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A.2 SCORE MATCHING

The following lemma is used in the proof of Theorem 2.

Lemma A.1. Assuming that f and g are differentiable a.e., then for all j = 1, . . . ,m,

lim
a↗+∞,b↘0+

f(x−j ; a)g(x−j ; a)− f(x−j ; b)g(x−j ; b) =

∫ ∞
0

f(x)
∂g(x)

∂xj
dxj +

∫ ∞
0

g(x)
∂f(x)

∂xj
dxj ,

where (x−j ; a) is the vector obtained by replacing the j-th component of x by a.

Proof. This is just an analog of Lemma 4 from Hyvärinen (2005) proved by integrating the partial derivatives.

Proof of Theorem 2. Recall the following assumptions given in Section 2.3.

(A1) p0(x)hj(xj)∂j log p(x)→ 0 as xj ↗ +∞ and as xj ↘ 0+, ∀x−j ∈ Rm−1+ , ∀p ∈ P+,

(A2) Ep0‖∇ log p(X) ◦ h1/2(X)‖22 < +∞, Ep0‖(∇ log p(X) ◦ h(X))′‖1 < +∞, ∀p ∈ P+,

where

∂j log p(x) ≡ ∂ log p(y)

∂yj

∣∣∣∣
y=x

.

Without explicitly writing the domains R+ or Rm+ in all integrals, by (4) we have

Jh(p) =
1

2

∫
p0(x)

[
‖∇ log p(x) ◦ h1/2(x)‖22 − 2(∇ log p(x) ◦ h1/2(x))>(∇ log p0(x) ◦ h1/2(x))

+ ‖∇ log p0(x) ◦ h1/2(x)‖22
]

dx

=
1

2

∫
p0(x)

m∑
j=1

hj(xj)

(
∂ log p(x)

∂xj

)2

dx︸ ︷︷ ︸
≡A

−
∫
p0(x)

m∑
j=1

hj(xj)
∂ log p(x)

∂xj

∂ log p0(x)

∂xj
dx︸ ︷︷ ︸

≡B

+
1

2

∫
p0(x)

m∑
j=1

hj(xj)

(
∂ log p0(x)

∂xj

)2

dx︸ ︷︷ ︸
≡C

,

where A will simply appear in the final display as is, C is a constant as it only involves the true pdf p0, and
we wish to simplify B by integration by parts. We can split the integral into these three parts since A and C
are assumed finite in the first part of (A2), and the integrand in B is integrable since |2ab| ≤ a2 + b2. Thus, by
linearity and Fubini’s theorem, we can write
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B = −
m∑
j=1

∫
p0(x)hj(xj)

∂ log p(x)

∂xj

∂ log p0(x)

∂xj
dx

= −
m∑
j=1

∫ [∫
p0(x)hj(xj)

∂ log p(x)

∂xj

∂ log p0(x)

∂xj
dxj

]
dx−j .

By the fact that ∂ log p0(x)
∂xj

= 1
p0(x)

∂p0(x)
∂xj

, this can be simplified to

B = −
m∑
j=1

∫ [∫
∂p0(x)

∂xj
hj(xj)

∂ log p(x)

∂xj
dxj

]
dx−j .

Then by Lemma A.1 and assumption (A1),

B = −
m∑
j=1

∫ [
lim

a↗∞,b↘0+
[p0(x−j ; a)hj(a)∂j log p(x−j , a)− p0(x−j ; b)hj(b)∂j log p(x−j , b)]

−
∫
p0(x)

∂ (hj(xj)∂j log p(x))

∂xj
dxj

]
dx−j

=

m∑
j=1

∫ [∫
p0(x)

∂(hj(xj)∂j log p(x))

∂xj
dxj

]
dx−j .

Justified by the second half of (A2), by Fubini-Tonelli and linearity again

B =

m∑
j=1

∫
p0(x)

∂(hj(xj)∂j log p(x))

∂xj
dx,

=

m∑
j=1

∫
h′j(xj)

∂ log p(x)

∂xj
p0(x) dx+

m∑
j=1

∫
hj(xj)

∂2 log p(x)

∂x2j
p0(x) dx.

Thus,

Jh(p) = B +A+ C

=

∫
Rm

+

p0(x)

m∑
j=1

[
h′j(xj)

∂ log p(x)

∂xj
+ hj(xj)

∂2 log p(x)

∂x2j
+

1

2
hj(xj)

(
∂ log p(x)

∂xj

)2
]

dx+ C,

where C is a constant that does not depend on p.

