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Abstract

Low-rank tensor regression, a new model class
that learns high-order correlation from data,
has recently received considerable attention.
At the same time, Gaussian processes (GP)
are well-studied machine learning models for
structure learning. In this paper, we demon-
strate interesting connections between the
two, especially for multi-way data analysis.
We show that low-rank tensor regression is
essentially learning a multi-linear kernel in
Gaussian processes, and the low-rank assump-
tion translates to the constrained Bayesian
inference problem. We prove the oracle in-
equality and derive the average case learning
curve for the equivalent GP model. Our Þnd-
ing implies that low-rank tensor regression,
though empirically successful, is highly depen-
dent on the eigenvalues of covariance functions
as well as variable correlations.

1 Introduction

High-order correlations are ubiquitous in modern data
analytics. For instance, data generated from a sensor
network contain measurements from di!erent locations,
time stamps, and variables. Accurate prediction re-
quires models that can simultaneously capture correla-
tions across time, space and variables. Low-rank tensor
regression is a class of supervised learning models that
aim to learn such high-order correlations. In recent
years, low-rank tensor regression has been intensively
studied, leading to successful applications in multi-task
learning (Wimalawarne et al., 2014), deep learning
(Novikov et al., 2015) and complex network analysis
(Imaizumi and Hayashi, 2016).

In contrast to traditional unsupervised tensor decompo-
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sition (Kolda and Bader, 2009), tensor regression (Zhou
et al., 2013) learns a tensor model in a supervised fash-
ion and imposes low-rank structure for dimension re-
duction. Tensor regression has several advantages over
vector or matrix regression: from the modeling perspec-
tive, the model tensor provides an explicit parameteri-
zation for the multi-directional interdependence among
variables. The low-rankness represents the shared la-
tent space in the data. From the learning perspective,
tensor model enjoys lower sample complexity. The
tensor low-rank constraint regularizes the model to be
more generalizable. However, a notable disadvantage of
tensor regression is the absence of conÞdence intervals
for the predictions, which calls for a probabilistic coun-
terpart that can e!ectively represent the high-order
correlations in the data.

Meanwhile, Gaussian processes (Rasmussen, 2006) are
well-established techniques for modeling correlations
structures. With versatile covariance design, GP re-
main popular in spatial statistics and time series anal-
ysis. A natural question then arises, Òwhich method
is better? And how are these two model classes re-
lated?Ó Known examples of similar connections include
the Gaussian process latent variable model (Lawrence,
2004) for PCA, the multi-task Gaussian process model
(Bonilla et al., 2007) for multi-task learning and the
probabilistic Tucker model for Tucker tensor decompo-
sition (Chu and Ghahramani, 2009). The probabilistic
interpretation deepens the understanding of the regu-
larized optimization approach, suggesting its general-
ization to non-Gaussian data with kernel methods.

In this paper, we make the Þrst attempt at understand-
ing this connection. We show that tensor regression is
equivalent to learning a Gaussian process with multi-
linear transformation kernel: multi-linear Gaussian
process (MLGP). The low-rank assumption on the pa-
rameter tensor can be interpreted as a constrained
Bayesian inference problem. We analyze the theoreti-
cal properties of MLGP by proving its oracle inequality
and deriving the average case learning curve. We vali-
date our theory with numerical simulations and provide
a comparative analysis between di!erent GP models.
Finally, we showcase the model on three real-world
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tensor regression applications: multi-linear multi-task
learning, spatio-temporal forecasting, and multi-output
regression. The model not only can achieve superior
performance but also uncover interesting patterns from
multi-way data.

Note that the goal of our work is fundamentally dif-
ferent from existing works on Bayesian estimator for
tensor-variate regression (Guhaniyogi et al., 2015; Xu
et al., 2015; Suzuki, 2015). For example, (Xu et al.,
2015) propose a generative model for Bayesian tensor
regression; (Suzuki, 2015) analyzes the minimax op-
timal rate of the estimator. These works emphasize
probabilistic modeling instead of establishing the con-
nections. And most existing theoretical analyses are
asymptotic. In contrast, our work aims to provide
deeper insights into the relationship between the opti-
mizers of tensor regression and estimators for Gaussian
process models.

