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Abstract

Electronic Health Records (EHRs) contain an overwhelming amount of information
about each patient, making it difficult for clinicians to quickly find the most salient infor-
mation. Accurate, concise summarization of relevant data can help alleviate this cognitive
burden. In practice, clinical narrative notes serve this purpose during the course of care,
but they are only intermittently updated and are sometimes missing information.

We address this problem by learning to generate topics that should be in summaries
of structured health record data at any point during a stay. We use the detailed, high-
dimensional structured data to predict existing clinical note topics. Our model can generate
topics based on structured health record data, even when a real note does not exist. We
demonstrate that using structured data alone, we are able to generate note topics compara-
ble to the performance of using prior notes alone. Our method is also capable of generating
the first note in the stay.

We demonstrate that our predicted topic distributions are meaningful using the down-
stream task of predicting in-hospital mortality. We show that our generated note topic
vectors perform comparably or even outperform topics from the actual notes on predicting
in-hospital mortality.

1. Introduction

Electronic Health Records (EHRs) contain an overwhelming amount of information about
each patient, making it difficult for clinicians to quickly find the most salient information
at various points during an admission. Information overload can also result in health care
providers missing important information during the course of care (Singh et al., 2013).
Accurate, concise summarization of relevant data can help alleviate this cognitive burden.

Clinical narrative notes serve this purpose during the course of care. They help clinicians
summarize and identify the most relevant aspects of the deluge of available data about each
patient, and facilitate communication among care teams (Kuhn et al., 2015). However, since
clinical notes are written at infrequent intervals, information from the most recent note can
quickly become outdated. This is particularly true in critical care settings, where patient
state can suddenly change and interventions are frequently administered. Missing informa-
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tion during communication between care team members can lead to adverse events (Arora
et al., 2005). Methods for assisting care team members in writing summaries of patient
state and the course of care could help address potential errors of omission.

In this paper, we propose a system that generates relevant patient- and time-specific
topics from structured health record data. We use a supervised modeling approach to learn
correspondences between detailed, high-dimensional structured data and existing clinical
notes. We model each note as a distribution over topics using latent Dirichlet allocation
(LDA) (Blei et al., 2003). These topics have been shown to capture relevant patient sub-
types, and are predictive of adverse outcomes such as mortality (Ghassemi et al., 2014)
and interventions (Suresh et al., 2017). We then use our model to generate topic-based
summaries of structured health record data.

The contributions of this work are:

1. We present a supervised framework to learn correspondences between high-dimensional
structured EHR data elements and low-dimensional topic representations of clinical
notes over the course of a patient stay. This model can be used to summarize patient
care and physiology – even when a note was never written.

2. We evaluate the generated topic distributions. We show that the generated topic
distributions reflect changes in patient state earlier than recorded clinical notes, and
reflect meaningful correspondences between topics and relevant structured items.

3. We show that using structured data alone to predict the next note performs similarly
to using all prior notes when they exist. In addition, structured data can accurately
predict the first note in a patient stay, when a model using only the notes data has
no information. We show that combining structured data and notes can improve
predictions over either one alone when prior notes exist.

4. We evaluate topics generated from the structured data alone by evaluating perfor-
mance on a downstream prediction task: in-hospital mortality. We demonstrate that
a model built using only our predicted notes leads to comparable performance to using
a model built from the actual notes.

Technical Significance: To our knowledge, our work is the first that proposes to use
high-dimensional structured EHR data to generate topics that may be missing in clinical
notes. We propose a novel supervised method, using existing clinical notes as labels to learn
meaningful correspondences between summaries written by clinicians and structured health
record data.

Clinical Relevance: Clinical notes are used at the point of care to summarize patient
state; however, they are intermittently updated, and are sometimes missing information.
Our model can be used to generate topics from structured health record data that should
be in a patient’s clinical note. These topics can be used as a checklist for clinicians while
they are writing the note.

