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Abstract

This paper presents the results of an analytics-based study to determine key differences in
junior resident level and expert level surgical skill when engaging with a neurosurgical sim-
ulator. Window-based time series discretization and sequential pattern analysis were used
on positional data to identify frequent movement patterns and instrumentation techniques
associated with each skill class. Cross-validation confirmed that a Bayesian classification
model constructed using these patterns can be used to predict skill level with a high degree
of confidence and accuracy on a small sample of neurosurgeons who engaged with the sim-
ulator. An analysis of movement speed also revealed that the junior residents exhibited a
high degree of very slow and very fast movements, whereas the expert surgeons displayed
a significantly more consistent technique of moderate-speed movements. Finally, the anal-
ysis was integrated within a cloud-based learning framework, helping to provide beneficial
feedback on movement proficiency to resident surgeons in training. The presented work
makes two key contributions to the field of machine learning in the medical field: the study
1) employs a low-level behaviour-based analysis of surgical technique, as opposed to high-
level summary metrics such as blood loss and average force, and 2) avoids the use of expert
information on neurosurgical skill within the AI engine, and thus employs an analysis that
is entirely uninformed.

1. Introduction

Platforms and devices that support the progress and development of learners in a particular
domain or area of expertise have existed for quite some time in the form of software simu-
lators, intelligent tutors and online courseware. In the medical domain, suture practice kits
and cadavers, and more recently training simulators such as SIM*VIVO!, Touch Surgery?

1. https://sim-vivo.com/
2. https://www.touchsurgery.com/
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and NeuroTouch? have facilitated young medical residents to practice their technique outside
of the operating room, as well as experienced surgeons to prepare for complicated proce-
dures, or even to hone their skills as they learn to handle new procedures or implement new
techniques.

Where trends in the learning domain have seen a recent shift is in the area of learning
analytics, particularly due to both an increasing ability to generate and collect data from
learner interactions with these devices and platforms, and the rise in analytical technologies
that can facilitate the analysis of this data for the extraction of key information that can
be used to further enhance or accelerate the learning experience.

Technical Significance This work demonstrates the use of sequential pattern mining
techniques to identify key movements that differentiate surgical skill, which are then vali-
dated via the performance of a classification model constructed using these movements. The
paper makes two key contributions to the field of machine learning in healthcare, specifically
in what concerns the application of machine learning techniques in medical education: the
study 1) employs a low-level behaviour-based analysis of surgical technique, as opposed to
high-level summary metrics such as blood loss and average force, and 2) avoids the use of
expert information on neurosurgical skill within the Al engine, and thus employs an analysis
that is entirely uninformed on any baseline behaviour of what might constitute skilled or
unskilled technique.

Clinical Relevance Techniques proposed in this paper offer significant advances in the
area of simulation-based surgical training, by facilitating the ability to offer direct, per-
sonalized recommendations for improvements in surgical technique with emphasis on skills
derived from a low-level analysis, that may not be observable at high-level metrics perspec-
tive. This will result in more targeted and effective feedback for a learner and thus faster
mastery of expert skills and manipulation.

1.1. Neurosurgical Simulation

The National Research Council Canada (NRC), in collaboration with teaching hospitals
from across Canada, developed NeuroTouch, a virtual reality simulator that is currently
being used at 17 teaching hospital locations worldwide, including Canada, U.S., Europe,
Africa and Asia, to train surgical residents in endoscopic and craniotomy-based neurosur-
gical oncology procedures. It provides a risk-free training environment that can reduce
medical errors and improve patient safety, all while decreasing operating room costs that
are incurred through traditional training methods. The simulator is equipped with two hap-
tic devices with 3-degrees of freedom that allow tactile-based interaction between a surgical
instrument and a virtual soft tissue. Simulation of tissue behaviour resulting from tissue-
tool interaction, as well as bleeding dynamics, are physics-based, which give rise to realistic
training scenarios. The NeuroTouch simulator has more than 30 simulation exercises that
target training of different skills, ranging from fundamental instrument handling exercises
to tumour resection.

3. Commercially available under the name NeuroVR (CAE Healthcare, https://caehealthcare.com/
surgical-simulation /neurovr)
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One of the benefits of virtual reality training simulation is the capacity to monitor
and record performance metrics. Specifically, for each simulation scenario, the NeuroTouch
simulator records time series data for numerous scenario parameters (bleeding measures,
tissue volumes etc.), surgical instrument data (spatial and handling parameters), and tissue-
tool interaction information (contact with the tissue and duration of excessive force applied
on the tissues). By using this data, scenario-specific performance metrics and overall scores
were developed and corroborated by an international consortium of expert neurosurgeons.