2 Tensor Regression and Its
Counterpart

2.1 Low-Rank Tensor Regression

Tensor regression exploits the high-order correlation
in the data. It learns a multi-linear function whose
parameters form a tensor. To represent shared latent
spaces and address Òthe curse of dimensionalityÓ issue,
tensor regression usually constrains the mode tensor
to be low-rank. Formally, given an input tensor X , an
output tensor Y and a model parameter tensorW, ten-
sor regression aims to solve the following optimization
problem:

W ! = argminW
öL(f (X , W); Y)

s.t. rank(W) ! R (1)

where öL denotes the loss function, andf represents a
regression model (e.g. linear, logistic). The solution
W ! minimizes the empirical loss , subject to the tensor
low-rank constraint rank(W) ! R.

Low-rank tensor regression has many applications. One
example is multi-linear multi-task learning 1 (MLMTL),
which learns multiple tasks with a multi-level task
hierarchy. For example, when forecasting the energy
demand for multiple power plants, we can split the
tasks by categories: coal, oil and natural gas. MLMTL
improves the prediction by modeling the correlations
within and across categories. We can encode such task
hierarchy using a tensor, where the Þrst dimension of
the tensor represents features, and the rest to index
the grouped tasks at each level.

1Other applications can be re-formulated as special cases
of multi-linear multi-task learning

SpeciÞcally, givenT learning tasks with feature di-
mension T1, we can split them into T2 groups, each
of which contains T3 = T/T 2 tasks. Assuming each
task t contains nt training data points { x t,i , y t,i } n t

i =1
and is parametrized by wt " RT1 . We can form a
tensor by concatenating all the parameters as a matrix
W = [ w1, á á á, wT ] and folding along the feature di-
mensionW = fold(1) (W ) " RT1 ! T2 ! T3 . The objective
of MLMTL is to learn this parameter tensor subject
to the low-rank constraint:

W ! = argminW
! T

t =1

! n t
i =1 L (#x t,i , w t $; y t,i )

s.t. rank(W) ! R (2)

If the task hierarchy has two levelsT = T2 %T3, we
obtain a third-order tensor. In general, one can use
an (m + 1) -order tensor to represent anm-level task
clustering hierarchy. Note that the deÞnition of tensor
rank is not unique (Kolda and Bader, 2009). One pop-
ular deÞnition is Tucker rank due to its computational
beneÞt. Tucker rank assumes that the tensorW has a
Tucker decompositionW = S %1 U 1 %2 U 2 %3 U 3, with
a core tensorS " RR 1 ! R 2 ! R 3 and orthonormal projec-
tion matrices { U m } 3

m =1 . Tucker rank corresponds to
the size of the core tensorS.

Low-rank tensor regression is a challenging problem
mainly due to the subspace of low-rank tensors is non-
convex, resulting in a high-dimensional non-convex
problem. Recent developments have seen e"cient al-
gorithms for solving Equation 1 and 2, e.g., (Yu and
Liu, 2016; Rabusseau and Kadri, 2016), demonstrat-
ing low-rank tensor regression as a scalable method for
multi-way data analysis. However, one major drawback
of such formulation is that it trades uncertainty for
e"ciency: there is no conÞdence interval for the predic-
tion. Hence, it is di"cult for the learned tensor model
to reason with uncertainty. In seek of its probabilistic
counterpart, we resort to another class of structured
learning models: Gaussian processes.

2.2 Multi-linear Gaussian Processes

Gaussian process regression infers continuous values
with a GP prior. Given input x, output y , and a
regression model

y = f (x) + !, f (x) & GP(m, k) (3)

with ! as the Gaussian noise. GP characterizes a prior
distribution over function f (x) with a mean function
m and a covariance function k. By deÞnition, we
have E[f (x)] = m(x), cov(x, x ") = k(x, x "). The mean
function is usually deÞned to be zero. The covariance
function completely deÞnes the processÕs behavior.

