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A Proof of Proposition 3

Proof. Let a MVG distributed matrix W be

W ⇠ MN (W;M,U,V), (20)

Since the covariance matrices U and V are positive
definite, we can decompose them as

U = P⇤1⇤1P
>, (21)

V = Q⇤2⇤2Q
>, (22)

where P and Q are the corresponding orthogonal ma-
trices, i.e., PP> = I, QQ> = I.

According to Lemma 2, we have,

P>W ⇠ MN (P>W;M,P>UP,V), (23)

Since U = P⇤1⇤1P>, and we have:

P>W ⇠ MN (P>W;M,P>P⇤1⇤1P
>P,V). (24)

Then,

P>W ⇠ MN (P>W;M,⇤1⇤1,V), (25)

Similarly, we have,

P>WQ ⇠ MN (P>WQ;M,⇤1⇤1,⇤2⇤2). (26)

Further,

⇤
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1 P

>
WQ⇤

�1
2 ⇠ MN (⇤�1

1 P
>
WQ⇤

�1
2 ;0, I, I), (27)

Define C = ⇤�1
1 P>WQ⇤�1

2 , then C follows an inde-
pendent Gaussian distribution:

C ⇠ MN (C;P>⇤�1
1 M⇤�1

2 Q, I, I), (28)

(28) can also be expressed as:

vec(C) ⇠ N (vec(C);P>⇤�1
1 M⇤�1

2 Q, I), (29)

showing that vectorized elements form of C follows
an isotropic Gaussian distribution. Finally, since
⇤1C⇤2=P>WQ , we have:

W = P⇤1C⇤2Q
> . (30)

B Properties of Householder Flow

B.1 The Upperbound of Orthogonal Degree

Lemma 5 ([Sun and Bischof, 1995] The Basis-Kernel
Representation of Orthogonal Matrices). For any m⇥

m orthogonal matrix Q, there exist a full-rank m ⇥ k
matrix Y and a nonsingular k ⇥ k matrix S, k  m,
such that:

Q , Q(Y,S) = I � YSY> (31)

Definition 6 ([Sun and Bischof, 1995] Active Sub-
space). Orthogonal matrix Q acts on the space R(Y)?

as the identity and changes every nonzero vector in
R(Y), and R(Y)? is the active space of Q

In basis-kernel representation, S is the kernel, and Y
is the basis. The degree of an orthogonal matrix is de-
fined as the dimension of its active subspace. Specif-
ically, Householder matrix is an orthogonal matrix of
degree 1. With the introduced definitions and Lemma
5, the degree of an orthogonal matrix is bounded by
Lemma 7.

Lemma 7 ([Sun and Bischof, 1995]). Let A and B be
two m-by-k matrices, k < m. If B = QA for some
orthogonal matrix Q, then Q is either of degree no
greater than k or can be replaced by an orthogonal fac-
tor of its own with degree no greater than k.

Since the degree of orthogonal matrix is bounded by
size of the matrix (k), the number of Householder
transformations needed for Householder flow is also
bounded.

B.2 Intuitive Explanation

In our setting, the orthogonal matrix works as a rota-
tion matrix. The Householder transformation reflects
the weights by a hyperplane orthogonal to its cor-
responding Householder vector. Hence, Householder
flows applies a series of reflections to the original
weights. In another word, it rotates the weight ma-
trix, equivalent to the e↵ects of the rotation matrix.
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C Computational Trick

Assume v is a Householder vector, and its correspond-

ing Householder matrix H , I � 2
vv>

kvk2
. For a feature

vector x, defining v̂ , v/kvk, then it is easy to show:

Hx = x � 2
vv>x

kvk2
(32)

= x � 2v>x
v

kvk2
(33)

= x � 2hx, v̂iv̂ . (34)

To e�ciently compute the Householder transforma-
tion, we do not need to revert the Householder matrix
H and apply Hx to complete one Householder trans-
formation. (32) can be used to drastically reduce the
computational cost and thus make the Householder
flows more e�cient.