1.2. Related Work

Machine learning pattern-based techniques have recently gained traction in the medical do-
main, particularly in the area of simulation-based training. Kennedy et al. (2013) analyzed
student interactions with a temporal bone surgical simulator, in an effort to provide real-
time feedback on surgical technique with regard to the level of skill being exhibited. In this
case, high-level discrete metrics were observed (e.g. whether force being applied falls above
or below some threshold), and Hidden Markov Models were used to predict skill level, where
low-level instrument manipulation (e.g. a “stabbing” motion) was represented and implied
by the unobservable or “hidden” states. This work built on that of Sewell et al. (2008), who
employed Naive Bayes classification on high-level features such as average force, suction
position, etc., collected from mastoidectomy simulation to classify expert and novice profi-
ciency. Toussaint and Luengo (2015) applied sequential rule mining techniques to further
analyze instrumentation technique in vertebroplasty simulations.

Several studies based out of the Montreal Neurological Institute (MNI) have been pre-
viously executed using the NeuroTouch simulator so as to define and validate performance
metrics and proficiency performance benchmarks related to psychomotor skills and neuro-
surgical competency (Sawaya et al., 2017; Gélinas-Phaneuf et al., 2014; Azarnoush et al.,
2017; Winkler-Schwartz et al., 2016; Azarnoush et al., 2015; Bugdadi et al., 2018). In these
studies, a set of metrics assessing safety, quality and efficiency were proposed and eval-
uated. The metrics were classified as Tier 1 (extracted directly from NeuroTouch), Tier
2 (derived from outputted NeuroTouch data) and Tier 3 (advanced metrics derived from
outputted NeuroTouch data). Several of these investigations found statistically-significant
differences between the performance of board-certified expert neurosurgeons and neurosur-
gical residents, in particular, for metrics concerning safety and efficiency. These studies did
not explore baseline behaviour that could be representative of skilled or unskilled technique
based on an uninformed analysis, but rather validated a set of predefined metrics that were
proposed with direct input from experts.

Overall, one key shortcoming of the current state of the art and corresponding learn-
ing analytics systems is that they constitute an outcome-based approach where feedback is
typically given at a high-level, such as scores or measurements for various skills, modules,
aspects of the course, etc. While this can lend information to the trainee on what areas
need improvement and thus where further practice or study is required, it does not indicate
exactly how the trainee’s behaviour led to these outcomes. On top of facilitating recom-
mendation for future study, a low-level behaviour-driven approach can present the learner
with feedback that can be used immediately, possibly with the assistance of an instructor,
to rectify deficiencies in the learner’s technique.
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1.3. Objectives

In this study, machine learning techniques using sequential pattern mining were imple-
mented to conduct a pilot behavioural analysis on a dataset obtained from NeuroTouch
simulator. Data was collected from a number of physicians in the neurosurgical field who
self-reported their skill class as neurosurgical residents (junior: Post Graduate Year, PGY 1-
3; senior: PGY 4-6) or expert (board-certified) surgeons. The first objective of the analysis
was to identify patterns in low-level behaviour pertaining to how the subjects manipulated
the instruments, that could differentiate between the different skill classes, by using an un-
informed analysis that does not depend on domain-specific input. Specifically answers to
two questions were sought as part of this first objective: 1) how do common patterns gener-
ally differ between different skill classes, and 2) what are some specific examples of common
patterns that are attributable to each skill class? Contingent on the successful identification
of patterns indicative of surgical skill level, the second objective was to present three types
of information to a learner: 1) scores determined based on the proficiency of instrument ma-
nipulation, 2) graphical representations of a learner’s common patterns that are a) deemed
skillful and b) deemed unskillful, and 3) recommendations for how a learner’s technique
could be improved.

2. Methodology

2.1. Neurosurgical Simulation Dataset

The NeuroTouch simulation performance data used in this study was collected during the
2015 Annual Congress of Neurological Surgeons (New Orleans, USA), using a case study
format.

2.1.1. STUDY PARTICIPANTS

Participation in the study was on a volunteer basis and all collected simulation results
and participant demographic data was anonymized. Each participant was presented with a
consent form and an information sheet describing the goal of the case study and instructions
for the simulation exercise to be executed. Participants were asked to self-identify their skill
class classification as either a neurosurgical resident () or a staff (expert) neurosurgeon.
Demographic data collected for each of the participants included age, gender, handedness,
level of training (Post Graduate Year, in the case of residents), years in practice (in the
case of staff surgeons), approximate number of meningioma cases performed, approximate
number of endoscopic third ventriculostomy cases performed, the average number of hours
per week spent playing a musical instrument and the average number of hours per week
spent playing video games. All data was collected with approval for corresponding governing
body ethics review boards.