We first discuss related work in Section 2. Next, we describe the data in Section 3 and
our data processing methods in Section 4. We describe our methods in Section 5, and our
experimental results in Section 6. Finally, we summarize our findings in Section 7.
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2. Related Work

2.1. Summarizing Health Record Data

A great deal of work has investigated how to summarize structured health record data in a
more accessible manner. Some works have used visualization interfaces (Monroe et al., 2013;
Plaisant et al., 1996; Hirsch et al., 2014). Others have used natural language to generate
descriptions of structured time-series (Goldstein and Shahar, 2016; Portet et al., 2009;
Hunter et al., 2008). Pivovarov and Elhadad (2015) contains a comprehensive summary
of techniques for summarizing health record data. In contrast to these works, our goal is
to automatically learn correspondences between structured data and existing summaries
written during the course of care.

2.2. Clinical Note Time-Series

Our work leverages cross-modal data relationships to predict notes at times when they are
not usually written. Ghassemi et al. (2015) handles the problem of missing notes by learning
a multi-task Gaussian Process (MTGP) over the time-series of clinical notes. The authors do
not evaluate the ability of the MTGP to forecast notes. They instead demonstrate the utility
of the MTGP parameters for downstream prediction tasks (e.g., in-hospital mortality). In
contrast, we are interested in the task of forecasting topic membership of missing clinical
notes, to generate summaries of care even when they are not present.

Jo et al. (2015) models evolving patient state from nursing notes using a model that
integrates a hidden Markov model (HMM) and latent Dirichlet allocation (LDA). This
model captures changing patient dynamics (and therefore changing topic memberships)
over time, but does not consider the additional value of structured health record data for
generating clinical note topics.

2.3. Integrating Clinical Data Modalities

In this work, we consider physiological time-series, clinical events, and clinical notes. Each
modality of data has been shown to be successful in predicting clinical outcomes such
as mortality (e.g., Che et al. (2018); Gong et al. (2017); Ghassemi et al. (2014)) and
intervention administration (Ghassemi et al., 2017; Wu et al., 2017). In addition, multi-
modal EHR data have been integrated, primarily for the tasks of 1) patient phenotyping
(e.g., Ho et al. (2014); Pivovarov et al. (2015); Henao et al. (2016)), and 2) clinical outcome
prediction (e.g., Suresh et al. (2017); Huddar et al. (2016); Caballero Barajas and Akella
(2015)). While we demonstrate the utility of our learned correspondences in downstream
predictive tasks, we are primarily focused on the task of learning a correspondence between
the structured data time-series and a note summarizing patient status and the care process.

3. Data

We use data from MIMIC-III (v 1.4), a publicly available dataset consisting of data collected
in the intensive care units (ICUs) at the Beth Israel Deaconess Medical Center over the years
2001 - 2012 (Johnson et al., 2016). MIMIC-III contains data from two EHR systems: 1)
CareVue (2001-2008) and 2) MetaVision (2008-2012). Because the encodings of clinical
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events differed significantly between the two EHR systems in MIMIC-III, we considered
only data from the latter version (MetaVision, 2008-2012).

In the following sections, we describe our cohort selection criteria, and each of the three
modalities of clinical data we considered: 1) clinical event sequences, 2) physiological time-
series, and 3) clinical notes.

3.1. Cohort Selection

We considered patients ≥ 15 years of age. We used each patient’s first ICU stay, to avoid
multiple admissions from the same patient. Patients who died, were discharged, or had
a note of “comfort-measures only” within 12 hours of ICU admission were removed from
the study. Patients missing any of the three modalities of data were also removed, reduc-
ing our patient population from roughly 15, 000 patients to 6,360 patients. This reduction
was primarily a result of patients without regular physician and nursing notes. The differ-
ences between patients with and without notes are detailed in Appendix A. Patients with
missing notes are not noticeably different from patients with notes in length of stay in the
ICU, presence in different care units, or admission status. However, mortality rate was
elevated in patients with missing notes. We divided the remaining patients into a 60/20/20
training/validation/test split. These divisions are described in Table 1.

3.2. Data Modalities

Events: Time-stamped clinical events were extracted for each patient. These included pro-
cedures, lab tests and results, input/output events (e.g., medications, fluids), microbiology
tests, observations noted in the chart, and service changes. Unique (item, text) pairs were
considered as distinct events, as in Gong et al. (2017).