Next, we develop a GP model to describe the generative
process of the MLMTL problem. Given a total of
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N =
! T

t =1 nt training data points { x t,i , y t,i } n t
i =1 from T

related tasks, we assume that each data point(x t,i , y t,i )
is drawn i.i.d from the following probabilistic model:

y t,i = f (x t,i ) + ! t , f (x t,i ) & GP(0, k) (4)

where the task t has a Gaussian noise! t & N (0, " 2
t )

with zero mean and variance" 2
t . To model multiple

tasks, we can concatenate the data from all tasks:
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where X t = [ x t, 1; x t, 2; á á á; x t,n t ] is the vectorization of
the inputs for task t. In matrix form, the probabilistic
model generalizes Equation 4 into:

y = f (X ) + e, f (X ) & GP(0, K ), e & N (0, D )

with X as the inputs, K as the input covariance matrix
and D as the noise covariance.

To represent the multi-level task hierarchy T = T2 %T3,
we deÞne the kernel matrixK with Kronecker products:

K = #(X )K 3 ' K 2 ' K 1#(X )#

where K 1 models the feature correlations,K 2 models
the correlations across groups, andK 3 represents the
dependences of tasks within the group.#(á) maps the
inputs to a T1 dimensional feature space.2 This multi-
linear kernel provides a multi-resolution compositional
representation. It is expressive yet e"cient. Figure 1
shows several examples of such construction with three
kernel functions: Linear k(x, x ") = a + b(x ( c)(x" ( c),

Squared Exponential k(x, x ") = a exp $ (x $ x ! ) 2

2c and Pe-

riodic k(x, x ") = a exp( sin 2 ( " |x $ x ! |)
c in di!erent orders.

We name this class of GP model multi-linear Gaus-
sian processes (MLGP) as the kernel matrix encodes
multi-linear structure.

2.3 Connection Between Two Models

In the following section, we connect low-rank tensor
regression with multi-linear Gaussian processes by ex-
amining the common structures that the two models
aim to learn.

2We want to clarify that the use of ! (á) limits the model
to a Þnite feature space. And the model itself is parametric,
which is the same as the tensor regression formulation.

(a) LIN (b) EXP! LIN (c) PED! EXP! LIN

(d) EXP (e) LIN! EXP (f) PED! LIN! EXP

(g) PED (h) EXP! PED (i) LIN! EXP! PED

Figure 1: Multi-linear kernel construction by compos-
ing Linear (LIN) Squared Exponential (EXP) and Period
(PED) kernels on a(50 %50) ' (4 %4) ' (4 %4) grid.

.

When dealing with a large number of tasks and high
dimensional data, learning{ K m } 3

m =1 can be very ex-
pensive. To reduce the computational cost, we use the
low-rank approximation for each correlation matrix:

{ K m = U m U #
m " RTm ! Tm } 3

m =1

where U m " RTm ! R m is an orthogonal matrix with
dimension Rm much smaller than Tm .

The weight-space view of GP allows us to re-write
the latent function: f (X ) = #vec(W), #(X )$, where
W " RT1 ! T2 ! T3 is the regression model parameters
with the following prior distribution:

vec(W) = ( U 1 ' U 2 ' U 3)T vec(S)

vec(S) & N (0, " 2
s I )

Here S " RR 1 ! R 2 ! R 3 is a super-diagonal core tensor
with i.i.d entries. { U m " RTm ! R m } is a set of orthogo-
nal projection matrices.