2.1.2. SIMULATION SCENARIO

Considering the context of the data collection as well as the resulting pool of candidates
for the study cohort, a tumour debulking exercise on a synthetically-generated tumour was
selected for this study as the target simulation scenario (Tumour Debulking 101 scenario
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Figure 1: Tumour Debulking simulation scenario utilized in the case study.

Figure 1). This scenario allowed to minimize the required participation time, ensure a
feasible level of difficulty and target the required skill set.

Participants were instructed to debulk the meningioma-like inclusion and to clear the
field of blood, ensuring that bleeding has stopped completely, all while avoiding to remove
surrounding healthy brain tissue and avoiding to push forcefully on the tissues. The se-
lected scenario required bimanual manipulation of the surgical instruments, with a suction
instrument used in the non-dominant hand to remove blood from the scene and a cavitron
ultrasonic aspirator (CUSA) used in the dominant hand to aspirate the tumour.

For each study participant, the following data was collected from the simulator:

1. summary file containing the metrics utilized in the computation of the overall perfor-
mance score for the scenario

2. time-series data, collected at a frequency of approximately 50Hz containing all the
simulation and scene status data

3. final screen shot of the simulation scene prior to scenario termination

2.1.3. DATA PREPROCESSING

In order to ensure the quality of the data, several iterations of preprocessing were carried
out on the collected data:

1. Manual verification on the participant’s skill class: a comparison was made be-
tween the self-reported skill class of the participant and the total number of practice
years/level of training and/or the total number of surgical cases performed. Neuro-
surgical residents were classified as junior (PGY 1-3) or senior (PGY 4-6).

2. Manual performance estimate of the participant’s skill class: a rough estimate of
performance level was made based on the final screen shot of the simulation scene and
used as an extra tag for the designated skill class of the user.
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3. Removal of low-performance data: study coordinator notes were used to filter out
portions of the logged raw performance data that were caused by disruptions and/or
interruptions.

The outcome of the preprocessing step was a clean, labeled data set together with a brief
description of each performance result that was ready for use in the machine learning pattern
analysis step presented in subsequent sections.

2.2. Pattern Analysis with Neurosurgical Simulation Data

Contemporary research in frequent pattern mining research can be traced back to the sem-
inal work of Agrawal and Srikant (1994, 1995) for itemset mining and sequential pattern
mining with the development of the Apriori and AprioriAll algorithms, respectively. Se-
quential pattern mining work was further advanced with performance-improving algorithms
such as GSP (Srikant and Agrawal, 1996), SPADE (Zaki, 2001), SPAM (Ayres et al., 2002)
and PrefizSpan (Pei et al., 2001), and also with specialized algorithms for closed (Gomariz
et al., 2013), high utility (Yin et al., 2012) and incremental (Wang and Tan, 1996) sequential
pattern mining.

Due to the discrete data requirements of existing algorithms that seek to identify identi-
cally recurring constructs, frequency-based pattern mining and classification of movements
in continuous space requires special attention. Alwasel et al. (2017) examined common
movement patterns exhibited by concrete masons that are representative of skilled or safe
execution, by using k-means clustering to determine a set of key poses. Each position in 3D
space was then considered identical to the pose representing that position’s nearest centroid.
Das et al. (1998) addressed a further complexity to this problem by clustering subsequences
or “windows” of time series data, which can be used to discretize sequences of positions,
rendering the ability to consider frequently occurring movements in continuous space.

2.2.1. SEQUENTIAL PATTERN MINING

Sequential pattern mining (SPM) (Agrawal and Srikant, 1995; Mooney and Roddick, 2013)
is a research discipline within the field of data mining that focuses on identifying frequently
occurring sequences of objects or events. Let I be a set of items, and S be a set of input
sequences, where each s € S consists of an ordered list of itemsets, or sets of items from
I, also known as transactions. A sequence (ajas...ay) is said to be contained in another
sequence (b1by...by,,) if there exist integers 41,12, ...,1, with i1 < iy < ... < i, such that
a1 C by, a2 C by, ... an Cb;,. A sequence s € S supports a sequence s’ if s’ is contained in
s. The support sup(s’) for a sequence s’ given a set S of input sequences is the percentage
of sequences in S that support s, and is equal to sup(s’) = |{s € S|s supports s'}| /|S].
A sequence s’ is deemed a sequential pattern if sup(s’) is greater than some pre-specified
minimum support. Such a pattern with a total cardinality of its itemsets summing to n is
referred to as an n-sequence or n-pattern. A sequential pattern s’ is a maximal sequential
pattern in a set S’ of sequential patterns if Vs” € S’ where s” # s', s” does not contain s'.
The general goal of sequential pattern mining is then to identify the set S’ that contains all
(and only those) sequences that are deemed sequential patterns according to the above. In
some cases, the set consisting of only maximal sequential patterns is preferred.
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Sequence Database | 1-seq 2-seq 3-seq
({b,ct. {c.d} . {e}) | (a}) | ({a}.{d}) | ({b,c} {d})
({a,c} {b, e} {d}) | ({o}) | ({be}) | ({0}, {d},{e})
({c}, {e}) ({ch) | (o} {d}) | ({c},{d}, {e})
({ehAdy e, /1) | ({d}) | ({0}, {e})

({a,0},{d},{e}) ({e}) é{c},{c}>

(
(

{e}{d})
{c}:{e})
{d}, {e})

Figure 2: Example sequence database with mined sequential patterns using a minimum
support of 0.4.