Proof of Theorem 3. By definition Jh(pθ) ≥ 0 and Jh(pθ0) = 0, so θ0 minimizes Jh(pθ). Conversely, suppose

Jh(pθ) = 0 for some θ1 ∈ Θ. By assumption p0(x) > 0 almost surely (hereafter a.s.) and h
1/2
j (x) > 0 a.s. for all

j = 1, . . . ,m. Therefore, we must have ∇ log pθ1(x) = ∇ log p0(x) a.s., or equivalently, pθ1(x) = const × p0(x)
for all almost every x ∈ Rm+ . Since pθ1 and p0 are both continuous probability density functions, we necessarily
have pθ1(x) = p0(x) for all x ∈ Rm+ , which implies θ1 = θ0 by the identifiability assumption. The last claim
follows by the law of large numbers, and is an analog of Corollary 3 in Hyvärinen (2005).

A.3 EXPONENTIAL FAMILIES

Consider the case where {pθ : θ ∈ Θ ⊆ Rr} contains exponential families with densities

log pθ(x) = θ>t(x)− ψ(θ) + b(x), x ∈ Rm+ .

Then the empirical generalized h-score matching loss becomes

Ĵh(pθ) =
1

2
θ>Γ(x)θ − g(x)>θ + const,



where

Γ(x) =
1

n

n∑
i=1

m∑
j=1

hj(X
(i)
j )t′j(X

(i))t′j(X
(i))> ∈ Rr×r and (A.1)

g(x) = − 1

n

n∑
i=1

[
hj(X

(i)
j )b′j(X

(i))t′j(X
(i)) + hj(X

(i)
j )t′′j (X(i)) + h′j(X

(i)
j )t′j(Xi)

]
∈ Rr. (A.2)

Proof of (6). For exponential families, under the assumptions the empirical loss Ĵh(pθ) becomes (up to an
additive constant)

Ĵh(pθ)

=
1

n

n∑
i=1

m∑
j=1

h′j(X(i)
j )

∂ log pθ(X(i))

∂X
(i)
j

+ hj(X
(i)
j )

∂2 log pθ(X(i))

∂(X
(i)
j )2

+
1

2
hj(X

(i)
j )

(
∂ log pθ(X(i))

∂X
(i)
j

)2


=
1

n

n∑
i=1

m∑
j=1

[
h′j(X

(i)
j )(θ>t′j(X

(i)) + b′j(X
(i))) + hj(X

(i)
j )(θ>t′′j (X(i)) + b′′j (X(i)))

+
1

2
hj(X

(i)
j )(θ>t′j(X

(i)) + b′j(X
(i)))2

]

=
1

n

1

2
θ>

 n∑
i=1

m∑
j=1

hj(X
(i)
j )t′j(X

(i))t′j(X
(i))>

θ
+

[
n∑
i=1

hj(X
(i)
j )b′j(X

(i))t′j(X
(i)) + hj(X

(i)
j )t′′j (X(i)) + h′j(X

(i)
j )t′j(X

(i))

]>
θ

+ const,

which is quadratic in θ. Let

Γ(x) =
1

n

n∑
i=1

m∑
j=1

hj(X
(i)
j )t′j(X

(i))t′j(X
(i))>, (A.3)

g(x) = − 1

n

n∑
i=1

[
hj(X

(i)
j )b′j(X

(i))t′j(X
(i)) + hj(X

(i)
j )t′′j (X(i)) + h′j(X

(i)
j )t′j(Xi)

]
. (A.4)

Then we can write Ĵh(pθ) = 1
2θ
>Γ(x)θ − g(x)>θ + const.

Proof of Theorem 4. Recall that Ĵh(pθ) = 1
2θ
>Γθ − g>θ + const. The minimizer of Ĵh(pθ) is thus available in

the unique closed form θ̂ ≡ Γ(x)−1g(x) as long as Γ is invertible (C1). Since Γ and g are sample averages, by
Khinchin’s weak law of large numbers we have Γ →p Ep0Γ ≡ Γ0 and g →p Ep0g ≡ g0, where existence of Γ0

and g0 is assumed in (C2). Since Jh(pθ) = E[Ĵh(pθ)] = E[ 12θ
>Γ(x)θ − g(x)>θ] = 1

2θ
>Γ0θ − g0θ and we know

θ0 minimizes Jh(pθ) by definition, by first-order condition we munst have Γ0θ0 = g0. Then by Lindeberg-Lévy
central limit theorem (recall that g(x) and Γ(x) are sample averages)

√
n(g(x)− Γ(x)θ0)→d Nm(0,Σ0),

where Σ0 ≡ Ep0 [(Γ(x)θ0 − g(x))(Γ(x)θ0 − g(x))>], as long as Σ0 exists (C2).
Then by Slutsky’s theorem,

√
n(θ̂ − θ0) ≡

√
n(Γ(x)−1(g(x)− Γ(x)θ0))→d Nr(0,Γ−10 ΣΓ−10 ),

as long as Γ0 is invertible (C2).
For the second half of the theorem, (C2) Ep0Γ(x) <∞ and Ep0g(x) <∞ implies Ep0 |Γ(x)| <∞ and Ep0 |g(x)| <
∞, so by strong law of large numbers (and a union bound on at most k2 null sets)

Γ(x)→a.s. Γ0, g(x)→a.s. g0.