Under the MLGP model, the prior distribution of the
latent function follows Gaussian p(f |X ) = N (0, K ),
and the likelihood distribution is p(y |f ) = N (f, D ).
By integrating out the model parameters, we can obtain
the marginal distribution of the outputs y :

p(y |X ) =
(

f p(y , f, s |X ) df ds = N (0, K + D )
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Figure 2: Graphical model for (a) tensor regression, (b) Gaussian process and (c) MLGP. The outer plate
represents tasks, while the inner plate represents the repeated examples within a task.

where we omit the core tensor constant" s, which acts
as a regularization term. The log-likelihood of the
marginal distribution for MLGP is:

L = ( 1
2 log |K + D | ( 1

2 y # (K + D )$ 1y + const

s.t. K = #(X ) ' 3
m =1 K m #(X )# (5)

Using the Kronecker product property ' 3
m =1 U m U #

m =
(' 3

m =1 U m )( ' 3
m =1 U m )# , we can re-write the covari-

ance matrix as:

K = ( #(X ) ' 3
m =1 U m )(#(X ) ' 3

m =1 U m )#

Denote ÷U = #(X ) ' 3
m =1 U m and let the singular value

decomposition of ÷U be ÷U = U x ! x V #
x . We can max-

imize the log-likelihood by taking derivatives over L
with respect to ÷U and set it to zero, which gives the
stationary point condition:

yy # (K + D )$ 1 ÷U = ÷U

With some manipulation, we can obtain an equivalent
eigenvalue problem. Detailed derivation can be found
in Appendix A.1.

yy # U x = U x (! 2
x + D )

Further perform eigen-decomposition of the output
covarianceyy # = U y " y U $ 1

y , we haveU x = U y , ! x =
(" y ( D )

1
2 . Therefore, the likelihood of the MLGP

model is maximized when the solution satisÞes

#(X ) ' 3
m =1 U m = U y (" y ( D )

1
2 V #

x (6)

which suggests that the maximum likelihood estimator
of MLGP correspond to a multi-linear transformation
from the feature space#(X ) to the principal subspace
of the output. Recall that for tensor regression in
Equation 1, the model parameter tensorW also maps
features to the output space with principal subspace
projection using the Tucker decomposition ofW. Hence
MLGP and tensor regression are essentially learning
the same latent feature representations.

If we further consider the low-rank structure in the
projection matrices, GP becomes degenerate. Degen-
erate GP has been shown in (Quinonero-Candela and
Rasmussen, 2005) to be equivalent to Þnite sparse
linear models. Alternatively, we can interpret the
low-rankness in MLPG and tensor regression using
a constrained Bayesian inference approach (Koyejo and
Ghosh, 2013). By minimizing the Kullback-Leibler
(KL) divergence of the Bayesian posteriorN (0, K + D )
from any constructed GP prior N (0, S), and assuming
K is low-rank, we have the following problem:

min
K :K %0,rank (K )<R

log det[(K + D )S$ 1] + tr [(K + D )$ 1S]

It turns out that the log-det of K + D is a smooth
surrogate for the rank of K , which simultaneously min-
imizes the rank of W. Therefore, the estimator for
MLGP with low-rank kernel provides an approximate
solution to the low-rank tensor regression problem. To
this end, we have established the connections between
tensor regression and Gaussian processes. Figure 2
depicts the graphical models of tensor regression, GP,
and MLGP. It is evident that the parameter tensor in
tensor regression maps to the covariance of the MLGP
model. Latent tensor components become parameters
of the covariance function.

We employ gradient-based optimization for Equation 5
to learn the hyper-parameters of MLGP. (see Appendix
A.2 for details) Note that gradient-based optimization
does not guarantee the orthonormality of the projection
matrices. However, with a good initialization, we can
still obtain reasonable approximations. AsK contains
the Kronecker product and the low-rank structure,
we can apply Woodbury matrix identity and exploit
Kronecker properties to speedup the inference. The
predictive distribution for the test data follows the
standard GP regression procedure.