Physiological Time-Series: We extracted for each patient 31 vital signs and lab values
from the database, as in Ghassemi et al. (2017); Suresh et al. (2017); Wu et al. (2017).
These features included diastolic, systolic, and mean blood pressure, heart rate, respiratory
rate, temperature, height, weight, white blood cell count, pH, albumin, anion gap, bicarbon-
ate, bilirubin, blood urea nitrogen, chloride, creatinine, fraction inspired oxygen, glucose,
hematocrit, hemoglobin, INR, lactate, magnesium, oxygen saturation, partial thromboplas-
tin time, phosphate, platelets, potassium, prothrombin time, and sodium. These signals
differ in the frequency and regularity at which they are sampled; e.g., whereas vital signs
are sampled regularly in the ICU, lab tests are ordered intermittently.

Clinical Notes: We extracted time-stamped physician, nursing, and general notes for
each patient. These note categories summarize care provided during the ICU stay. We
excluded other categories of notes, such as radiology reports, echo reports, and ECG re-
ports. Discharge summaries were excluded because they summarize the stay after it is over.
Figure 1 shows the number of admissions with notes at each hour of the ICU stay, aligned
on midnight of the day of ICU admission.
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Table 1: Cohort and training/validation/test data split descriptions.

Train Validation Test

Number of Patients 3816 1272 1272
Number of Notes 111,938 34,553 38,747
In-Hospital Mortality 7.0% 7.5% 7.2%
Mean (std) LOS in ICU (days) 2.5 (1.9) 2.4 (1.8) 2.5 (2.0)

Figure 1: Timing of physician notes peaks at 6 a.m. in the morning. Timing of nursing
notes is more irregular than physician notes, but exhibits regular inter-event intervals of
approximately 6 hours.

4. Data Processing

All data were aligned to midnight on the day of ICU admission, to preserve time-of-day
characteristics, and discretized to the hour. All admissions were padded or truncated to
96 hours from midnight of the first day of ICU admission. The following sections describe
processing details for each data modality.

4.1. Events

We discretized the times of events to the hour, from midnight on the day of ICU admission.
Events that occurred in the same hour were represented with a binary bag-of-events (BOE)
vector, indicating whether or not each event occurred in that hour. We considered two
types of events: 1) point events, that occurred at a single point in time, and 2) duration
events, which were specified with a start and stop time. Events that spanned a duration of
time were 1 between the start and stop times, and 0 otherwise. Point events were 1 if the
event was present during the hour and 0 otherwise. The events tensor was then constructed
by building this BOE vector over time. Events that occurred in fewer than three unique
admissions in the training data were filtered out. In total, we considered 6,556 kinds of
events.

4.2. Physiological Time-Series

Continuous-valued vital signs and lab test measurements were binned to the hour by taking
the median of the values in each hour. The hourly values were then discretized by taking
the z-score, rounding to the nearest integer, and mapping outliers (|z| > 4) to -4 and 4,
following the procedure used in Suresh et al. (2017) and Wu et al. (2017). The means
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Table 2: Top 5 and bottom 5 topics by enrichment for in-hospital mortality.

Topic High Enrichment for In-Hospital Mortality

14 family, care, dnr, support, daughter, dni, son, comfort, morphine, social
37 hypotension, line, shock, sepsis, levophed, cvp, fluid, bp, pressors, map
16 liver, cirrhosis, lactulose, transplant, encephalopathy, ascites, hepatic, varices, sbp, albumin
25 spontaneous, rr, min, set, vt, tube, ventilator, peep, mode, ve
36 intubated, sedation, vent, propofol, abg, extubation, sedated, fentanyl, wean, respiratory

Topic Low Enrichment for In-Hospital Mortality

15 etoh, abuse, ciwa, withdrawal, alcohol, pancreatitis, valium, scale, thiamine, seizures
43 pain, control, chronic, acute, continue, prn, dilaudid, morphine, po, iv
42 valuables, transferred, rate, pmh, weight, heart, bp, total, sent, money
13 present, pulse, min, extremities, mmhg, current, regular, rhythm, insulin, chest
38 cabg, artery, wires, coronary, bypass, temporary, graft, svg, avr, valve

and standard deviations of all of the features were determined across all admissions in the
training and validation data. These features were then binarized. An additional bin was
added for each variable to indicate a missing value.