Then outside a null set,

θ̂ ≡ Γ(x)−1g(x)→a.s. Γ−10 g0 = θ0.

Proof for Example 5. For the family of univariate truncated Gaussian distributions with unknown mean param-
eter µ and known variance parameter σ2, we have

pθ(x) ∝ exp (θt(x) + b(x)) , θ ≡ µ

σ2
, t(x) ≡ x, b(x) = − x2

2σ2
.

We choose to estimate θ ≡ µ/σ2. Then by (A.1) and (A.2),

µ̂h = σ2θ̂ ≡ σ2Γ(x)−1g(x)

= −σ2

[
n∑
i=1

h(Xi)t
′(Xi)

2

]−1 [ n∑
i=1

h(Xi)b
′(Xi)t

′(Xi) + h(Xi)t
′′(Xi) + h′(Xi)t

′(Xi)

]

= −σ2

[
n∑
i=1

h(Xi)

]−1 [ n∑
i=1

−h(Xi)
Xi

σ2
+ h′(Xi)

]
.

By Theorem 4,

√
n(µ̂h − µ0)→d N

0,
σ4E0

[
h(X)µ0−X

σ2 + h′(X)
]2

E2
0[h(X)]

 ∼ N (0,
E0

[
h(X)(µ0 −X) + σ2h′(X)

]2
E2
0[h(X)]

)
.

By integration by parts, (suppressing the dependence of pµ0
on µ0)

E0[h(X)h′(X)(X − µ0)]

=

∫ ∞
0

h′(x)h(x)(x− µ0)p(x) dx =

∫ ∞
0

h(x)(x− µ0)p(x) dh(x)

= h2(x)(x− µ0)p(x)
∣∣∞
0
−
∫
h(x) dh(x)(x− µ0)p(x)

= −
∫
h2(x)p(x) dx−

∫
h(x)h′(x)(x− µ0)p(x) dx+

∫
h2(x)

(x− µ0)2

σ2
p(x) dx,

where the last step follows from the assumptions lim
x↘0+

h(x) = 0 and lim
x↗+∞

h2(x)(x− µ0)pµ0(x) = 0. So

E0[h(X)h′(X)(X − µ0)] =
E[h2(X)((X − µ0)2/σ2 − 1)]

2
. (A.5)

The asymptotic variance thus becomes

E0

[
h(X)(µ0 −X) + σ2h′(X)

]2
E2
0[h(X)]

=
E0

[
h2(X)(X − µ0)2 − 2σ2h2(X)

(
(X − µ0)2/σ2 − 1

)
/2 + σ4h′

2
(X)

]
E2
0[h(X)]

=
E0[σ2h2(X) + σ4h′

2
(X)]

E2
0[h(X)]

.

We note that the Cramér-Rao lower bound is σ4

var(X−µ0)
, which follows from taking the second derivative of

log pµ0
with respect to µ0.



Proof for Example 6. For the family of univariate truncated Gaussian distributions with known mean parameter
µ and unknown variance parameter σ2 > 0, we have

pθ(x) ∝ exp (θt(x) + b(x)) , θ ≡ 1

σ2
, t(x) ≡ −(x− µ)2/2, b(x) = 0.

We estimate θ ≡ 1/σ2. By (A.1) and (A.2),

θ̂ ≡ Γ(x)−1g(x)

= −

[
n∑
i=1

h(Xi)t
′(Xi)

2

]−1 [ n∑
i=1

h(Xi)b
′(Xi)t

′(Xi) + h(Xi)t
′′(Xi) + h′(Xi)t

′(Xi)

]

=

[
n∑
i=1

h(Xi)(Xi − µ)2

]−1 [ n∑
i=1

h(Xi) + h′(Xi)(Xi − µ)

]
.