2.4 Theoretical Analysis

We study the theoretical properties of MLGP, which
also shed light on the properties of existing tensor
regression frameworks.
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Figure 3: (a) Theoretical and numerically simulated learning curve for task correlation$ = 0 .25, 0.25, 0.75. (b)
Learning curve for 2-mode MLGP with low-rank approximation r = 9 , 4, 1. 3(c) Learning curve for 3-mode MLGP
with low-rank approximation r = 9 , 4, 1.

We Þrst bound the excess risk of MLGP and derive the
oracle inequality. Consider a tensor of functionalsW
and deÞne a spaceCN with sample sizeN :

CN = {W : W = S %1 U 1 %2 U 2 %3 U 3,

)S(1) ) ! = O

) N
T2T3 + log( T1T2T3)

* 1/ 4
}

where ) á )! denotes the matrix nuclear norm. The
following proposition states the oracle inequality:

Proposition 2.1. Let öW be the estimator that mini-
mizes the empirical risk öL (f (X , W); Y) over the space
of functional tensors W " C N , then the excess risk,
deÞned asL satisÞes:

L ( öW) ( inf W&C N
(L (W)) P(* 0

Proof. Denote E[cov(Y, U 1(X )] = ! (U 1), we Þrst
bound the di!erence:

L (W) ( öL (W) ! C max{ 2, )S(1) ) 2
! }) ! (U 1) ( ö! (U 1)) 2

The empirical risk is:

L ( öW) ( L (W ! ) ! [L ( öW) ( öL ( öW)] ( [L (W ! ) ( öL (W ! )]

! O
)

)S(1) ) 2
! ) ! (U 1) ( ö! (U 1)) 2

*

if we assume)S(1) ) 2
! = O(

)
N

T2 T3 +log( T1 T2 T3 )

* 1/ 4
), then

L ( öW) ( L (W ! ) ! O(1). Details of the derivation are
deferred to Appendix A.3.

This shows the estimation error tending to zero under
a scaling assumption on the sample sizeN and the
dimensions { Tm } . However, asymptotic results can
only capture the large N regime and will not apply for
Þnite sample sizes in practice. The following theorem
states the explicit form of the non-asymptotic learning
curve for the MLGP model under full-rank and low-
rank scenarios:

Theorem 2.2. Assume the eigenfunction decom-
position for the data-dependent part of covariance
#(x)K 1#(x ")# =

!
i %i &i (x)&i (x ")# , denote " as the

diagonal matrix of { ' i,j %i } , the average case learning
curve for MLGP of single task t satisÞes

! (N )t = tr P t 1 ,ááá,t M

)
" "$ 1 +

T+

s=1

diag(
ns

" 2
s + ! s

)P sm

* $ 1

when " " is full-rank

"(N )t = tr P
!

! ! "
! T"

s=1

diag(
#2

s + "s

ns
)P sm + ! !

#" 1
! ! 2

#

when" " is rank-deÞcient, whereP t 1 ,ááá,t M , or P is the
linear operator that maps index t to a set of indices
{ tm } , and " " = ' M

m =2 K m ' " .

Proof. The Bayes error, deÞned asö! = Ex [(w ( öw)2],
has the following form for the low-rank case:

ö! = tr (" ) ( tr (D + #"# # )$ 1#" 2# # (7)

and
ö! = tr (" $ 1 + # # D $ 1# )$ 1 (8)

for the full-rank case. And " and # are the eigen-
components of the covariance. The size of" is equal to
the number of kernel eigenfunctions. When the GP has
a non-degenerate kernel," is full-rank. We can apply
the Woodbury lemma to Equation 7, which yields a
simpliÞed version as in Equation 8.

Using method of characteristics (Sollich and Halees,
2002), we can obtain a corresponding lower bound for
the average case learning curve:

! (N ) = tr (" ) ( tr (
" 2 + !