4.3. Clinical Notes

We filtered out a set of pre-defined clinical stop words (e.g., patient, report, pt, admission,
discharge, etc.), as well as tokens that occurred in fewer than 3 documents or more than
95% of documents. Additionally, punctuation and numerical values were filtered out. We
used latent Dirichlet allocation (Blei et al., 2003) to reduce the dimensionality of the clinical
notes from a > 47K vocabulary to a distribution over 50 topics. Topic models were trained
using gensim (Řeh̊uřek and Sojka, 2010). For each patient, the topic distribution at each
hour was computed by taking the average of the topic distributions for all notes in that
hour.

Table 2 describes the top five and bottom five topics by enrichment for in-hospital
mortality. Enrichment was computed using the training data by taking the average topic
probability for each topic across all notes, weighted by the outcome of the patient the note
was written about, as in Marlin et al. (2012). The full set of topics is described in Appendix
B.

5. Methods

5.1. Learning Correspondences

To learn correspondences between the structured clinical data and the clinical notes, we use
a supervised deep learning approach that leverages the temporal nature of the structured
data and the clinical notes.

5.1.1. Network Architecture

The struct2note model uses all structured data up to and including the hour of the note
of interest to predict topics for a clinical note. We compare against two other models that
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Figure 2: Model architecture for structured data (struct2note). The network is shown
unrolled over time. Sparse, high-dimensional time-series of structured data are first passed
through a fully-connected layer shared over time to get a dense embedding. The time-series
are then encoded using an LSTM. The topic distribution for the note at each time step is
predicted with a fully-connected layer (shared over time) with a softmax activation. During
training, the loss was computed on hours when notes were present.

use prior notes: 1) notes2note uses all prior notes to make a prediction, and 2) struct-
notes2note uses prior notes and structured data. Figure 2 diagrams our model architecture
for struct2note.

In struct2note, a temporally shared fully-connected embedding layer with a rectified
linear activation function maps the structured data at each time step from a sparse, high-
dimensional feature space to a low-dimensional dense embedding space. This captures rela-
tionships between co-occurring events at each time-step. We use a long short-term memory
(LSTM) network to capture the temporal patterns in the structured data (Hochreiter and
Schmidhuber, 1997). LSTMs have been shown to encode temporal patterns that are effec-
tive in predicting interventions and identifying patient diagnoses (Suresh et al., 2017; Lipton
et al., 2016). Finally, a temporally shared fully-connected layer with a softmax activation
outputs predicted probabilities for the 50 topics at each time step. notes2note uses a similar
architecture, but because the topics are already a dense embedding space, we do not need
an embedding layer. struct-notes2note combines both data modalities by concatenating the
topic distribution tensor with the embedded structured data tensor as the input through
the LSTM.

While we choose to use LSTMs in this work, LSTMs, and neural networks more generally,
are not the only method for learning such supervised correspondences. We use these models
to demonstrate the feasibility of learning meaningful correspondences between structured
health record data and clinical note topics in a supervised framework.
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5.1.2. Loss Function and Evaluation Metric

To compare predicted topic distributions with the true topic distributions, we use cosine
similarity. Cosine similarity is the normalized dot product between two vectors:

C(u,v) =
u · v
‖u‖‖v‖

. (1)

This measure takes a maximum value of 1 when u and v are parallel, a value of 0 when
u and v are orthogonal, and a minimum value of -1 when u and v are anti-parallel. In our
application, the minimum value the cosine similarity measure can take is 0, because we are
comparing two probability distributions (all elements are non-negative). Cosine similarity
is an appropriate loss function because it evaluates how close u and v are in directionality,
rather than in magnitude. Because our topic distributions always sum to 1, magnitude
is not important in assessing the differences between the topic distribution of the actual
note and the predicted topic distribution. Cosine similarity has been used in prior work
to evaluate differences between dense embeddings of words (Mikolov et al., 2013). We use
cosine similarity both as the loss function during training, and as an evaluation metric to
determine how close our predicted topic distributions are to the true ones.