By Theorem 4,
√
n(θ̂ − θ)→d N (0, ς2), where

ς2 ≡
E0

[
h(X)((X − µ)2/σ2

0 − 1)− h′(X)(X − µ)
]2

E2
0[h(X)(X − µ)2]

=
1

E2
0[h(X)(X − µ)2]

(
E0[h2(X)(X − µ)4/σ4

0 − 2h2(X)(X − µ)2/σ2
0 + h2(X) + h′

2
(X)(X − µ)2

− 2h(X)h′(X)(X − µ)3/σ2
0 + 2h(X)h′(X)(X − µ)

)
.

By integration by parts, (suppressing the dependence of pσ2
0

on σ2
0)

E0[h(X)h′(X)(X − µ)3]

=

∫ ∞
0

h′(x)h(x)(x− µ)3p(x) dx =

∫ ∞
0

h(x)(x− µ)3p(x) dh(x)

= h2(x)(x− µ)3p(x)
∣∣∞
0
−
∫
h(x) dh(x)(x− µ)3p(x)

= −
∫
h(x)h′(x)(x− µ)3p(x) dx− 3

∫
h2(x)(x− µ)2p(x) dx+

∫
h2(x)

(x− µ)4

σ2
0

p(x) dx,

where the last step follows from the assumptions lim
x↘0+

h(x) = 0 and lim
x↗+∞

h2(x)(x− µ)3pσ2
0
(x) = 0. Combining

this with (A.5) we get

√
n(θ̂ − θ)→d N (0, ς2) ∼ N

(
0,

2E0[h2(X)(X − µ)2/σ2
0 ] + E0[h′

2
(X − µ)2]

E2
0[h(X)(X − µ)2]

)
,

and so by the delta method, for σ̂2
k ≡ θ̂−1,

√
n(σ̂2

h − σ2
0)→d N

(
0,

2σ6
0E0[h2(X)(X − µ)2] + σ8

0E0[h′
2
(X − µ)2]

E2
0[h(X)(X − µ)2]

)
.

We note that the Cramér-Rao lower bound is
4σ8

0

var(X−µ)2 , which follows from taking the second derivative of

log pσ2
0

with respect to σ2
0 .

A.4 REGULARIZED GENERALIZED SCORE MATCHING

We first verify assumptions (A1)–(A2) in the case of truncated Gaussian distributions.



Lemma A.2 (Assumptions for truncated Gaussian). Consider the non-centered truncated Gaussian distribution
with density

log p0(x) = −1

2
(x− µ0)>K0(x− µ0) + const

with unknown positive definite inverse covariance parameter K0 and unknown mean parameter µ0. Then assum-
ing 0 ≤ hj ≤ Mj, lim

xj↘0+
hj(xj) = 0 and |h′j | ≤ M ′j, assumptions (A1)–(A2) for score matching are satisfied for

any proposed parameters K � 0 and µ. Taking µ ≡ µ0 ≡ 0 the assumptions also hold in the centered setting.
Choosing m = 1 gives the univariate case.

Proof of Lemma A.2. Consider p ∼ TN(µ,K), with kj the j-th column of K. Let M ≡ maxjMj and M ′ ≡
maxjM

′
j .

(A1) For any fixed x−j ∈ Rm−1+ and any p ∈ P+ with parameters K and µ,

lim
xj↗∞

hj(xj)p0(x)∂j log p(x) ∝ lim
xj↗∞

hj(xj) exp

(
−1

2
(x− µ0)>K0(x− µ0)

)
k>j (x− µ)

= lim
xj↗∞

hj(xj) exp

(
C1 + C2xj −

1

2
κ0,jjx

2
j

)
(C3 + C4xj)

for some constants C1, C2, C3, and C4 depending on x−j , K0, K, µ0 and µ. Since κ0,jj > 0 and we
assumed hj to be bounded, the limit equals to 0 for all j and x−j .
Similarly,

lim
xj↘0+

hj(xj)p0(x)∂j log p(x) ∝ lim
xj↘0+

hj(xj) exp

(
C1 + C2xj −

1

2
κ0,jjx

2
j

)
(C3 + C4xj)

= exp(C1)C3 lim
xj↘0+

hj(xj) = 0

if and only if we assume lim
xj↘0+

hj(xj) = 0.

(A2) For any p ∈ P+ with parameters K and µ,

Ep0‖∇ log p(X) ◦ h1/2(X)‖22 ≤MEp0‖∇ log p(X)‖22 = Mtr
(
Ep0

[
(K(X − µ))(K(X − µ))>

])
= Mtr

(
KEp0

[
(X − µ0 + (µ0 − µ))(X − µ0 + (µ0 − µ))>

]
K>
)

= Mtr
(
K
(
K−10 + (µ0 − µ)(µ0 − µ)>

)
K
)
< +∞

since M , K, K0, µ, µ0 are all finite constants. We also have

Ep0‖(∇ log p(X) ◦ h(X))′‖1 =

m∑
i=1

Ep0
∣∣h′j(Xj)∂j log p(X) + hj(Xj)∂

2
j log p(X)

∣∣
≤

m∑
i=1

Ep0 |h′j(Xj)∂j log p(X)|+ Ep0 |hj(Xj)∂
2
j log p(X)|

≤
m∑
i=1

M ′Ep0 |k>j (X − µ)|+Mκjj

≤
m∑
i=1

M ′|kj |>Ep0X +M ′|k>j µ|+Mtr(K) < +∞.

