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Abstract

We develop a primal-dual convex minimiza-
tion framework to solve a class of stochastic
convex three-composite problem with a lin-
ear operator. We consider the cases where
the problem is both convex and strongly con-
vex and analyze the convergence of the pro-
posed algorithm in both cases. In addition,
we extend the proposed framework to deal
with additional constraint sets and multiple
non-smooth terms. We provide numerical
evidence on graph-guided sparse logistic re-
gression, fused lasso and overlapped group
lasso, to demonstrate the superiority of our
approach to the state-of-the-art.

1 Introduction

We study the three-composite optimization template

min P(x) & f(x) +g(x) + h(Ax)|, (1)

where the linear operator A € R™*?\ {0} has spectral
norm B > 0, and f,g : R? = R 2 RU {co} as well
as h: R™ — R are convex, closed, and proper (CCP).
We assume that f is continuously differentiable with
L-Lipschitz gradient (L>0) on R?. We assume that g
and h have tractable proximal operators.

In statistical learning, (1) can represent a doubly regu-
larized expected risk minimization (ERM) problem [1].
In such cases, f(x) assumes the following form

f(x) = Bewn [F(x, )], (2)

where the random variable £ is interpreted as the data
vector generated from a population distribution v, and
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the optimization variable x as the decision rule. The
functions g and h encode regularizers or constraints.

The template (1) also has broad applications in ma-
chine learning: When h = ¢y, i.e., the indicator func-
tion function of a singleton {b} C R™, (1) becomes the
stochastic two-composite ERM problem with linear
equality constraints [2]. Problem (1) subsumes many
other important cases in machine learning, including
(graph-guided) fused lasso [3,4], constrained lasso [5],
matrix completion [6] and portfolio optimization [7].

Recently, Yurtsever et al. [8] proposed a primal algo-
rithm for (1) for the restricted case when A = I based
on three-operator splitting [9] . While their algorithm
has wide applicability, its convergence requires strong
convexity. Moreover, they cannot directly handle the
non-smooth term A in the template when A # 1.

Our work directly addresses these two issues, which
seem to prevalent in other relevant literature [10-12].

1.1 Related Works

When h = 0, stochastic proximal gradient [13-15] al-
gorithms have been proposed to solve (1). However,
when both g and h are non-constant, these algorithms
fail to solve (1) in general.

By disregarding the composite structure of P, algo-
rithms based on stochastic subgradient [16-22] can be
applied. However, the convergence of these algorithms
typically rely on (i) the boundedness of the second mo-
ment of stochastic subgradients and/or (ii) the bound-
edness of stochastic iterates (almost surely or in expec-
tation). For many important applications, e.g., lasso,
these conditions are not satisfied on R<.

Some works [10-12] proposed to solve (1) using Nes-
terov’s smoothing techniques [23]. However, these
works assume that g or h can be written as Legendre-
type transform [24] of a function with bounded do-
main, requiring g or h to be Lipschitz. Many impor-
tant functions do not satisfy this assumption, e.g., the
indicator functions of closed convex sets.

In [11], the authors proposed to use the proximal av-
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erage techniques [25,26] combined with (accelerated)
stochastic gradient to solve (1). However, this ap-
proach requires both g and h to be Lipschitz, which
can be rather restrictive.

By introducing a slack variable y = Ax, one can
solve (1) via stochastic alternating direction method
of multipliers (ADMM) [4,27,28]. However, similar to
those stochastic subgradient methods, these works also
need to assume the boundedness of stochastic subgra-
dients and iterates. Moreover, the iterates generated
by this algorithm only asymptotically satisfies the lin-
ear constraint y = Ax.

1.2 Dual and Saddle-point reformulation

Using Fenchel duality, the dual form of (1) is given by

max [D(y) £ ~(f +9)'(-ATy) =K' ()] ()

where £* denotes the Fenchel conjugate of the function
¢. Similarly, the saddle-point form of (1) is given by

y) £ Ee [F(x,€)] + g(x)
+(Ax,y) = h*(y)]. (4)

min max [L(x,
xERd yeR™

Under Slater’s condition, x* is an optimal solution
of (1) if and only if there exists y* € R™ such that
(x*,y*) is a saddle point of (4) [24, Theorem 36.6].
Moreover, in this case y* is an optimal solution of (3).

