf{U}_{m}\right)$, we have $\mathbf{K}=\tilde{\mathbf{U}} \tilde{\mathbf{U}}^{\top}$
The negative log-likelihood

$$
L=\frac{1}{2} \mathbf{y}^{\top}\left(\tilde{\mathbf{U}} \tilde{\mathbf{U}}^{\top}+\mathbf{D}\right)^{-1} \mathbf{y}+\frac{1}{2} \log \operatorname{det}\left(\tilde{\mathbf{U}} \tilde{\mathbf{U}}^{\top}+\mathbf{D}\right)+\text { const }
$$

Based on Woodbury lemma, $\left(\tilde{\mathbf{U}} \tilde{\mathbf{U}}^{\top}+\mathbf{D}\right)^{-1}=\mathbf{D}^{-1}-\mathbf{D}^{-1} \tilde{\mathbf{U}}\left(\mathbf{D}+\tilde{\mathbf{U}}^{\top} \tilde{\mathbf{U}}\right)^{-1} \tilde{\mathbf{U}}^{\top}$ as well as matrix determinant lemma $\operatorname{det}\left(\tilde{\mathbf{U}} \tilde{\mathbf{U}}^{\top}+\mathbf{D}\right)=\operatorname{det}\left(\mathbf{I}+\tilde{\mathbf{U}}^{\top} \mathbf{D}^{-1} \tilde{\mathbf{U}}\right) \operatorname{det}(\mathbf{D})=\operatorname{det}\left(\mathbf{D}+\tilde{\mathbf{U}}^{\top} \tilde{\mathbf{U}}\right)$
Denote $\boldsymbol{\Sigma}=\mathbf{D}+\tilde{\mathbf{U}}^{\top} \tilde{\mathbf{U}}$, let $\mathbf{w}=\boldsymbol{\Sigma}^{-1} \tilde{\mathbf{U}}^{\top} \mathbf{y}$. The objective function can be rewrite as

$$
L=\frac{1}{2} \mathbf{D}^{-1} \mathbf{y}^{\top} \mathbf{y}-\frac{1}{2} \mathbf{D}^{-1} \mathbf{y}^{\top} \tilde{\mathbf{U}} \boldsymbol{\Sigma}^{-1} \tilde{\mathbf{U}}^{\top} \mathbf{y}+\frac{1}{2} \log \operatorname{det}(\boldsymbol{\Sigma})+\text { const }
$$

Take derivative over $\mathbf{U}_{m(i, j)}$, we have

$$
\begin{gathered}
\frac{\partial L}{\partial \mathbf{U}_{m(i, j)}}=\operatorname{tr}\left[\left(\frac{\partial L}{\partial \tilde{\mathbf{U}}}\right)^{\top}\left(\frac{\partial \tilde{\mathbf{U}}}{\partial \mathbf{U}_{m(i, j)}}\right)\right], \quad \frac{\partial L}{\partial \tilde{\mathbf{U}}}=\tilde{\mathbf{U}}\left(\boldsymbol{\Sigma}^{-1}+\mathbf{w} \mathbf{D}^{-1} \mathbf{w}^{\top}\right)^{-1}-\mathbf{y} \mathbf{D}^{-1} \mathbf{w}^{\top} \\
\frac{\partial \tilde{\mathbf{U}}}{\partial \mathbf{U}_{m(i, j)}}=\frac{\partial \phi(\mathbf{X})}{\partial \mathbf{U}_{m(i, j)}}\left(\mathbf{U}_{M} \otimes \cdots \frac{\partial \mathbf{U}_{m}}{\partial \mathbf{U}_{m(i, j)}} \cdots \otimes \mathbf{U}_{1}\right)=\frac{\partial \phi(\mathbf{X})}{\partial \mathbf{U}_{m(i, j)}}\left(\mathbf{U}_{M} \otimes \cdots \mathbf{O}_{m(i, j)} \cdots \otimes \mathbf{U}_{1}\right)
\end{gathered}
$$