Hence, (A1) and (A2) are both satisfied.

Our analysis of the regularized generalized h-score matching estimator follows the proof for the following
theorem from Lin et al. (2016), restated below. In our definition and implementation we choose to optimize
over all symmetric matrices, but we adopt the following theorem in whose proof the symmetry condition is not
explicitly imposed, in order to decouple the columns of K and to highlight the scaling.



Theorem A.3 (Analog of Theorem 1 from Lin et al. (2016)). Recall that S0 ≡ S(K0) ≡ {(i, j) : κ0,ij 6= 0}.
Suppose Γ0,S0S0 is invertible and satisfies the irrepresentability condition (10) with incoherence parameter α ∈
(0, 1]. Assume that

‖Γ(x)− Γ0‖∞ < ε1, ‖g(x)− g0‖∞ < ε2, (A.6)

with dK0
ε1 ≤ α/(6cΓ0

). If

λ >
3(2− α)

α
max{cK0ε1, ε2},

then the following statements hold:

(a) The regularized generalized h-score matching estimator K̂ in (9) is unique, with support Ŝ ≡ S(K̂) ⊆ S0,
and satisfies

‖K̂−K0‖∞ ≤
cΓ0

2− α
λ.

(b) If

min
1≤j<k≤m

|K0,jk| >
cΓ0

2− α
λ,

then Ŝ = S0 and sign(K̂jk) = sign(K0.jk) for all (j, k) ∈ S0.

This is a deterministic result, and the improvement of our generalized estimator over the one in Lin et al.
(2016) is in its asymptotic guarantees, as in Theorem 10. We present a corollary to this theorem, as seen in the
second and third inequalities in Theorem 10 (a).

Corollary A.1. Suppose the same assumptions under Theorem A.3 hold. Then K̂ satisfies

‖K̂−K0‖F ≤
cΓ0

2− α
λ
√
|S0| ≤

cΓ0

2− α
λ
√
dK0

m,

‖K̂−K0‖2 ≤
cΓ0

2− α
λmin(

√
|S0|, dK0).

Proof of Corollary A.1. By Theorem A.3, under assumptions in that theorem, the support of K̂ is a subset of
the true support of K0, and ‖K̂−K0‖∞ ≤

cΓ0

2−αλ. Since K0 has |S0| nonzero entries,

|||K̂−K0|||F =

 ∑
K0,jk 6=0

(K̂jk −K0,jk)2

1/2

≤
√
|S0|‖K̂−K0‖∞ ≤

cΓ0

2− α
λ
√
|S0|.

Similarly, by the definition of matrix `∞-`∞ norm,

|||K̂−K0|||2 ≤ |||K̂−K0|||∞ = max
j=1,...,m

m∑
k=1

|K̂jk −K0,jk| ≤
cΓ0

2− α
λdK0

.

The result follows by also noting that |||K̂−K0|||2 ≤ |||K̂−K0|||F .

Proof of Theorem 10. By Theorem A.3 it suffices to prove that for any τ > 3, we can bound ‖Γ(x)− Γ0‖∞ by
some ε1 and ‖g(x) − g0‖∞ by some ε2, uniformly with probability 1 −m3−τ . Recall from Section 4.2 that the

jth block of Γ ∈ Rm2×m2

has (k, `)-th entry

1

n

n∑
i=1

X
(i)
k X

(i)
` hj(X

(i)
j ),

and the entry in g ∈ Rm2

(obtained by linearizing a m×m matrix) corresponding to (j, k) with j 6= k, is

1

n

n∑
i=1

X
(i)
k h′j(X

(i)
j ),



while the entry for (j, j) is

1

n

n∑
i=1

X
(i)
j h′j(X

(i)
j ) +

1

n

n∑
i=1

hj(X
(i)
j ).