To illustrate, consider the example set S of sequences given in the first column of Fig-
ure 2. Using a minimum support of 0.4, the set of all sequential patterns is indicated,
specified by 1-sequences, 2-sequences and 3-sequences.

Note that, while this table gives all of the frequent sequential patterns, only ({a}, {d}),
({c}, {c}), ({b,c},{d}), ({b},{d},{e}) and ({c},{d}, {e}) are mazimal sequential patterns.

2.2.2. SEQUENCE CLASSIFICATION

Sequence classification (Lesh et al., 1999, 2000; Xing et al., 2010)) is the field of study
that attempts to classify sequences in S by using frequent sequential patterns as features
in the classification. Consider the above model with the addition of a set L of class labels,
where each s € S is labeled with an element of L. S is now a set of examples, where each
example s € S can be represented by a set of feature-value pairs using features from the
set S" of frequent sequential patterns and boolean values. A feature f is thus assigned
the value “true” if s contains f, and “false” otherwise. For example, consider features
fi={b}{c}H{d}), fo = ({b}{d}{e}), fs = ({c}{d}{e}). The sequence ({a,b}{d}{e}) could
then be represented by the feature-value pairs (fi1, false), (f2, true), (fs, false).

The goal of sequence classification is to identify sequences for the feature set that have
the following properties:

e Features should be frequent
e Features should be distinctive of at least one class

e Feature sets should not contain redundant features

The typical methodology for sequence classification involves two phases: 1) sequential
pattern mining to discover the frequent sequences that potentially will make good feature
candidates, and 2) feature assessment (e.g. using an ”interestingness” measure) to select
the best candidate. From there, standard machine learning based classification methods
such as SVM or Naive Bayes can be used to build a classification model and label future
instances.
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2.2.3. CoNTINUOUS INPUT VALUES

The sequential pattern analysis algorithms incorporated in this paper inherently rely on
discrete-valued datasets. However, the positional data used in this study was represented
by real-valued coordinates in three-dimensional space. Therefore a discretization technique
from the literature that is designed to convert time series data into discrete sequences for
the purpose of extracting information in the form of rules (Das et al., 1998), was used.

The technique works by taking small intervals, or windows of consecutive data, and
mapping these windows to discrete elements. Thus, since a discrete element refers to a
series of values, in the context of this work the element can be referred to as a “movement”.
Windows that are sufficiently similar are mapped to the same element. Tolerance for a slight
variation in the data mapped to the same discrete element allows for the identification
of frequent patterns of “similar” activity in the data. Due to the fact that the data is
continuous, searching for exact matches is likely to result in a high number of uninteresting
patterns that happen very infrequently, likely occurring only once.

To further facilitate identification of frequent patterns, positioning is not considered to
be absolute, but rather relative to the other data in the window. Thus an instrument’s
movement along the z-axis along x = 4,3,6 would be considered (exactly) similar to a
movement along z = 6,5, 8, since the relative movement between each point is the same.

2.2.4. IDENTIFICATION OF SURGICAL INSTRUMENTATION AND MOVEMENT PATTERNS

In this section the methodology used for identifying patterns in the data that are indicative
of different skill classes is described. In the initial phase, data preprocessing is conducted
to obtain the desired task-specific data. In particular, only the positioning of the CUSA
instrument is collected, specifically when it is in use by the dominant hand and is in direct
contact with the tumour. Data discretization is then employed as described in Section 2.2.3
to transform the continuous movement sequences associated with each skill class to a set of
discrete movement sequences.

Each set of discrete movement sequences associated with a skill class is then mined
individually for sequential patterns. For this step the SPAM (Ayres et al., 2002) algorithm
is employed. The set of sequential patterns returned by the SPAM algorithm for each
skill class thus offers the set of potential features for that skill class. Feature selection is
then conducted by determining whether the feature pattern’s support in the skill class is
significantly higher than its support in any other skill class using a chi-squared test (Lesh
et al., 1999). This process results in the behaviours that can then be displayed to the
user as being indicative of the skill class from which they originated. Finally, a Naive
Bayes classifier is trained to model each skill class and predict the skill level exhibited
in a candidate simulation. Leave-one-out cross-validation is used to assess the classifier’s
performance, which in turn lends insight into the likelihood of the selected patterns truly
being representative of their corresponding skill classes.