D Experimental Results

We follow the toy example in [Ghosh et al., 2016]
to consider the binary classification task, in which
we uniformly sample 10 data points in seperate
distributions:[�3,�1] ⇥ [�3,�1] and [1, 3] ⇥ [1, 3]. A
one-layer BNNs with 30 hidden units is employed,
we use at most 200 epochs for PBP MV, SVGD and
S2VGD. The posterior prediction density is plotted
in Figure D. The S2VGD performs better than other
models, because it is more similar to the ground truth
and has a balanced posterior density. PBP MV em-
ployed the structure information but is a little un-
balanced. The SVGD is more unbalanced compared
with PBP MV. For non-linear regression, we follow
the experiment setup of [Louizos and Welling, 2016,
Sun et al., 2017]. We randomly generated 20 points
as input xn, in which 12 points are sampled from
Uniform(0,0.6), and 8 points are sampled from Uni-
form(0.8,1). The output yn is corresponding to xn,
and yn = xn + ✏n +sin(4(xn + ✏n))+ sin(13(xn + ✏n)),
where ✏n ⇠ N (0, 0.0009). We fit a one-layer ReLU neu-
ral network with 100 hidden units. We run PBP MV,
SVGD and S2VGD for at most 1500 epochs.

Compared with other methods, S2VGD captures un-
certainty on two-sides using its variance, but other
methods only capture part of the uncertainty.

E Experimental setting

We discuss the hyper-parameter settings for S2VGD,
and then provide their values for our experiments. All
experiments are conducted on a single TITAN X GPU.

Figure 5: Binary classification on the synthetic dataset,
Top left is SVGD, top right is the ground truth, bottom
left is PBP MV and bottom right is ours. The dots indi-
cate both training and testing data points, di↵erent colors
illustrates the prediction density, and the higher confidence
the model has, the deeper the color will be.

Figure 6: Regression on synthetic dataset. From the left
to the right are PBP MV, SVGD, S2VGD. The blue line
is the ground truth. The light grey area shows the ±3
standard derivation confidence intervals; The green line is
the mean of predictions.

E.1 Discussion of Hyper-parameters

Step Size The step size ✏ for SVGD and S2VGD
corresponds to the optimization counterparts. A block
decay strategy is used on several datasets, it decreases
by the stepsize by half every L epochs.

Mini-batch Size The gradient at step t is eval-
uated on a batch of data St. For small datasets,
the batch size can be set to the training sample size
|St| = N , giving the true gradient for each step. For
large datasets, a stochastic gradient evaluated from a
mini-batch of size |St| < N is used to

Variance of Gaussian Prior The prior distribu-
tions on the parameterized weights of DNNs are Gaus-
sian, with mean 0 and variance �2. The variance of
this Gaussian distribution determines the prior belief
of how strongly these weights should concentrate on 0.
This setting depends on user perception of the amount
variability existing in the data. A larger variance in
the prior leads to a wider range of weight choices, thus
higher uncertainty. The weight decay value of `2 reg-
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Table 3: Hyper-parameter settings for policy gradient experiments.
Datasets CartpoleSwingup DoublePendulum Cartpole
Batch Size 5000 5000 5000
Step Size 5⇥10�3 5⇥10�3 5⇥10�3

#Episodes 1000 1000 100
Discount 0.99 0.99 0.99
Temperature [7,8,9,10,11] [7,8,9,10,11] [7,8,9,10,11]
Network [25, 10] [25, 10] [25, 10]
Variance in prior 0.01 0.01 0.01

ularization in stochastic optimization is related to the
prior variance in SVGD and S2VGD.

Number of Particles The number of particles M ,
is employed to approximate the posterior. SVGD
and S2VGD represents the posterior approximately in
terms of a set of particles (samples), and is endowed
with guarantees on the approximation accuracy when
the number of particles is exactly infinity [Liu, 2017].
The number of particles balanced posterior approxi-
mation accuracy and computational cost.

Number of Householder Transformations In-
stead of maintaining a full orthogonal matrix, we
approximate it employing householder flows contain-
ing K Householder transformations. According to
Lemma 4, the orthogonal matrix can be exactly rep-
resented by a series of Householder transformations,
when K is the degree. See details in Supplementary
D. In experiments, the number of Householder trans-
formations balanced orthogonal matrix approximation
accuracy and computational cost.

E.2 Settings in Our Experiments

The hyper-parameter settings of SVGD and S2VGD on
each dataset is specified in Table 5 for MNIST, Table 4
for contextual bandits and Table 3 for reinforcement
learning.

Table 4: Hyper-parameter settings for contextual bandits.
Datasets Mushroom Yahoo!Today
Batch Size 64 100
Step Size 10�3 10�3

#Trial 5⇥104 4.5⇥107

Network (hidden layers) [50] [50]
Variance in prior 1 1

Table 5: Hyper-parameter settings for MNIST.
Datasets MNIST
Batch Size 100 100
Step Size 5⇥ 10�4 5⇥ 10�4

#Epoch 150 150
RMSProp 0.99 0.99
Network (hidden layers) [400, 400] [800, 800]
Variance in prior 1 1