Some special cases of (4) have been considered in
previous works. Specifically, some algorithms [29-37]
have been propopsed to solve (4) when & is deter-
ministic. 'When g = 0, Chen et al. [38] proposed
an optimal algorithm to solve (4). Existing meth-
ods that can address the stochastic three-composite
saddle-point problem (4) are subgradient-based algo-
rithms (e.g., [16,39]). However, they cannot make use
of the composite structure in (4) and are inefficient.

1.3 Main Contributions

We develop a primal-dual algorithm for (4) by using
stochastic gradients {v*};>0 that are unbiased estima-
tors of Vf with bounded variance. We consider two
cases, i.e., when g is non-strongly and strongly convex.

For non-strongly convex g, we consider either constant
or decreasing (primal) stepsizes, depending on whether
the total number of iterations K is known. We show
when dom g and dom h* are bounded, the (ergodic)
convergence rate of the expected primal-dual gap (de-
fined in Section 3.1) is O(1/vK) with constant step-
sizes and O(log K/v/K) with decreasing stepsize.

For strongly convex g, we consider a decreasing (pri-
mal) stepsize policy, regardless of the knowledge of K.
In this case, the convergence rates of the primal-dual

gap, and the squared (Euclidean) distance to the op-
timum, are O(1/K) in expectation.

Apart from these convergence results, we also extend
our proposed algorithm to the cases where i) x and
y in (4) are minimized over closed convex constraint
sets and ii) a finite number of nonsmooth terms exist
in the objective function P.

Notation. We denote the Euclidean inner product by
(,). Let || - || be the norm induced by (-,-). We use
lowercase letters, bold lowercase letters and bold up-
percase letters to denote scalars, vectors and matrices
respectively. For any n > 1, define [n] = {1,...,n}.
For any i € [n], denote e; as the i-th standard basis
vector. For any CCP function h : R™ — R, define
domh £ {y € R" |h(y) < oo} and for any x € R™,

1

prox,;, (x) £ argmin h(z) + — ||x — z|*, ¥Vt > 0.
z€dom h 2t

All the sections and lemmas with indices beginning

with ‘S’ will appear in the supplemental material.

2  Algorithm

We first state some preliminaries in Section 2.1, and
then provide an overview of our proposed algorithm
in Section 2.2. We detail the choices of stepsizes and
other parameters in Sections 2.3 and 2.4.

2.1 Preliminaries

We develop our algorithm to cover both cases where P
is non-strongly and 4-strongly convex (y>0). With-
out loss of generality, we assume that ¢ is v-strongly
convex and f and h are non-strongly convex.

Indeed, if f is yy-strongly convex, we can define ﬁ) £
F=2|l?and § 2 g+ % |2 so that Vf = Vf —
v¢ ||| and for any A > 0 and x € R, prox,;(x) =
prox,\/\,g()\’x), where Xél/(l—I—)wf).

If h is yp-strongly convex and A has full column rank,
we can define h 2 h—2||||* and f; 2 f+2|A - |2
Then, we have Vfl(x) = Vf(x) +7ATAx and for
any A > p, Prox,;.(x) =x—Aprox,.,(\"x), where
N'E1/(X—~). As shown in Lemma S-1, if we choose
ap > 1 and «aj, according to (19) for any k > 1 (see
below), then oy > ag > 7. Hence Prox, j. is well-

defined for any k > 0 if we choose ap > max{1,v,}.

2.2 Overview

The pseudo-code of our algorithm is shown in Algo-
rithm 1. Our algorithm can be regarded as a stochastic
approximation of primal-dual hybrid gradient method
(PDHG, also known as Chambolle-Pock) [34,40].

Each iteration of Algorithm 1 consists of five steps. In
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Algorithm 1 Stochastic Primal-Dual Algorithm for
Three-Composite Convex Minimization (SPDTCM)

1: Input: Positive sequences {a}r—y', {7s}1—, and
{0} 57L, number of iterations K

2: Initialize: x° € domyg, y° € dom*h*, z° = x°,
SOZOaiozxovyozyo

3: For k=0,1,..., K — 1

4:  Draw a sample £€*¥ ~v and define v* as in (8)
yFHl = prox,, ;- (y" 4 arAzb) (5)
xF = proxmg(xk —m(ATy* 1 vE))  (6)
zk+1 — Xk+1 + ak(xk+1 . Xk) (7)