Clinical notes are not present at every time step. The cosine similarity loss is only
considered at time-steps when notes are present. When prior clinical notes are used as
input to the notes2note and struct-notes2note models, notes are forward-filled with the
most recent note up until the latest of time of death, discharge, or the final note. Time-
steps where input data are not present (e.g., prior to ICU admission on the first day) are
masked out.

5.1.3. Training and Implementation

We implemented our models using Keras 2.1.3 with Tensorflow backend (1.5.0) (Chollet
et al., 2015). The size of the first temporally shared fully-connected layer for embedding
the structured data was set to 30 units, and a grid search from 8 to 256 in multiples of 2
was performed to choose the LSTM hidden layer size. All models were chosen based on the
validation loss. The sizes of the LSTM hidden layers for the final models are detailed in
Appendix C.

5.2. In-Hospital Mortality Prediction

To demonstrate that our predicted note topics capture meaningful aspects of patient care
and state, we predict in-hospital mortality using models trained on 1) existing clinical notes,
and 2) the predicted clinical notes. In-hospital mortality is often used as a proxy for patient
severity of illness. We use the network architectures from Section 5.1, replacing the topics-
over-time output tensor with a binary tensor indicating the outcome for that patient at
that time.

We predict whether or not in-hospital mortality occurs at least 24 hours after the hour
the prediction is made. We define the outcome using the earliest of the patient’s time of
death or a note of “comfort-measures only” (CMO). When a patient is declared CMO,
few (if any) interventions are made, and the prediction is no longer relevant to the course
of care. At each hour, a prediction is made for each patient. Predictions for patients
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who are discharged or die prior to the hour of prediction or within the 24 gap period are
excluded from the loss at that time step. Models trained for in-hospital mortality were
further restricted compared to the training, validation, and test sets described in Table 1.
Specifically, patients who died, were discharged, or had a note of CMO in the first 24 hours
of the ICU stay were filtered out from model training and evaluation.

6. Results

6.1. Predicting the Next Note

To evaluate our model’s ability to predict topic vectors for existing clinical notes, we com-
pared against two baselines: 1) prior note topic membership, where we used the most recent
note topic membership to predict that of the current note, and 2) average note topic mem-
bership, where we used the average note topic membership from the training data to predict
the topic membership of each note in the test data.

Table 3 shows the aggregate prediction results of each model on the notes in the test
data. Performance is broken down by notes with prior notes (n = 9290), and notes without
prior notes (n = 1272). We evaluated statistical significance of the difference between
the average performance of each model across all notes for each patient. We evaluated
differences in model performance at the patient level, rather than at the note level, because
notes belonging to the same patient are not independent. We used a paired t-test with a
significance level of 0.001.

Using all prior notes (notes2note) and using structured data (struct2note) performed
comparably well in predicting the next note (mean cosine similarity of 0.63, p = 0.006).
On the task of predicting the first note in a stay, notes2note performed comparably to
taking the average note from the training data (cosine similarity of 0.41 vs. 0.42). This
makes sense, as the notes2note model had no additional information to take advantage of.
However, the struct2note model was able to predict the first note in the stay with a cosine
similarity of 0.61, significantly outperforming the notes2note model (p < 1e− 200).

In addition, integrating the structured data and prior notes to predict the next note
outperformed using either modality on its own (mean cosine similarity of 0.66 vs. 0.63,
p < 1e−46). When no prior note existed (and therefore struct-notes2note had no additional

Table 3: Cosine similarity performance of different models on the test set. Mean, standard
deviation, and quartiles of performance are shown, broken down by notes where a prior
note existed, and notes where no prior note existed.