Denote M ≡ maxj supx>0 hj(x) and M ′ ≡ maxj supx>0 h
′
j(x), and let cX ≡ 2 maxj(2

√
Σjj +

√
eE0Xj). Using

results for sub-gaussian random variables from Lemma A.6 below and Hoeffding’s inequality, we have for any
t1, t2,1, t2,2 > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

X
(i)
k X

(i)
` hj(X

(i)
j )− E0XkX`hj(Xj)

∣∣∣∣∣ > t1

)
≤ 2 exp

(
−min

(
nt21

2M2c4X
,
nt1

2Mc2X

))
,

P

(∣∣∣∣∣ 1n
n∑
i=1

X
(i)
k h′j(X

(i)
j )− E0Xkh

′
j(Xj)

∣∣∣∣∣ ≥ t2,1
)
≤ 2 exp

(
−

nt22,1
2M ′2c2X

)
,

P

(∣∣∣∣∣ 1n
n∑
i=1

hj(X
(i)
j )− E0hj(Xj)

∣∣∣∣∣ ≥ t2,2
)
≤ 2 exp

(
−2nt22,2/M

2
)
.

Choosing

ε1 ≡Mc2X max

{
2(logmτ + log 6)

n
,

√
2(logmτ + log 6)

n

}
,

ε2,1 ≡
√

2M ′cX

√
logmτ−1 + log 6

n
, ε2,2 ≡M

√
logmτ−2 + log 6

2n
,

and taking union bounds over m3, m2, and m events, respectively, we have

P

(
sup
j,k,`

∣∣∣∣∣ 1n
n∑
i=1

X
(i)
k X

(i)
` hj(X

(i)
j )− E0XkX`hj(Xj)

∣∣∣∣∣ ≥ ε1
)
≤ 1

3mτ−3 ,

P

(
sup
j,k

∣∣∣∣∣ 1n
n∑
i=1

X
(i)
k h′j(X

(i)
j )− E0Xkh

′
j(Xj)

∣∣∣∣∣ ≥ ε2,1
)
≤ 1

3mτ−3 ,

P

(
sup
j

∣∣∣∣∣ 1n
n∑
i=1

hj(X
(i)
j )− E0hj(Xj)

∣∣∣∣∣ ≥ ε2,2
)
≤ 1

3mτ−3 .

Hence, with probability at least 1 −m3−τ , ‖Γ(x) − Γ0‖∞ < ε1 and ‖g(x) − g0‖∞ < ε2 ≡ ε2,1 + ε2,2. Consider
any τ > 3, and let

c2 ≡
6

α
cΓ0

, n ≥ max{2M2c4Xc
2
2d

2
K0

(τ logm+ log 6), 2Mc2Xc2dK0
(τ logm+ log 6)},

λ >
3(2− α)

α
max{cK0ε1, ε2}

≡ 3(2− α)

α
max

{
McK0c

2
X

2(logmτ + log 6)

n
,

McK0
c2X

√
2(logmτ + log 6)

n
,
√

2M ′cX

√
logmτ−1 + log 6

n
+M

√
logmτ−2 + log 6

2n

}
.

Then dK0
ε1 ≤ α/(6cΓ0

) and the results follow from Theorem A.3.

We now present the definition of sub-Gaussian and sub-exponential norms and variables as well as lemmas
required for the proof above.

Definition A.4 (Sub-Gaussian and Sub-Exponential Variables). The sub-gaussian (r = 2) and sub-exponential
(r = 1) norms of a random variable are defined as

‖X‖ψr
≡ sup

q≥1
q−1/r(E|X|rq)1/(rq) ≡ sup

q≥1
q−1/r‖X‖rq.



If ‖X‖ψ2 <∞ we say X is sub-gaussian; if ‖X‖ψ1 <∞ we call X sub-exponential.
For a zero-mean sub-gaussian random variable X also define the sub-gaussian parameter

τ(X) = inf{τ ≥ 0 : E exp(tX) ≤ exp(τ2t2/2), ∀t ∈ R}.

Note that the definition of sub-gaussian norm here allows the variable to be non-centered, and is different from
the one in Vershynin (2010), which uses ‖X‖q in the definition. Instead, it coincides with θ2 in Buldygin and
Kozachenko (2000). The definition of the sub-gaussian parameter is the same as in Buldygin and Kozachenko
(2000), and the definition of the sub-exponential norm is as in Vershynin (2010).

Lemma A.5 (Properties of Sub-Gaussian and Sub-Exponential Variables). Then

1) For any X and r = 1, 2, ‖X − EX‖ψr ≤ 2‖X‖ψr and ‖X‖ψr ≤ ‖X − EX‖ψr + |EX|, as long as the
expectation and norms are finite.