5:  Option I: 8 = 7, Option II: 8, = ax/ag

6: Ski1 = Sk+Be, X = (SpX" + Bpx"t1) /S
v = (Sk¥" + Bey™™) /Ska

7: End for

8: Output: (X5,y5, xK)

the iteration k, we draw a sample £* (independent of
the past history) and obtain a stochastic gradient

ka VxF(X’Sk)lx:xk~ (8)

We then perform dual ascent, primal descent and
extrapolation steps in (5), (6) and (7) respectively.
Thus the (positive) sequences {ay i, {7}, and
{9;@}5;01 can be interpreted as dual stepsizes, primal
stepsizes and relazation parameters respectively. Note
that the proximal operator prox,, ;- in (5) can be ob-

tained from proxy ,, via Moreau’s identity, i.e.,

Prox,,- (x) = X — pprox;, ,(x/p), ¥p > 0. (9)

Next, we choose weight 5 according to option I if ¢
is non-strongly convex and option II if g is strongly
convex. Finally, we obtain the weighted averages of
iterates {x’}**1 and {y?}**}, which are denoted by
xF*1 and §5 respectively. Note that X1 and y*+1
can be written explicitly as

Zf:o BiXH—l
)

Skt1

k .
> im0 Byt

Skl _
Sk41

yk#’l — (10)

For ease of presentation, in Algorithm 1 we assume
to know the total number of iterations K before the
algorithm starts. However, in choosing the sequences
{ak}i(:})l, {Tk}{f:})l and {0;6}2(;01, we also consider the
case where K is unknown. This allows Algorithm 1 to
be applied to many online and streaming applications
(¢cf., Sections 2.3 and 2.4).

2.3 Non-strongly convex g

We consider both constant and decreasing primal step-
sizes {74 }1—,', depending on whether K is known. As
shown in Section 3.2, the constant stepsize policy can
lead to slightly better convergence rates.

Constant stepsizes (K is known). When K is
known in advance, we can exploit this knowledge by
choosing 7, = 7x, for any 0 < kK < K — 1, where

T
T = min
{L b+ VK b’}

In (11), the constants 7, @, b and b’ are chosen such that

(11)

€ (0,1), @ > 0 and b, b’ > 0. Our convergence results
(shown in Theorem 1) hold for any values of 7, @, b and

b that satisfy these conditions. Forany 0 < k < K—1,

we also choose 0, = 1 and oy, = (1 — L7g) /(T B?).

Decreasing stepsizes (K is unknown). When K is
not known a priori, for any £ > 0, we choose

a
T = mm{L b-l-\/m} (12)

Tk

L 13

e (13)
1-— LTk-

L e B2 14)

In (12), we can choose any constants a, b, ¥’ and r such
that a > 0, b,b' > 0, b+ > 0 and r € (0,1). Note
that our convergence results in Theorem 1 hold for any
values of a, b, b’ and r that satisfy these conditions.
Hence, we choose any 6y > 0 and g > 0 that satisfies
71/ < 19/ < 211 /ar. We emphasize that the con-
stant dual stepsizes {ak}kK;Ol and relaxation parame-
ters {01, }+—, above satisfy conditions (13) and (14).

2.4 Strongly convex g

When g is y-strongly convex, we choose any ag > 1
and 90 > 0, and {Tk}k207 {ok}k21 and {ak}k21 such
that for any & > 0,

Ak

Opry — 5 15
k+1 i1 ( )
1
— = 0k+1ak+132 + L, (16)
Tk
1 1
(i) w
Tk+1 Tk

We provide a principled way to generate the three se-
quences. First, by substituting (15) into (16), we have

1
— =B+ L. (18)
Tk

Then we substitute (15) and (18) into (17) and obtain

L

52 550k + 55 B2
Thus «aj4+1 can be solved as the unique positive root
of (19) for ay, > 0. (Since ap >0, the whole sequence
{ag }r>0 will be positive.) Based on ay, and a1, pos-
itive 041, T and 7r41 can be generated accordingly
o (15), (16) and (17).

L
iy + Bz k1 = aj, + (19)
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Remark 1 (Scaling of parameters). In the non-strongly
convex case, we can easily see that when K is known,
forany 0 <k < K — 1, ap = O(VK), 7. = 0(1/VK)
and 0, = ©(1). When K is unknown, a, = O(Vk),
O(1/vk) and 6, = O(1). In the strongly-
convex case, as will be shown in Lemma S-1, we have
ar = O(k), 7 = O(1/k) and 0, = O(1). The
scaling of the primal stepsize 7 agrees with that
in the classical (proximal) stochastic (sub-)gradient
method [14, 16, 21].