Here $\mathbf{O}_{m(i, j)}=\mathbf{e}_{i} \mathbf{e}_{j}^{\top}$ is a matrix with all zeros, but the (i, j) th entry as one.
The predictive distribution: $p\left(y_{\star} \mid \mathbf{x}_{\star}, \mathbf{X}, \mathbf{y}\right) \sim N\left(\mu_{\star}, \sigma_{\star}\right)$:

$$
\begin{aligned}
\mu_{\star} & =\mathbf{k}\left(\mathbf{x}_{\star}, \mathbf{X}\right)\left(\mathbf{D}^{-1}-\mathbf{D}^{-1} \tilde{\mathbf{U}}\left(\mathbf{D}+\tilde{\mathbf{U}}^{\top} \tilde{\mathbf{U}}\right)^{-1} \tilde{\mathbf{U}}^{\top}\right) \mathbf{y} \\
\sigma_{\star} & =\mathbf{k}\left(\mathbf{x}_{\star}, \mathbf{x}_{\star}\right)-\mathbf{k}\left(\mathbf{x}_{\star}, \mathbf{X}\right)\left(\mathbf{D}^{-1}-\mathbf{D}^{-1} \tilde{\mathbf{U}}\left(\mathbf{D}+\tilde{\mathbf{U}}^{\top} \tilde{\mathbf{U}}\right)^{-1} \tilde{\mathbf{U}}^{\top}\right) \mathbf{k}\left(\mathbf{X}, \mathbf{x}_{\star}\right)
\end{aligned}
$$

Where $\tilde{\mathbf{U}}=\phi(\mathbf{X})\left(\otimes_{m=1}^{M} \mathbf{U}_{m}\right)$.

A. 3 Proof for Proposition 2.1

Consider a 3-mode $T_{1} \times T_{2} \times T_{3}$ tensor \mathcal{W} of functions $\mathcal{W}_{(1)}=\left[\mathbf{w}_{1}(\mathbf{X}), \cdots, \mathbf{w}_{T}(\mathbf{X})\right]$

$$
\mathcal{W}=\mathcal{S} \times_{1} \mathbf{U}_{1}(\mathcal{X}) \times_{2} \mathbf{U}_{2} \times_{3} \mathbf{U}_{3}
$$

where \mathbf{U}_{m} is an orthogonal $T_{m} \times R_{m}$ matrix. Assuming $\mathbf{U}_{1}(\mathcal{X})$ satisfies $\mathbb{E}\left[\mathbf{U}_{1}^{\top} \mathbf{U}_{1}\right]=\mathbf{I}$ (orthogonal design after rotation).
With Tucker property

$$
\mathcal{W}_{(1)}=\mathbf{U}_{1}(\mathcal{X}) \mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}
$$

The population risk can be written as

$$
\mathcal{L}(\mathcal{W})=\operatorname{tr}\left\{(\mathcal{Y}-\langle\mathcal{X}, \mathcal{W}\rangle)(\mathcal{Y}-\langle\mathcal{X}, \mathcal{W}\rangle)^{\top}\right\}=\operatorname{tr}\left\{\binom{2 \mathbf{I}}{-\mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}}^{\top} \mathbb{E}\left[\operatorname{cov}\left(\mathcal{Y}, \mathbf{U}_{1}(\mathcal{X})\right]\binom{\mathbf{0}}{-\mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}}+\mathbb{E}\left(\mathcal{Y} \mathcal{Y}^{\top}\right)\right\}\right.
$$

Denote $\mathbb{E}\left[\operatorname{cov}\left(\mathcal{Y}, \mathbf{U}_{1}(\mathcal{X})\right]=\boldsymbol{\Sigma}\left(\mathbf{U}_{1}\right)\right.$, bound the difference