PATTERN-BASED BEHAVIOURAL ANALYSIS ON NEUROSURGICAL SIMULATION DATA

3. Sequential Pattern Mining-Based Skill Proficiency Results

3.1. Experimental Setup

To test the ability to build a model of expert behaviour using the collected dataset described
in Section 2.1, the procedure outlined in Section 2.2.4 was used. As a preparation step
for the mining procedure, each dataset was divided into a number of sub-datasets, each
consisting of 150 consecutive records. This allowed the model to consider behaviours that
are done frequently and with regularity over 150-record segments, as opposed to those that
only appear once or very few times over the course of the scenario. Following the testing
of different groupings of skill classes, as outlined in Section 2.2.4, the final dataset used to
train the classification model consisted of three junior residents and three experts. Data
pertaining to senior residents was excluded from the data used to train the model.

Each record in the time-series data (captured at a frequency of approximately 50Hz)
gives a snapshot of the positioning of the instruments used at a given time point. In this
analysis, only the x, y and z positions of the tip of the CUSA were used in the model.

To facilitate an unbiased evaluation of the modeling capabilities, cross-validation was
employed by leaving out all 150-record segments for a candidate participant, training the
model on the remaining segments and then testing the model on the candidate dataset
excluded from the training phase. A second level of testing was executed on the dataset
pertaining to the senior residents (which were excluded from the final training model). In
this testing phase, the hypothesis was that the senior residents should be classified into the
“expert” group. The trained model used in this last testing phase used all junior and expert
data.

3.2. Movement Analysis and Skill Level Prediction

Results of model performance related to the cross-validation experiment (presented in Sec-
tion 3.1) are depicted in Table 1. Data processing, as described in previous sections, resulted
in 354 junior segments and 146 expert segments. Segment accuracies are listed per user
in the table, indicating how many of the user’s segments were classified as “Junior” or
“Expert”.

If the final prediction for a user’s skill class was made based on the relative frequency
of junior-type to expert-type movements, then the predictions would have been correct in
all cases except for that of expertl. However, employing a null hypothesis that the number
of junior/expert segments are equal (and there is no significance in the results), expertl’s
p-value of 0.1 would have in fact resulted in failure to reject when employing a standard
minimum threshold of 0.05. Thus it would not have been possible to (erroneously) predict
with confidence that expertl was a junior surgeon.

The results related to the model’s skill class predictive accuracy of senior residents are
displayed in Table 2. The hypothesis was that the data of the senior residents would be
classified as expert level. Here, three of the five senior residents were correctly classified as
“expert”. However, a closer inspection shows that in the two incorrect cases, it was again
not possible to reject the null hypothesis.
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Skill No. Segments | No. Segments | Accuracy | Prediction | p-value | Reject

Class Junior Expert Null?
juniorl 31 17 65% Junior 0.03 y
junior2 52 10 84% Junior < 0.001 y
junior3 167 7 68% Junior < 0.001 y
expertl 37 26 41% Junior 0.1 n
expert2 8 33 80% Expert < 0.001 y
expert3 10 32 76% Expert | < 0.001 y

Table 1: Accuracy of skill prediction on junior and expert surgeons

Overall, out of 11 total test cases, in eight cases it was possible to reject the null
hypothesis that there was no significance, with the surgeons’ true level of skill predicted
correctly in all eight of those cases.

Skill | Junior | Expert | Accuracy | Prediction | p-value | Reject Null?
seniorl 14 37 73% Expert | < 0.001 y
senior2 5 59 92% Expert < 0.001 y
senior3 25 19 43% Junior 0.23 n
senior4 10 36 78% Expert < 0.001 y
seniorb 17 15 47% Junior 0.43 n

Table 2: Accuracy of skill prediction on senior surgeons

3.3. Movement Speed Analysis

While conducting our analysis of expert level patterns and further examining the differ-
ences between them and those exhibited by the junior residents, a prominent trend in the
speed of movements with the CUSA, particularly in the z-axis (vertical movements), was
observed. Specifically, junior residents were found to be much more likely to exhibit a larger
percentage of both very slow and very fast vertical movements, while expert neurosurgeons
were much more likely to exhibit more consistent, medium-level movement speeds. Further
investigation confirmed these observations. Figure 3 depicts the percentage of movements
at various speeds exhibited by both junior residents and expert surgeons. From the left-
most chart, it is easily apparent that a significantly higher percentage of junior movements
are executed at a vertical speed less than 0.89 mm/s, where a higher percentage of expert
movements are executed at vertical speeds higher than 0.89 mm/s but less than 5.95 mm/s.
With percentages for both skill classes being close to zero for higher speeds, a second graph
(on right) is provided at a finer level of granularity. Here it can more easily observed that
the junior residents are reaching these high vertical speeds two to three (or more) times
more frequently than their expert counterparts. One can surmise here that the junior resi-
dents may exhibit more of an up/down stabbing motion when coming in contact with the
tumour.