T —

3 Convergence Analysis

3.1 Preliminaries

leen a sequence of random vectors {&x}r>0, define

2 (g1 for any k > 1. Accordlngly7 deﬁne a
ﬁltratlon {fk}kzo such that Fy £ 0 and F, = o(Z),
i.e., the o-field generated by =j.

For any set X C R? and x € X, define Ry(x) =
sup, ey ||x — x/||. Define Dy £ sup, o caom 4 IIX — X/||
and R, (x) £ Rdom ¢(X), for any x € dom g. We define
Dy- and Rp+:dom h* —R in the same way.

Following the convention in [34,40], for any closed
convex sets X’ C R% and )’ C R™, and any x €
I@d and y € R™, define the partial primal-dual gap
Gy (x,y) = supy/ ey L(x,y') — infyex L(X',y).
Accordingly, we define the primal-dual gap G(x,y) =
édom%dom n+(x,y). Finally, for any k& > 0, define the
stochastic noise e¥ £ Vf(x*) — v¥, where v* is the
stochastic gradient defined in (8).

We now state some standard (blanket) assumptions on
{v*}r>0 and {€*}1>0 below [38,41,42].
Assumption 1. For any k > 0,

(a) Eer [VF| Fi] = Vf(xF) almost surely.

(b) Egx [||¥]1? | Fi] < 0% almost surely.

We next present our convergence results. The proofs
of Theorem 1, Corollaries 1 and 2 and Theorem 2 can
be found in Sections S-2 to S-5 respectively.

3.2 Non-strongly Convex g

We first state a general result in Theorem 1, which
applies to both constant and decreasing (primal) step-
sizes {7k }1 o'

Theorem 1. Let g be convex. For any K > 2, choose
the sequences {aytr_ot, {me}ig and {0 }r_g' such
that (13) and (14) are satisﬁed Use option I in Algo-
rithm 1, then Sk = Zk o Tk- Define Sk ézfz—ol TZ.
For any bounded sets X' CR% and Y CR™ and K >2,

Ez, [Gary (X5, 55)]

1 2 (0 70 p2 Sil( 2
< ga () + Da ) + 5o

In particular, if dom g and dom h* are bounded, then

]E:K [G(iKvyK)}

1 2
< 35 <R (%) +

Remark 2. Note that the boundedness of dom h* is
equivalent to the Lipschitz continuity of h on R™.
Many important nonsmooth functions are Lipschitz,
such as norm and Huber loss [43]. If g involves
an indicator function of a convex and compact set,
then dom g is bounded. As will be discussed in Sec-
tion 4.1, if (4) is minimized over bounded sets X C RY
and Y C R™, then the boundedness requirements on
dom g and dom h* can be removed.

T0 2 SK 2
+ —Rj. + —0°. (2
0 h ( )) S ( O)

Implications of Theorem 1. Theorem 1 shows that
the convergence rate of the expected primal-dual gap
in (20) scales as ©(Sk/Sk). However, Sx/Sk has
different scalings depending on whether K is known,
due to the choice of {ag }1 " (cf. Section 2.3).

Recall from Remark 1 that 7, = ©(1/vK) and 75, =
O(1/Vk) in the K-known and K-unknown cases re-
spectively. Thus Sx = ©(vVK) in both cases. How-
ever, S = O(1) when K is known and Sx = ©(log K)
otherwise. As a result, Sx/Sx = O(1/VK) and
Sk/Sk = O(log K/vVK) when K is known and un-
known respectively.

Based on Theorem 1, by judiciously choosing the con-
stants in the primal stepsizes {73 }1, in (11) and (12)
respectively, we have the following two corollaries.

Corollary 1. Let g be convexr and dom g and dom h*
be bounded. Use option I in Algorithm 1. In (11), let

0 ~ -
EZM, b=0 and bV =
V30

For any K > 1 and 7 € (0,1), if

~ 2 P2 0
L>-—" \/B B O°) | skor, (22)

B?R}. (y°)

302(1—7)" 1)