N
I + " )$ 1" 2 (9)

! (N ) = tr (" $ 1 +
N

" 2 + !
I )$ 1 (10)
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For MLGP, due to the task hierarchy, a task index t
is projected to a set of indexes{ tm } along di!erent
modes of a tensor. DeÞne the projection onmth mode
as P t m = et m e#

t m
, where et m is a unit vector with all

zero but tm th entry as one. Assume eigenfunction de-
composition for the data-dependent part of covariance
#(x)K 1#(x)# =

!
i %i &i (x)&i (x)# , we have

K jk =
M,

m =2

K m, (#j ,#k )

+

i

%i ' #j ,t &i (x j )' #k ,t &i (xk )#

K = # (' M
m =2 K m ' " )# # = #" "# #

where ( j is the task index for j th example, further
projected to the mode-wise indexes. Augmented eigen-
function matrix # j,it = ' #j ,t &i (x j ) accounts for miss-
ing data, where the column index of # runs over
all eigenfunctions and all tasks. For task t, denote
kt (x , á) = k(x t , á)

Ex [kt (x , X )k(X , x t )] = # (' M
m =2 (K m P t m K m )' " 2)# #

where P t m is the m th mode index for task t. The
Bayes error can be written as:

ö! t = Ex [kt (x , x)] ( Ex [kt (x , X )(K + D )$ 1kt (X , x)]

For the Þrst term

Ex [kt (x , x)] =
,

m =2

e#
t m

K m et m Ex [#(x)K 1#(x)# ]

= tr ' M
m =2 P t m K m ' "

For the second term

Ex [kt (x , X )(K + D )$ 1kt (X , x)] =

tr (D + #" "# # )$ 1# (' M
m =2 (K m P t m K m ) ' " 2)# #

With ' m P t m = P t 1 ,ááá,t M , compare Equation 11 with
Equation 7, we have

ö! t = P t 1 ,ááá,t M

)
tr (" ") ( tr (D + #" "# # )$ 1#" "2# #

*

" " = ' M
m =2 K m ' "

The Bayes error of taskt is that of all tasks projected to
each of its mode-wise task indices. Using an analogous
method of characteristic curves, we can obtain a set
of self-consistency equations for the learning curve of
MLGP (see Appendix A.4 for details).

Theorem 2.2 indicates the performance dependency of
MLGP, hence tensor regression, on the eigenvalues of
the covariance function as well as the task correlation
matrix. When the number of examples for all tasks
becomes large, the Bayes errorsö! t will be small and
eventually be negligible compared to the noise variances
" t . This also reßects a commonly accepted claim for

the asymptotic useless of multi-task learning: when the
number of samples becomes large, the learning curves
would come close to single task learning, except for the
fully corrected case.

We further conduct numerical simulations to better
understand the derived learning curve. Consider the
case with 16 identical tasks, and set the task correlation
matrix ' M

m =2 K m to have $ everywhere except for the
principal diagonal elements. Assuming all the tasks are
identical, Figure 3(a) compares the theoretic learning
curve with the numerically simulated learning curve
for di!erent task relatedness. The theoretical learning
curves generally lay slightly below the actual learning
curves, providing a tight lower bound. With a higher
value of$, tasks share higher interdependence, resulting
in faster convergence w.r.t. Bayes error.

Figure 3(b) shows the learning curve for 2-modes
MLGP with di!erent low-rank approximations with
Rm = [1 , 4, 9, 16]. The low-rankness alleviates the noise
variance error, leading to a faster convergence rate but
eventually converges to a solution with a larger ap-
proximation gap. Figure 3(c) displays the learning
curves for the 3-modes MLGP model, with the similar
low-rank approximation. We observe that under the
same rank assumption, the3-mode MLGP imposes a
stronger prior, leading to superior performances over
2-model MLGP with sparse observations.