$$
\begin{aligned}
\mathcal{L}(\mathcal{W})-\hat{\mathcal{L}}(\mathcal{W}) & =\operatorname{tr}\left\{\binom{-2 \mathbf{I}}{\mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}}\left(\boldsymbol{\Sigma}\left(\mathbf{U}_{1}\right)-\hat{\boldsymbol{\Sigma}}\left(\mathbf{U}_{1}\right)\right)\binom{\mathbf{0}}{\mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}}\right\} \\
& \leq\left\|\binom{-2 \mathbf{I}}{\mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}}\left(\boldsymbol{\Sigma}\left(\mathbf{U}_{1}\right)-\hat{\boldsymbol{\Sigma}}\left(\mathbf{U}_{1}\right)\right)\right\|_{2}\left\|\binom{\mathbf{0}}{\mathcal{S}_{(1)}\left(\mathbf{U}_{2} \mathbf{U}_{3}\right)^{\top}}\right\|_{\star} \\
& \leq C \max \left\{2,\left\|\mathcal{S}_{(1)}\right\|_{\star}^{2}\right\}\left\|\boldsymbol{\Sigma}\left(\mathbf{U}_{1}\right)-\hat{\boldsymbol{\Sigma}}\left(\mathbf{U}_{1}\right)\right\|_{2}
\end{aligned}
$$

With C as a universal constant. The inequality holds with Schatten norm Hölder's inequality

$$
\|A B\|_{S_{1}} \leq\|A\|_{S_{p}}\|B\|_{S_{q}} \quad 1 / p+1 / q=1
$$

Given that $\sup _{\mathbf{U}_{1}}\left\|\boldsymbol{\Sigma}\left(\mathbf{U}_{1}\right)-\hat{\boldsymbol{\Sigma}}\left(\mathbf{U}_{1}\right)\right\|_{2}=\mathcal{O}_{P}\left(\sqrt{\frac{T_{2} T_{3}+\log \left(T_{1} T_{2} T_{3}\right)}{N}}\right)$
Denote empirical risk $\hat{\mathcal{L}}=\sum_{t=1}^{T} \sum_{i=1}^{n_{t}} \mathcal{L}\left(\left\langle\mathbf{w}_{t}, \mathbf{x}_{t, i}\right\rangle\right.$. Let $\mathcal{W}^{\star}=\inf _{\mathcal{W} \in \mathcal{C}} \mathcal{L}(\mathcal{W})$. The excess risk

$$
\begin{aligned}
\mathcal{L}(\hat{\mathcal{W}})-\mathcal{L}\left(\mathcal{W}^{\star}\right) & =\mathcal{L}(\hat{\mathcal{W}})-\hat{\mathcal{L}}(\hat{\mathcal{W}})+\left(\hat{\mathcal{L}}(\hat{\mathcal{W}})-\hat{\mathcal{L}}\left(\mathcal{W}^{\star}\right)+\left(\hat{\mathcal{L}}\left(\mathcal{W}^{\star}-\mathcal{L}\left(\mathcal{W}^{\star}\right)\right)\right.\right. \\
& \leq[\mathcal{L}(\hat{\mathcal{W}})-\hat{\mathcal{L}}(\hat{\mathcal{W}})]-\left[\mathcal{L}\left(\mathcal{W}^{\star}\right)-\hat{\mathcal{L}}\left(\mathcal{W}^{\star}\right)\right] \\
& \leq 2 \sup _{\mathcal{W} \in \mathcal{C}_{N}}\{\mathcal{L}(\mathcal{W})-\hat{\mathcal{L}}(\mathcal{W})\} \\
& \leq \mathcal{O}\left(\left\|\mathcal{S}_{(1)}\right\|_{\star}^{2}\left\|\boldsymbol{\Sigma}\left(\mathbf{U}_{1}\right)-\hat{\boldsymbol{\Sigma}}\left(\mathbf{U}_{1}\right)\right\|_{2}\right)
\end{aligned}
$$

if we assume $\left\|\mathcal{S}_{(1)}\right\|_{\star}^{2}=\mathcal{O}\left(\left(\frac{N}{T_{2} T_{3}+\log \left(T_{1} T_{2} T_{3}\right)}\right)^{1 / 4}\right)$, then $\mathcal{L}(\hat{\mathcal{W}})-\mathcal{L}\left(\mathcal{W}^{\star}\right) \leq \mathcal{O}(1)$, thus we obtain the oracle inequality as stated.