T Ry(xY) 1-7
then
R2(x")L
E: =K =K < g

Ry(x")Ry- (y*)B | v3Ry(x")o

2I{\/ﬁ 2\/E (23)
Otherwise,
e (G, 5] < ol 6B | V3R, ()0

Kv1—-7 VK

Remark 3. We note that the smooth function f (rep-
resented by the first terms in (23)) contributes to the
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convergence rate of the primal-dual gap only when
L = Q(VK). This squares our intuition since when
f is sufficiently smooth, i.e., L = O(v/K), the cost of
minimizing it should be outweighed by other compo-
nents. See [18, Remark 1] for a detailed discussion.
Remark 4. From Corollary 1, we observe that the
expected primal-dual gap G( K gk ) converges at
O(L/K 4 B/K +0/VK). When g =0, a lower bound
for this convergence rate for any stochastic first-order
algorithm was shown to be Q(L/K?+ B/K + o /VK)
in [38, Section 1.2]. Compared to this lower bound, we
notice that the convergence rates of the bilinear term
(Ax,y) and the stochastic noise (represented by B/K
and o /v/K respectively) are indeed optimal. However,
the convergence rate for the smooth part f (repre-
sented by L/K) may be improved to O(L/K?) using
acceleration [18,38]. We defer details to future work.

Corollary 2. Let g be convez. In (12), choose a = a,

b= b V=V+1andr =7 as in Corollary 1 and
use option I in Algomthm 1. Let domg and dom h*
be both bounded. For any K > 2, define

CKé<1+1>R§(x0)(1—ﬁ

302 B2R? ( O)
R2(x" B2R3.
L B (BERRO0) a2 Z Ogtog 1),
302 1-7

For any K > 2 and 7 € (0,1), if (22) holds, then
R2(x°)L
2KTr
)B V3Ry(x%)o
2VK

EEK [G( KayK)] <

R ( O)Rh (
2KV1 -7

(24)

Otherwise,

EEK [G(iK7 yK)]

< 3R§ (x°
- 2

)+020K> (BR"*( v f”). (25)

Kv1 -7 VK
Remark 5. Corollary 2 suggests that the primal-dual
gap G(XX,¥%) converges at O(log K/vK), which
does not match the lower bound stated in Remark 4.
One possible approach to eliminate the log K factor
wab introduced in [16, Section 2.2]. Specifically, define
K 2 [vK], where v € (0,1) is independent of K. In
Algorithm 1, X% and §% are generated by averaging
{xF1E - and {y*}E_, respectively. However, since
K is unknown, this approach requires us to store all
the iterates {x*}_ | and {y*}X |, and hence becomes
impractical when memory is limited.

3.3 Strongly Convex g

Theorem 2. Let g be y-strongly conver. Use op-
tion 11 in Algorithm 1. Choose the sequences {ak}kK:_Ol,

{m oyt and {0} 0=, as in Section 2.4. Define two
constants ¢ = (agB? +7)(2B? + 2L +v)/(agyB?)
and ¢} £ max {4a(2B? + 2L +)/~,1} Then for any
K > 1 and any bounded sets X' C R? and Y’ C R™,

=i [Garyr (X5,57))]

— — = 2

1 2 0 1 2 0 €160
< . —R3, — (2
_2K2( R (x )+a0 (Y))+ K (26)

In particular, if dom g and dom h* are bounded, then

*59)]
¢1¢)0?

<L ( R2(x0) + O}ORQ*(yO)> + 297 (1)

Ez, [G (%

(ii) Denote the unique minimizer of (1) by x*. Define
o = (2B% 4+ 2L +7)%/(B?*y?). Then for any K > 1,
there exists y* € R™ such that

Co(Xq HXO —X*H2
Bay (I - %) < 250

0 _ v*||2 261 o002
Ly aoy I )+ 1;{0 @28)

70

Remark 6. Note that for the convergence results con-
cerning ||x® — x*||? in part (ii), we assume neither
the boundedness of domg or dom hA*, nor the uni-
form boundedness of 9P on R?. This distinguishes
our work from many stochastic algorithms in the lit-
erature that are based on subgradient [21,22,44], Nes-
terov’s smoothing [10-12] or ADMM [4,27,28]. In
fact, without the aforementioned assumptions, it is un-
clear whether these algorithms even converge when P
is strongly convex. In contrast, we show an O(1/K)
convergence rate of [|xX — x*||? in expectation.

Remark 7. We observe that the convergence rates in
both (27) and (28) depend on ¢ by O(c?/K). This
dependence is indeed optimal, since when h = 0, for
any stochastic first-order algorithm, a lower bound was
shown to be Q(c?/K) in [19, Section 1].