2) (Buldygin and Kozachenko, 2000) τ(X) is a norm on the space of all zero-mean sub-gaussian variables; in
particular, τ(X + Y ) ≤ τ(X) + τ(Y ) as long as the quantities are defined and finite.
If X is zero-mean sub-gaussian, then var(X) ≤ τ2(X), ‖X‖ψ2

≤ 2τ(X)/
√
e, τ(X) ≤

√
e‖X‖ψ2 .

If X1, . . . , Xn are i.i.d. zero-mean sub-gaussian, τ
(
1
n

∑n
i=1Xi

)
≤ 1√

n
τ(Xi).

3) If random variables X1 and X2 (not necessarily independent) are sub-gaussian with ‖X1‖ψ2
≤ K1 and

‖X2‖ψ2 ≤ K2, then X1X2 is sub-exponential with ‖X1X2‖ψ1 ≤ K1K2.

4) (Buldygin and Kozachenko, 2000) If X is zero-mean sub-gaussian,

E|X|q ≤ 2(q/e)q/2τ q(X)

for any q > 0.

5) (Buldygin and Kozachenko, 2000) If X1, . . . , Xn are independent zero-mean sub-gaussian variables, then
for any ε > 0,

P(|X1| ≥ ε) ≤ 2 exp

(
− ε2

2τ2(X1)

)
,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

2 maxi τ2(Xi)

)
.

6) (Vershynin, 2010) If X1, . . . , Xn are independent zero-mean sub-exponential random variables with K ≥
maxi ‖Xi‖ψ1

, then for any ε > 0,

P(|X1| ≥ ε) ≤ 2 exp

(
−min

(
ε2

8e2K2
,

ε

4eK

))
,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−min

(
nε2

8e2K2
,
nε

4eK

))
.

Proof. 1) For r = 1, 2, by triangle inequality, ‖X − EX‖ψr
≤ ‖X‖ψr

+ ‖EX‖ψr
= ‖X‖ψr

+ |EX| ≤ ‖X‖ψr
+

E|X| ≤ 2‖X‖ψr
, where in the last step we used the definition of ‖ · ‖ψr

with q = 1 for r = 1 and E|X| ≤
(E|X|2)1/2 with q = 2 for r = 2. On the other hand, ‖X‖ψr

≤ ‖X−EX‖ψr
+‖EX‖ψr

= ‖X−EX‖ψr
+|EX|.

2) These follow from Theorems 1.2 and 1.3 and Lemmas 1.2 and 1.7 from Buldygin and Kozachenko (2000),
and 4

√
3.1e9/16/

√
2 ≈ 1.6467 ≤ 1.6487 ≈

√
e.

3) By Hölder’s inequality (or Cauchy-Schwarz),

‖X1X2‖ψ1
= sup

q≥1
q−1(E|X1X2|q)1/q = sup

q≥1
q−1(E|Xq

1X
q
2 |)1/q

≤ sup
q≥1

q−1
[
(E|X1|2q)1/2(E|X2|2q)1/2

]1/q
≤ sup

q≥1

[
q−1/2(E|X1|2q)1/2q

]
sup
q≥1

[
q−1/2(E|X2|2q)1/2q

]
= ‖X1‖ψ2

‖X2‖ψ2
≤ K1K2.



4) This is Lemma 1.4 from Buldygin and Kozachenko (2000).

5) This is Theorem 1.5 from Buldygin and Kozachenko (2000).

6) This follows from Corollary 5.17 from Vershynin (2010).

Lemma A.6. Suppose X follows a truncated normal distribution on Rm+ with parameters µ and Σ = K−1 � 0.

Let X(1), . . . ,X(n) be i.i.d. copies of X, with j-th component of the i-th copy being X
(i)
j . Then

1. For j = 1, . . . , p, τ(Xj − EXj) ≤
√

Σjj. That is, the sub-gaussian parameter of any marginal distribution
of X, after centering, is bounded by the square root of its corresponding diagonal entry in the covariance
parameter Σ. Then for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

X
(i)
j − EXj

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

2Σjj

)
.

In particular, if h0 is a function bounded by M0, then for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

X
(i)
j h0(X

(i)
k )− EXjh0(Xk)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− nε2

8M2
0 (2
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√
eEXj)2

)
,

τ

(
1

n
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X
(i)
j h0(X

(i)
k )− EXjh0(Xk)

)
≤ 2M0√

n
(2
√

Σjj +
√
eEXj),∥∥∥∥∥ 1

n

n∑
i=1

X
(i)
j h0(X

(i)
k )− EXjh0(Xk)

∥∥∥∥∥
ψ2

≤ 4M0√
en

(2
√

Σjj +
√
eEXj).