A. 4 Proof of Theorem 2.2

We can extend the approach of single task Gaussian process (Sollich and Halees, 2002) to our setting. We provide the derivation for the full-rank case, but similar results apply to low-rank case as well. The Bayes error for the full-rank covariance model is:

$$
\hat{\epsilon}=\operatorname{tr}\left(\boldsymbol{\Lambda}^{\prime-1}+\boldsymbol{\Psi}^{\top} \mathbf{D}^{-1} \boldsymbol{\Psi}\right)^{-1}
$$

To obtain learning curve $\epsilon=\mathbb{E}_{\mathcal{D}}[\hat{\epsilon}]$, it is useful to see how the matrix $\mathcal{G}=\left(\boldsymbol{\Lambda}^{-1}+\boldsymbol{\Psi}^{\top} \mathbf{D}^{-1} \boldsymbol{\Psi}\right)^{-1}$ changes with sample size. $\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}$ can be interpreted as the input correlation matrix.
To account for the fluctuations of the element in $\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}$, we introduce auxiliary offset parameters $\left\{v_{t}\right\}$ into the definition of \mathcal{G}. Define resolvent matrix

$$
\mathcal{G}^{-1}=\boldsymbol{\Lambda}^{-1}+\boldsymbol{\Psi}^{\top} \mathbf{D}^{-1} \boldsymbol{\Psi}+\sum_{t} v_{t} \mathbf{P}_{t}
$$

where \mathbf{P}_{t} is short for $\mathbf{P}_{t_{1}, \cdots, t_{M}}$, which defines the projection of t th task to its multi-directional indexes.
Evaluating the change

$$
\mathcal{G}(n+1)-\mathcal{G}(n)=\left[\mathcal{G}^{-1}(n)+\sigma_{t}^{-2} \psi_{t} \psi_{t}^{\top}\right]^{-1}-\mathcal{G}(n)=\frac{\mathcal{G}(n) \psi_{t} \psi_{t}^{\top} \mathcal{G}(n)}{\sigma_{t}^{2}+\psi_{t}^{\top} \mathcal{G}(n) \psi_{t}}
$$

where element $\left(\psi_{t}\right)_{i}=\delta_{\tau_{n+1}, t} \phi_{i t}\left(x_{n+1}\right)$ and τ maps the global sample index to task-specific sample index. Introducing $\mathbf{G}=\mathbb{E}_{\mathcal{D}}[\mathcal{G}]$ and take expectation over numerator and denominator separately, we have

$$
\frac{\partial \mathbf{G}}{\partial n_{t}}=-\frac{\mathbb{E}_{\mathcal{D}}\left[\mathcal{G} \mathbf{P}_{t} \mathcal{G}\right]}{\sigma_{t}^{2}+\operatorname{tr} \mathbf{P}_{t} \mathbf{G}}
$$

Since generalization error $\epsilon_{t}=\operatorname{tr} \mathbf{P}_{t} \mathbf{G}$, we have that $-\mathbb{E}_{\mathcal{D}}\left[\mathcal{G} \mathbf{P}_{t} \mathcal{G}\right]=\frac{\partial}{\partial v_{t}} \mathbb{E}_{\mathcal{D}}[\mathcal{G}]=\frac{\partial \mathbf{G}}{v_{t}}$. Multiplying \mathbf{P}_{s} on both sides yields the approximation for the expected change:

$$
\frac{\partial \mathbf{P}_{s} \mathbf{G}}{\partial n_{t}}=\frac{\partial \epsilon_{s}}{\partial n_{t}}=\frac{1}{\sigma_{t}^{2}+\epsilon_{t}} \frac{\partial \epsilon_{s}}{\partial v_{t}}
$$

Solving $\epsilon_{t}(N, v)$ using the methods of characteristic curves and resetting v to zero, gives the self-consistency equations:

$$
\epsilon_{t}(N)=\operatorname{tr} \mathbf{P}_{t}\left(\boldsymbol{\Lambda}^{\prime-1}+\sum_{s} \frac{n_{s}}{\sigma_{s}^{2}+\epsilon_{s}}\right)^{-1}
$$