4 Extensions

4.1 Constrained Saddle-Point Problems

Let X C R and IV € R™ be two closed convex sets.
Then the constrained version of problem (4) is

min max Eg [F(x,£)] + g(x) +

A _
XEX yey < X,y>

h*(y). (29)

Indeed, to extend Algorithm 1 to solve (29), we only
need to change the dual step (5) and the primal
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step (6) in Algorithm 1 to

RN et il By o
y*T" = arg min (v, Az") + h*(y), (30)
yey 20%
_ k|2
x"! = arg min I = 7|
x€X 27y,

+ (x, ATyF 4 vF) 4 g(x). (31)

All of the convergence results in Section 3 apply to the
new algorithm for solving (29). In particular, to prove
the convergence results for the primal-dual gap, we
only need to assume that dom g N X and domh*NY
are bounded. This condition is certainly true, if both
X and )Y are compact, which has been assumed in
many previous works [10,16,45].

Remark 8. Note that the steps (30) or (31) may not
be solved in closed form or finitely many steps, even if
prox,, - or prox, . does. In this case, one needs to
conduct inezact analysis by accounting for the compu-
tational errors associated with solving (30) and (31).
We leave such an analysis to future work.

4.2 Multiple Nonsmooth Terms

We consider a stochastic convex minimization problem
with p + 1 nonsmooth terms (p > 1), i.e.,

in B, [F
min Ee, [F(x

O]+ g0+ ) ri(Ax),  (32)
i=1

where {r;}l’_, are proper, closed, convex functions
such that each r; has a tractable proximal operator,
and A; € R™*4 for any i € [p]. For simplicity, we let
all the matrices {A;}7_; have the same number of rows
and leave the simple generalization, where the numbers
of rows of {A;}!_, are different, to the reader.

The problem (32) has numerous applications, includ-
ing overlapping group lasso [46], robust matrix recov-
ery [47] and variational image recovery [48]. When &
is deterministic, numerous algorithms have been devel-
oped to solve (32), such as [29-32,48]. However, when
& has a general probability distribution, so far there
exists no method in the literature that can solve (32).

We next describe how to reformulate (32) in the form
of (1) and develop an algorithm to solve (32) based
on Algorithm 1. For any vector x € RP?, denote its
i-th block as x; £ (Tp(i—1)+15- - - ,2pi)T € R where
i € [p]. We also denote y € RP™ and {y;}7_; CR™ in
the same way. We define V = {x€RP? | %) =%y ="--=
%X,}. Recall that f(-) = E¢[F(-,€)] in (2). To extend
Algorithm 1 to solve (32), we first rewrite (32) as a
(stochastic) three-composite minimization problem in
the augmented space RP?, i.e.,

p

min | P(x) 2 })Zﬂxi) + (k)

Jn,
x€ i=1

P

+ip(X) + Z TZ(AzXz)] - (33)

i=1
An equivalent saddle-point form of (33) is
P

i(ky) 2 ,%Z F5) + g(51) + 1w ()

i=1

min max
x€Rprd yeRP™

P

+Z<Aiki75’i> - er(}’z)

i=1 i=1

. (34)

For convenience, define J(x) = (1/p)>_F_, f(%:),
Q(x) £ (1/p) Xo7_, 9(%:) and R*(y) £ Y27 i (vi)-
Then for any i € [p|, (VJ(X)); = (1/p)Vf(xi),
(proxg,,, (%)) = proxg/p(%z:le %;) and for any
A > 0, (prox,p«(y)): = prox,,(y;). Based on above,
we develop an algorithm to solve (34) in Algorithm 2.

Note that Algorithm 2 admits an efficient parallel im-
plementation. Specifically, the computationally inten-
sive steps (36), (37) and (38) can be performed si-
multaneously across p nodes. In terms of storage, at
iteration k, each node only needs to store the latest
average vector ?f“ € R™, and the central node only
needs to store X1 € RY,

Depending on the convexity of g, and the knowledge of
K, we can choose {Oék}kzo; {Tk}kzo, {ek}kzo and ﬂk
in a similar fashion as in Section 2. Based on the con-
vergence results of Algorithm 1 (shown in Theorems 1
and 2) in the augmented spaces RP? and RP™, we can
obtain all the corresponding convergence results of Al-
gorithm 2 in R? and R™ in a straightforward manner.
To be specific, we provide an example below.