10



PATTERN-BASED BEHAVIOURAL ANALYSIS ON NEUROSURGICAL SIMULATION DATA

e Junior =—s=—Expert sl Unior  s——Expert

14% 0.09%

*,
0.08%
12% ¥
0.07% A
10% + 0.06% \
s
8% 0.05% VAN
0.04% ¥\
6% 0.03% ‘\ AW
a% 0.02% \ W
0.01% = S =
2% 0.00% e S ety
% 2225 a8 B2 oAy YN E
P R R R =S - R e e
H
Speed (mm/s) Speed (mm/s)

Figure 3: Percentage of movements at various speeds exhibited by junior vs expert surgeons

4. Analysis Integration Within Cloud-Based Framework
4.1. Direct Skill-Proficiency Mapping Framework

One of the limitations of the generic performance scoring system for the NeuroTouch sim-
ulation scenarios is that it is based on average metric values and is therefore deficient in
indicating user proficiency. The overall score, while developed and corroborated by a con-
sortium of expert neurosurgeons, is computed based on scenario-specific goals and errors
and is presented in a much gamified method. The time-series simulation data, while avail-
able to the trainees, provides an overwhelming amount of data that proves to be of no
direct help to them. Moreover, there exists an overlap of skills and competencies between
the different simulation scenarios, but is not readily observable and exploitable based on
the current training module structure of evaluation and performance. Finally, NeuroTouch
does not provide recommendations based on user performance.

Therefore, in the context of the cloud-based personalized learning platform, a direct
skill-proficiency mapping framework was developed such that user performance could be
generalized and learning could be enhanced. As such, each NeuroTouch scenario related to
craniotomy-based procedures was decomposed into a set of basic skills, for example, clear
blood and aspirate tumour, which were compliant with targeted technical skills defined by
the general curriculum for neurosurgical resident training. Subsequently, each skill was
decomposed into a set of possible subskills, that define the quality, safety and efficiency
with which each skill was executed. The use of a small subset of generalized skills and
subskills permits the user to create links between their performance within each scenario,
all while creating well-defined global and common competency goals.

Six proficiency levels were defined to describe user performance relevant to each skill and
subskill, as can be seen in Table 3. For each craniotomy-based scenario, the skill and subskill
proficiency definition was computed based on the scenario parameters and the corresponding
grading scheme defined and corroborated by the expert neurosurgeon consortium.

4.2. The Rabaska Learning Platform

Personalized learning has recently been a leading trend in the education field. A remote per-
formance visualization and learing platform, Rabaska, that permits users (including trainees,

11
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Proficiency Level | Classification | Grade [%]
1 Insufficient 0-50
2 Mediocre 51 - 60
3 Satisfactory 61 - 80
4 Good 81-90
) Excellent 91 -95
6 Outstanding | 96 - 100

Table 3: Proficiency level definition

surgeons, researchers and others) to access and visualize their simulation results anywhere
and anytime, was developed. Rabaska features:

1. secured and generic data transfer from any registered NeuroTouch simulator device
to and storage within a centralized database

2. centered- and simulation-specific performance result visualization that mimics the
interface of the NeuroTouch simulator

3. performance evaluation based on the skill-proficiency framework presented in Sec-
tion 4.1

4. personalized recommendation provision based on proficiency level

Rabaska enables the enhancement of a training experience by not only applying the
proposed skill-proficiency framework, but also by providing personalized skill-oriented rec-
ommendations in order to improve performance. In addition, by storing all user simulation
result data in a centralized location, it can be readily used in analytics-based pedagogical
studies of performance. These studies allow for the extraction of performance indicators and
metrics and detailed behaviour-related observations in what concern fine motor skills and
instrument handling. Such insights could not only help a trainee achieve high levels of com-
petency in an efficient manner, but also provide benchmark competency measures required
for fulfillment of curriculum-defined technical skills requirements and board certification.
In addition, results from these studies can subsequently be translated into improvement
recommendations which promote personalized learning and further aid in the achievement
of competency prior to the execution of surgical interventions on patients.