2.5 Relation to Other Methods

It turns out that for multi-output regression, where
all the tasks share the same inputsX 0 " Rn 0 ! D ,
we can write X = X 0 ' I T , and noise becomes
D = diag([" 1, á á á, " T ]) ' I n 0 . The covariance K =
(' M

m =2 K m ) ' #(X 0)K 1#(X 0)# = ( ' M
m =2 K m ) ' K x ,

where ' M
m =2 K m encodes task similarity andK x is the

kernel matrix over inputs X 0. When the number of
modesM = 2 , the model reduces to the multi-task
Gaussian process (MTGP) model with free-form pa-
rameters (Bonilla et al., 2007). Here we factorize over
Kronecker product operands as the low-rank approxi-
mation while MTGP uses Nystršm approximation.

The multi-linear kernel #(X )( ' M
m =1 K m )#(X )# allows

us to compute { K m } M
m =1 separately, which avoids in-

version of the big covariance matrixK . This property
has also been exploited in (Wilson et al., 2014) for mul-
tidimensional pattern extrapolation (GPatt). In there,
inputs are assumed to be on a multidimensional grid
x " X = X1 % á á á % XM , the covariance matrix has de-
composition K = ' M

m =1 K m where each factorK m is a
kernel matrix over the spaceXm . The di!erence is that
we use Kronecker products to learn multi-directional
task correlations while GPatt performs kernel learning
for each dimension of the inputs.
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Figure 4: Multi-linear multi-task learning benchmark
comparison (a) mean square error on the restaurant
dataset. (b) expected variance on the school dataset.
w.r.t sample size for MLGP and baselines.

3 Experiments

We conduct experiments for a series of tensor regression
applications and demonstrate comparable prediction
performances of MLGP with conÞdence intervals.

3.1 Multi-linear Multi-task learning

We evaluate on two benchmark datasets for MLMTL:
school exam scores and restaurant ratings. School exam
scores contain15, 362 students exam records with21
features from 139 schools across3 years. Restaurant
ratings contain 3, 483 rating records with 45 features
from 138 consumers for3 aspects.

We compare with the following baselines. (1)MLMTL-
C (Romera-Paredes et al., 2013): latent trace norm
optimization with alternating direction method of mul-
tipliers (ADMM) (2) MLMTL-S (Wimalawarne et al.,
2014): scaled latent trace norm optimization with
ADMM, and (3) MOGP (Alvarez and Lawrence, 2011):
multi-output Gaussian process with DTC variational
kernel. As all methods consider linear regression tasks,
we use linear kernel MLGP as a fair comparison. For
MOGP, we use20 inducing points.

We randomly selected from a range of10% to 80% of
the entire data set as the training set. We selected10%
instances as the validation set and the rest was used
as the test set. The regularization parameter for each
norm was selected by minimizing the mean squared
error on the validation set. We repeat the experiments
for 10 times and average the results. All the baselines
are the implementations of the original authors.

Figure 4(a) shows the restaurant rating prediction mean
square error (MSE) for di!erent methods over num-
ber of training samples. Figure 4(b) demonstrates the
expected variance (EV) for the task of school exam
score prediction. We observe superior performances of
MLGP on restaurant data and comparable results for
school data. In parti=cular, when the size of the train-
ing data is small, MLGP shows signiÞcant advantages
for both tasks. This justiÞes the beneÞt of MLGP for
sparse observations.

3.2 Spatio-temporal Forecasting

Spatio-temporal forecasting has been shown to be a
special case of tensor regression, with an additional
spatial Laplacian matrix (Bahadori et al., 2014). We
evaluate the spatio-temporal forecasting performance
for 4 datasets reported in the original paper. For all
the datasets, each variable is normalized by removing
mean and dividing by variance. A third-order vector
auto-regressive (VAR-3) model is employed for multi-
variate time series modeling. We perform an80/ 20
split along the time direction for training/testing and
use validation to select the rank hyper-parameter.

Table 1 displays the forecasting MSE comparison. We
compare with the reported best algorithm Greedy (Ba-
hadori et al., 2014) for this task. We also include ma-
trix multi-task learning with trace-norm regularization
(MTL-Trace) to justify the beneÞt of the tensor-based
approach. For all the 4 datasets, MLGP obtains similar
prediction accuracy as Greedy. The predictive variance
from MTGP directly provides empirical conÞdence in-
tervals, which we append to the MSE.