Corollary 3. Let g be vy-strongly convex. Choose
the sequences {aktr>0, {Tk}r>0 and {0k}r>0 as in
Section 2.4 and Option II in Algorithm 2. De-
fine é1 £ (aB?+7)(2B% +2L+7)/(vB*), & £
(2B% 4+ 2L +v)?/(B%y?) and B 2 max?_, ||Ai||2. De-
note the unique minimizer of (32) by X*. Then for
any K > 1, there exist {y7,...,y;} € R™ such that

~ éQ «p ~
e (1K - %17 < 25 (2 - %P

1< 2616902
=)y -y ) + . (35
P ly: —yil ) 7 (35)

5 Applications and Experiments

5.1 Experimental Setup

Benchmark Algorithms. The benchmark algo-
rithms including one batch (deterministic) algorithm
and two stochastic algorithms. The deterministic
method is based on PDHG [34]. The two stochastic
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Algorithm 2 Stochastic Primal-Dual Algorithm for
Multi-Composite Convex Minimization (SPDMCM)

Input: Positive sequences {a}r>0, {7k }r>0 and
{601} k>0, weights {w;}}_;, number of iterations K
Initialize: x" € R?, y9,--- ,y9 e R™, z° = x"
For k=0,1,...,. K -1
Draw a sample £€* ~v and define v* as in (8)
Option I: 8 = 73, Option II: 5, = ay/ag
Sk+1 = Sk + B
For each i € [p], perform steps (36), (37) and (38)
(in parallel)

yith = prox,, - (v + apAiZ") (36)

¢ =Xt ATy (1/p)vE) (37)

yith = (S + Beyi ) / Sk (38)
xF*1 = prox, , % Pt

T+ = (5% + Bex 1) Sk
ZF L= x4 g, (xR — xF)
End for
Output: ¥, {yX}?_ and x¥

methods are based on stochastic smoothing combined
with proximal average [11] and stochastic ADMM [4,
28] respectively. We denote the three benchmark al-
gorithms as PDHG, SSPA and SADMM respectively.

In our comparison, we set the parameter values in
these benchmark algorithms according to the original
papers. In addition, we repeated each stochastic algo-
rithm (including ours) ten times from the same start-
ing point and show the average realization.

Parameter Choices. For non-strongly convex P, for
known K, weset 7 = 0.3, a =100, b=0and ¥ =1
in (11). For unknown K, we used the same param-
eters in the stepsize 7, i.e., we chose r = 7, a = a,
b="band v/ =¥ in (12). We also chose §y = 1 and
ag = Toa1/(271). For strongly convex P, we chose
ag = 0.5 and 0y = 1. These simple parameter choices
indeed worked well in our experiments.

Tasks and Datasets. We considered three regres-
sion problems, which are graph-guided sparse logistic
regression [49], fused lasso [3] and overlapped group
lasso [46]. The datasets were extracted from the LIB-
SVM [50] repository. Each dataset D of size n can be
represented as {(a;,b;)},, where {a;}7; C R? de-
note the feature vectors and {b;}?; C R denote the
response variables. Accordingly, define the data ma-
trix A = [a;...a,]T.

Comparison Criteria. Since the theoretical con-
vergence rates of our algorithm and the benchmark
ones are given in terms of the average iterates, we
use the (empirical) ergodic primal suboptimality, i.e.,
P(x*) — P*, to compare all the algorithms. We term
n data samples as one epoch.

We plot the decrease of the primal suboptimality ver-
sus both the number of epochs and time (in seconds).
Both plots have pros and cons. Specifically, the epoch-
plot cannot reflect the amount of computation to uti-
lize each data sample whereas the time-plot is highly
dependent on implementation. Therefore, we believe
a cross-reference of both plots provides a more com-
prehensive view on the method efficiency.

All the algorithms were implemented in Matlab®
R2016b on a machine with 1.7 GHz Intel® i5-4210U
processor and 8 GB RAM.

5.2 Graph-Guided Sparse Logistic Regression

For any ¢ € [n], define
£i(x) £ log (1 +exp (—ba; x)) . (39)

The graph-guided sparse logistic regression is given by

n

. 1
min | PR (x) £ -~ D 6(x) 4 Ml + A2 B |

]Rd
x€ i=1

where A\ and \; are positive regularization parameters
and F is a matrix that encodes the fusion penalty [3].