4.3. Integration of SPM Model Within Rabaska

Rabaska was developed using a Service-Oriented Architecture (SOA), which permitted the
SPM model to be integrated seamlessly within the framework, all while functioning as
an independent service module. There is a bidirectional communication between it and
the SPM model via a pre-defined standard communication protocol. More specifically, for
registered Rabaska users, each simulation result of the Tumour Debulking 101 scenario
within NeuroTouch is sent to the SPM module upon upload to the centralized database
of Rabaska, where it is tested against the trained SPM model. The trained model is used
to classify common movements and instrument movement speed executed by the user as
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either junior- or expert-type and provides a corresponding proficiency level. This result is
subsequently communicated back to Rabaska and utilized explicitly in the recommender
component (entitled Rabaska Analysis) of the results. In particular, recommendations are
provided to the user on how to improve their instrument handling so as to better reproduce
movements excuted by expert neurosurgeons.

4.4. Performance Visualization in Rabaska

Figure 4 displays the performance visualization component of Rabaska. On the right-hand
side of the view, the integrated skill-proficiency framework and corresponding recommenda-
tion provision module can be observed (Rabaska Analysis). Recommendation provision is
presented in two categories, namely Recommendations and Observations which are detailed
below.

Rabaska Analysis 2

Scenario History

Overall Score: -98/100

Figure 4: Rabaska: remote performance visualization platform with the integrated recom-
mendation system.

The proposed sequential pattern analysis-driven recommendation system was integrated
into Rabaska Analysis, as outlined in Section 4.3. Results and recommendations relating
to movement speed, as described in Section 3.3, are presented under the Recommendations
portion of the analysis (which also displays the pre-defined skills and subskill structure out-
lined in Section 4.1), and are categorized as a new skill, designated as Instrument Handling.
Results pertaining to the common movements, as described in Section 3.2, are presented
under the Observations portion of the analysis.

Figure 5 displays a more detailed view of the output of the direct skill-proficiency-
recommendation module, with one particular skill, namely aspirate tumour, presented. This
figure highlights the user-centric design of the recommendation module of Rabaska. For
each skill related to the particular simulation scenario, the proficiency level is provided
along side the skill-specific recommendation resources (which can include, but not limited
to technique suggestions, reference textbooks, and other). In addition, by clicking on the
graph icon next to the recommendation resources, users can visualize their scenario-specific
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skill-related proficiency history, as displayed in the right-hand panel of Figure 5. For each
skill, performance details are provided (described in Section 4.1 as subskills). Similarly to
the global skill-proficiency-recommendation format, for each performance detail, a profi-
ciency level, corresponding recommendation resources and display of performance history
are provided.

Rabaska Analysis 2

Recommendations

skill: Clear blood

Skill: Aspirate tumor

Figure 5: Recommendations based on the direct analysis module within Rabaska.

Figure 6 displays the integration of the SPM module results, specifically related to in-
strument movement speed, within the recommendations portion of the Rabaska Analysis.
The same display format to the direct skill-proficiency-recommendation analysis was used
to ensure seamless usability by the users. As such, a global proficiency level was provided,
alongside improvement recommendations and an account of proficiency history. Perfor-
mance details are also provided. In addition, for this advanced analysis, the percentage of
movements designated as slow, medium and fast for both junior residents and expert neu-
rosurgeons are presented side-by-side with those of the user for the particular simulation
scenario for easy comparison. This constitutes the results extracted from the trained SPM
model. By clicking the graph icon for each of the movement speeds, the user can obtain
further information regarding the frequency of specific movement speeds in that category,
in comparison to both junior and expert users (as shown in the right-hand panel of Figure
6).

Figure 7 displays the integration of the SPM model results, specifically related to the
user’s common movements, within the observations portion of the Rabaska Analysis. The
results provide the probability of the user to execute a particular move that is seen (1)
predominantly with junior residents and (2) predominantly with expert surgeons. The
corresponding probabilities of a junior resident and expert neurosurgeons to execute the
same two movements, as extracted from the trained SPM model, is also provided. For each
of the common movements described, users can visualize, by clicking on the graph icon, the
type of movement, in the corresponding plane, for which the results are provided. For these
results, no explicit recommendations are provided, thus justifying their designation as an
observation.
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Rabaska Analysis ?

Recommendations

skill: Clear blood

Skill: Aspirate tumour

Skill: Instrument Handling

s (movements in the 0.033 - 0.256 mm per 25 ms range).

Performance Detalls

[ Slow Movements | _ edum Hovements | _Fast Movements

55.72% 4024% 4.04%

Expert] 45.07% 5206% 285%

Sttokes show saisfactory skil. Am for smoother strokes ‘ ‘
)
)
)
)
)

Yours  45.16% 52.65% 219%

Observations

Figure 6: Recommendations on instrument handling based on the SPM module within
Rabaska.

Rabaska Analysis 2

Soor w750 o)
et 775 wove |
J

[ vous 2119 o7.57%

expert surgeors. A resul
90% that you execute t 0 any rval
of approximately 5 seconds with the CUSA In contact with the tumour.

Figure 7: Common movements feedback to user within the Observation component driven
by the SPM module.