To better understand the learned predictive distribu-
tion, we use a Þne-grained USHCN dataset from Cali-
fornia (Yu and Liu, 2016) and visualize the predictive
variance of di!erent locations on the map. We inter-
polate the variance values across locations and draw
the contour plots. Figure 5 shows the contour plot
for 54 locations of 5 climate variables. We observe
interesting correlations between the predictive variance
and geographical attributes. For example, precipita-
tion (PRCP) and maximum temperate (TMAX) have
relatively low-variance due to the subtropical climate
in California. Snow depth (SNWD) demonstrates high
variance along the mountains in Sierra Nevada.
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(a) PRCP (b) TMAX (c) TMIN (d) SNOW (e) SNWD

Figure 5: Contour plots for the MLGP predictive variance w.r.t precipitation PRCP, max temperate TMAX min
temperate TMIN, snowfall SNOWand snow depthSNWD. Yellow is high variance and blue means low variance.

Table 1: Mean square error comparison of MLGP and baselines for spatio-temporal forecasting on4 datasets
with 10% testing set. Tensor regression models use VAR-3 with moving window.

Dataset MLGP Greedy MLMTL-C MLMTL-S MTL-Trace

USHNC-US 0.8973+ 0.0008 0.9069 0.9528 0.9543 0.9273
CCDS 0.8498+ 0.0013 0.8325 0.9105 0.8394 0.8632
FSQ 0.1248+ 0.0006 0.1223 0.1495 0.1243 0.1245
YELP 1.0725+ 0.0007 NA 1.0857 1.0876 1.0736
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Figure 6: Predictive mean (solid line) and variance
(shaded area) for foreign exchange rate of XAU and
EUR using from MLGP for 50 time step ahead fore-
casting. Magenta points are observations.

3.3 Multi-output regression

Multiple output regression concerns with the case when
predictor tensor is shared among all of the responses.
One such application is the foreign exchange rate predic-
tion task (Alvarez and Lawrence, 2011). The original
dataset contains3 precious metals and12 international
currencies. To show the beneÞt of exploiting multi-
directional task interdependence, we select the foreign
exchange rate of6 international currencies ( EUR, GBP,
CHF, JPY, HKD, KRW) and 3 precious metals (gold,
silver, and platinum), which forms three groups: pre-
cious metal, European currency and Asian currency.
The dataset consists of all the data available for the
251 working days in the year of 2007.

We use the VAR-3 model for all the low-rank tensor
regression baselines. MLGP achieves0.0563MSE while

best performance of low-rank tensor regression is0.0657.
These results are slightly worse than0.0301of MOGP
with PITC approximation. However, since MLGP does
not require all the responses to be of equal size, it
runs much faster than MOGP, which involves a missing
value imputation step to satisfy the size constraint. To
further interpret the learned model, we plot out the
predictive mean and variance together with observa-
tions in Figure 6. We observe high predictive variance
whenever the time series encounters sharp changes.

4 Discussion and Conclusion

In this paper, we establish interesting connections be-
tween tensor regression and Gaussian processes. We
develop a probabilistic counterpart: multi-linear Gaus-
sian processes (MLGP). With the low-rank constraint,
the Bayesian estimator of MLGP learns a smooth sur-
rogate for the low-rank structure in tensor regression.
Theoretical analysis shows its performance dependency
on the eigenvalues of the covariance matrix and task
correlation. Comparable (if not better) performance
are observed in a series of real-world applications.

This relationship hints upon our choice of tools for
multi-way data analysis. Tensor regression is fast and
simple to implement. It is guaranteed to output or-
thonormal basis of the latent subspaces but does not
generate conÞdence intervals. MLGP, on the other
hand, can better handle sparse observations, and is
more versatile with kernels. In terms of future direc-
tions, one interesting question is to study the robustness
of both methods under adversarial corruptions.
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