We set A\; = Ao = 1. Note that Prr is non-strongly
convex on R?, for any dataset D. The smoothness pa-
rameter L = 02, (A)/(4n). We obtained the matrix
F in a similar fashion as in [4]. At iteration k, to form
the stochastic gradient v¥, we first uniformly randomly
sampled an index set By C [n] without replacement,

such that |By| = |0.01n]. Then we let

vk = ﬁ > Vb (40)

1EBg

This procedure was also used in the fused lasso and
overlapped group lasso tasks (see Sections 5.3 and 5.4).

We tested the performance of Algorithm 1 against the
benchmark algorithms on the a9a and w8a datasets.
We implemented Algorithm 1 with both decreasing
and constant (primal) stepsizes, which are denoted by
Ours(Dec) and Ours(Cst) respectively.

The results are shown in Figures 1 and 2. We observe
that our algorithm, with both decreasing and constant
stepsizes, outperforms all the benchmark methods, in
terms of both epochs and time. The reason that both
stepsizes perform similarly is because when K is not
large enough, the same stepsize 7/L is used.

In addition, in terms of time, SSPA and SADMM per-
form similarly compared to PDHG. This is because: i)
Each iteration in the SSPA and SADMM algorithms re-
quires computing the proximal average of |Fx||; and
FTF respectively, which can be expensive; ii) To use
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the same number of data samples, the stochastic algo-
rithms (including ours) requires much more (indeed,
100 times) iterations than PDHG. The overhead in the
for or while loops also contributes to the slowdown.
However, even with the overhead, our algorithm still
outperforms PDHG by a large margin (in time).

5.3 Fused Lasso

Define a matrix D € R(@=D*d gych that for any i €
[d—1], D;; =1and D; ;41 = —1. All of its remaining
entries are zero. Also define

, Vi€ [n]. (41)

We then formulate the fused lasso problem as

. 1 ¢
min | P (x 2 EZ +A1IX|1+>\2|DXII1] ,
the regularization weights Ay = Ay = 1. The smooth-
ness parameter L = 02 (A)/n. If A has full column-
rank, then Pgy, is strongly convex with modulus v =

Ul’l’lll’l( )/n > 0

We tested the performance of all the algorithms on
the YearPrediction dataset, whose data matrix A
has full column rank. The results are shown in Fig-
ure 3. We indeed have similar observations to those
in Section 5.2. In particular, our algorithm converges
faster compared to all the benchmark algorithms, in
terms of the number of epochs and running time.

5.4 Overlapping Group Lasso

We generated p groups of indices from [d], each of size
q, by random sampling without replacement. These
groups were denoted by {Ql}l 1- We partitioned [p]
into {Z; }¥,_; (p < p), such that for any i’ € [p] and any
4,4 € Ti, GiN Gy = 0. Accordingly, for any i’ € [p]
and x € R, define G; £ UjeIi/ éj and xg,, to be the
subvector of x with indices from G;. Based on these
notations, the overlapped group lasso is formulated as

min PGL £ %Z Z

Ra
x< i'=1

(42)

Similar to previous tasks, we set Ay = 1, for any ' €
[p]. Let m; : [|Gir]] = Gi be any bijective map. We
note that the problem (42) fits into the template (32),
since xg, = Uyx, where Uy € RI91x4 and (Uy);. =
er.,(j)- As aresult, we apply Algorithm 2 to solve it.

We tested all the algorithms on the E2006-tfidf
dataset. For simplicity, we subsampled 1000 features
with the highest frequencies. The resulting data ma-
trix A has full column rank so Pgy, is strongly convex.

o
™

o
°

Obj. Error (P(%*) — P*)

— Ours(Dec) N
Ours(Cst) o+

<
[

10° 10' 102 102 10" 10° 10!
(a) Number of Epochs (b) Time (s)
Figure 1: Loglog plot of the objective error P(x¥) — P*
versus (a) number of epochs and (b) time (in seconds)
on the a9a dataset.
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Figure 2: Loglog plot of the objective error P(ik) —P*
versus (a) number of epochs and (b) time (in seconds)
on the w8a dataset.
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Figure 3: Loglog plot of the objective error P(x*)— P*
versus (a) number of epochs and (b) time (in seconds)
on the YearPrediction dataset.
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Figure 4: Loglog plot of the objective error P(x¥)— P*
versus (a) number of epochs and (b) time (in seconds)
on the E2006-tfidf dataset.

We set p =5 and ¢ = [0.3d]. The results are shown in
Figure 4. We observe that in terms of both the num-
ber of epochs and running time, our algorithm conver-
gences faster than all the benchmark algorithms.
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