5. Discussion and Future Work

As previously discussed, the results of the proposed SPM model (Section 3.2) and con-
sequently those presented in Section 4.4 are in preliminary stages. However it would be
worthy to highlight the potential implications that they can bring to the existing training
process. The SPM model, with its consequent integration within Rabaska, supports the
widely recommended positive encouragement method to learning.

One specific example that demonstrates this notion is through the test trial with a be-
ginner user of NeuroTouch and Rabaska who had no previous simulation experience. Early
in the user’s training, an overall low score of -9.8/100 was achieved for the Tumour De-
bulking 101 scenario. However, further investigation into the performance details, provided
by the SPM model, revealed that the (junior) user exhibited similar instrument handling
behaviour to that of an expert neurosurgeon. After continued practice, the user succeeded
in increasing the overall performance score to 60.9/100, which was a significant improve-
ment. However, when consulting the results of the SPM model, the hand movement of the
user diverged from what is considered to be a typically expert maneuver. This example
demonstrates the potential importance of executing low-level, behaviour-based analysis of
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users’ instrumentation and technique and emphasizes the fact that high-level metrics, and
corresponding benchmark values that are proposed under the context of expert information
may not be sufficient to assess proficiency.

The fact that no expert information on neurosurgical skill is utilized by the Al engine is a
key factor differentiating this work from similar studies. The analysis is entirely uninformed
on any sort of baseline behaviour that would be considered representative of skilled or
unskilled technique, and relies solely on patterns found in the data to build a model that
represents a particular skill class. An obvious caveat to this approach is the reliance on the
test subjects to generate representative activity. Thus, frequent behaviours exhibited by
experts are considered to be expert behaviours, and so on. However, a critical advantage
of the current approach is that there is no need to rely on experts to manually generate
or verify behaviours, and thus a much wider variety of behaviours can be identified. To
verify the validity of these behaviour patterns truly being indicative of a class of subjects,
classification models are built using these patterns, and cross-validation is used to explore
whether subjects can be correctly classified using the common behaviours identified.

It is important to note that the interpretation of the results and the corresponding
potential impact of the current work are presented with caution and in the context of the
limitations. More specifically, the dataset utilized for the SPM model was obtained on a
volunteer basis during a large-scale conference. In addition, study participants were asked to
self-identify in the context of their skill class. Although several steps were executed in order
to pre-process and filter the dataset, the mediocre quality of the dataset is acknowledged. In
the context of an Al-driven analysis, the size of the dataset also proves to be preliminary but
the presented work was considered as an exploratory pilot study. A large-scale, protocol-
driven study would be required, constituting a logical progression of the work, in order to
validate the presented results.

While identifying behavioural patterns that are indicative of skill can offer very useful
information when incorporated as part of an overall learning and recommendation system,
one particular avenue for future work is to facilitate the ability to make the output of the
results more personalized and interactive. Rather than statically presenting a number of
common movements to the learner that were deemed skillful /unskillful, it would be far more
ideal for the learner to be able to investigate certain movements captured in a particular
context, and then be able to ascertain what was done well or poorly at that point.

Another opportunity for future work centers on the ability to allow for a subject matter
expert or instructor to refine the models constructed by the Al engine. For example, consider
a movement that was deemed a junior movement by the AI engine that is in fact a new
technique that is being taught only recently, and is thus a very skilled and effective method.
The ability to allow feedback from the subject matter expert and facilitate automatic model
updates accordingly would even further improve the effectiveness of this sort of analysis as
a valuable instructional tool.

One should note also that this type of analysis is not limited to surgical simulators.
Simulators from many other domains that are used for training and can capture movements
and positional data, such as flight simulators, search and rescue simulators, or even many
types of intelligent tutors, could potentially significantly benefit from this sort of low-level
behavioural analysis, thus enhancing the learning-teaching dynamic across a wide array of
teaching and learning domains.
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6. Conclusions

This paper presented the results of an analytics-based study to determine key differences in
junior- and expert-level surgical technique when engaging with the neurosurgical simulator
NeuroTouch. Frequent pattern-based techniques were used in the study to identify key
movement sequences that differentiated surgical skill, and skill classification models were
constructed accordingly based on these identified behaviours. The paper makes two key
contributions to the field of machine learning in the medical field: 1) rather than build
models of skill or behaviour based on high-level summary metrics such as blood loss and
average force, a low-level, behaviour-based analysis of surgeons’ instrumentation and tech-
nique is employed, where frequent patterns in the sequence of movements and changes in
positioning are instead identified, and 2) an entirely uninformed analysis that relies solely
on patterns found in the data rather than baseline behaviour that would be considered rep-
resentative of skilled or unskilled technique is conducted such that no expert information
on neurosurgical skill is utilized by the Al engine.
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