2. For j, k, ` ∈ {1, . . . , p}, if h0 is a function bounded by M0, then with cX ≡ 2 maxj(2
√

Σjj +
√
eEXj),

‖XjXkh0(X`)− EXjXkh0(X`)‖ψ1 ≤
M0

2e
c2X . (A.7)

In particular, for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

X
(i)
j X

(i)
k h0(X

(i)
` )− EXjXkh0(X`)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−min

(
nε2

2M2
0 c

4
X

,
nε

2M0c2X
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.

Proof of Lemma A.6. 1. Without loss of generality choose j = 1. By the definition of sub-gaussian parame-
ters, we need to show that for all t ∈ R,

E exp(tX1) ≤ exp(t2Σ11/2 + tEX1),

which is equivalent to

t2Σ11/2 + tEX1 − logE exp(tX1) ≥ 0 ∀t ∈ R. (A.8)

Since the left-hand side of (A.8) equals 0 at t = 0, it suffices to show that its derivative

tΣ11 + EX1 −
d logE exp(tX1)

dt
= tΣ11 + EX1 −

dE exp(tX1)
dt

E exp(tX1)
(A.9)

is non-negative on (0,∞) and non-positive on (−∞, 0). By properties of moment-generating functions,
dE exp(tX1)

dt evaluated at t = 0 equals EX1, so (A.9) equals 0 at t = 0. It in turn suffices to show the
derivative of (A.9), namely

Σ11 −
d2 logE exp(tX1)

dt2
(A.10)

is non-negative in t ∈ R.



By Tallis (1961), denoting the first column of Σ as Σ1, the moment-generating function of the marginal
distribution of X1 is ∫

Rp
+−µ−tΣ1

exp
(
− 1

2x
>Σ−1x

)
dx∫

Rp
+−µ

exp
(
− 1

2x
>Σ−1x

)
dx

exp

(
tµ1 +

1

2
t2Σ2

11

)
.

(A.10) thus becomes

− d2

dt2
log

∫
Rp

+−µ−tΣ1

exp

(
−1

2
x>Σ−1x

)
dx.

Showing this is non-negative in t ∈ R is equivalent to showing that the integral itself is log-concave in t.
But ∫

Rp
+−µ−tΣ1

exp

(
−1

2
x>Σ−1x

)
dx =

∫
Rp

exp

(
−1

2
x>Σ−1x

)
1Rp

+−µ(x+ tΣ1) dx

with exp
(
− 1

2x
>Σ−1x

)
log-concave in x and 1Rp

+−µ(x + tΣ1) log-concave in (x, t) since Rp+ − µ is a

convex set (half-space). Here 1S(·) is the indicator function of a set S. Since log-concavity is closed under
multiplication and integration over Rp, the integral is indeed log-concave, and our proof of the bound on
the sub-gaussian parameter of Xj − EXj is complete. The tail bound follows from 5) of Lemma A.5.

Now by 1) and 2) of Lemma A.5,

‖Xj‖ψ2 ≤ 2
√

Σjj/e+ EXj .

If h0 is a function bounded by M0, then by definition

‖Xjh0(Xk)‖ψ2
≤M0

(
2
√

Σjj/e+ EXj

)
.

By 1) and 2) of Lemma A.5 again,

τ(Xjh0(Xk)− EXjh0(Xk)) ≤
√
e‖Xjh0(Xk)− EXjh0(Xk)‖ψ2

≤ 2
√
e‖Xjh0(Xk)‖ψ2

≤ 2M0(2
√

Σjj +
√
eEXj).

The tail bound thus follows from the first inequality using 5) of Lemma A.5. By 2),

τ

(
1

n
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X
(i)
j h0(X

(i)
k )− EXjh0(Xk)
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≤ 2M0√

n
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n
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(i)
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(i)
k )− EXjh0(Xk)

∥∥∥∥∥
ψ2

≤ 4M0√
en

(2
√

Σjj +
√
eEXj).

2. By the proof of 1) of this lemma, ‖Xj‖ψ2 ≤ 2
√

Σjj/e+ EXj , and by 3) of Lemma A.5,

‖XjXk‖ψ1
≤ (2

√
Σjj/e+ EXj)(2

√
Σkk/e+ EXk) ≤ max

j

(
2
√

Σjj/e+ EXj

)2

.

Since h0 is a function bounded by M0, by definition

‖XjXkh0(X`)‖ψ1
≤M0 max

j

(
2
√

Σjj/e+ EXj

)2

.

Then by 1) of Lemma A.5 again,

‖XjXkh0(X`)− EXjXkh0(X`)‖ψ1
≤ 2M0 max

j

(
2
√

Σjj/e+ EXj

)2

.

The tail bound then follows from 6) of Lemma A.5.