Notes with prior notes (9290) Notes without prior notes (1272)
Quartiles Quartiles

Mean (std) 25% 50% 75% Mean (std) 25% 50% 75%

notes2note 0.63 (0.19) 0.50 0.65 0.78 0.41 (0.09) 0.35 0.42 0.48
struct2note 0.63 (0.21) 0.49 0.66 0.80 0.61 (0.17) 0.49 0.62 0.74
struct-notes2note 0.66 (0.21) 0.53 0.69 0.82 0.61 (0.17) 0.49 0.62 0.73

Prior note 0.39 (0.29) 0.15 0.31 0.62 – – – –
Average note 0.40 (0.09) 0.34 0.41 0.46 0.42 (0.09) 0.36 0.42 0.48
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Figure 3: struct2note andnotes2note cosine similarity performance on predicting topics of
clinical notes are shown in (a) (0 to 48 hours) and (c) (48 to 96 hours). Number of patients
with a note at each hour is shown in (b) (0 to 48 hrs) and (d) (48 to 96 hrs).

information compared to struct2note), the average cosine similarities across notes were
similar between the two models (0.61).

Because notes have differing availability over time, we investigated the performance of
these models on notes at different hours during the ICU stay. The differences in performance
between struct2note and notes2note are shown in Figure 3(a) and (c). The number of
patients with a note at each hour is shown in Figure 3(b) and (d).

In the early hours of the ICU stay (0 to 30), the structured data outperforms using
the notes. Since there are very few notes available at this time, it is challenging for the
notes2note model to make meaningful predictions. This performance improvement drops
off around hour 30, or 6 a.m. on the second day of the patient’s stay in the ICU. Recall
from Figure 1 that physician notes are recorded regularly around 6 a.m. each day. At
these times, the availability of notes grows, and predictive accuracy of the note prediction
models increase. The improvement of using structured data rather than prior notes becomes
marginal at later hours of the stay (48-96), when more notes are available.

6.2. Outcome Prediction

We evaluated the note predictions generated from the structured data alone (struct2note)
by training supervised networks using 1) actual notes and 2) predicted notes for predicting
in-hospital mortality.
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Figure 4: AUC using different data modalities to predict in-hospital mortality in the final
hour of each day in the ICU (23, 47, 71, 95 hours). Error bars indicate standard deviations
computed across 100 bootstrapped samples.

We evaluated performance in terms of the Area Under the Receiver Operating Charac-
teristic Curve (AUC). We evaluated statistical significance by evaluating model performance
on 100 bootstrapped sets for each model. A paired t-test was performed between the boot-
strapped AUCs for a pair of models, at a significance level of 0.001. Bootstrapped samples
were constructed so that the outcomes were represented in the same incidence as in the
original test set. We also trained models using 1) static demographic characteristics such
as age, gender, admission type, and first care unit and 2) structured data (events and
physiological time-series) as performance baselines. Models utilizing the static data used a
fully-connected layer (since the static data do not change over time). All other models used
similar model architectures to those described earlier.

The results are shown in Figure 4. We show performance results at the last hour of
each day (11 p.m.), when information from the course of the day can be taken into account.
Our predicted note topic distributions performed comparably to the actual notes at hours
47 and 95 (p = 0.78 at hour 47 and p = 0.46 at hour 95). At hour 71, the difference in
performance between the predicted note topics (AUC = 0.81) and the actual note topics
(AUC = 0.83) was statistically significant (p < 1e − 5), but not large. In addition, the
predicted note topics significantly outperformed the actual ones at hour 23 (p < 1e− 50).

These performance results indicate that our method of learning correspondences between
structured health record data and topic distributions of existing clinical notes allowed us
to generate meaningful topics that capture changes in patient state. Importantly, although
the predicted note topic distributions do not incorporate any of the existing notes, they
achieve predictive performance comparable to the topics of the actual notes in downstream
prediction tasks.

6.2.1. Visualizing Correspondences

To qualitatively evaluate the learned correspondences,we identified individuals with high
presence of certain topics and visualized structured data elements with meaningful relation-
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Figure 5: Correspondences between topic distributions of ground truth notes (top), pre-
dicted topic distributions (middle), and structured health record data (bottom) for a single
admission. Topic membership values are shown as negative when no note was present. Top-
ics corresponding to intubation and respiratory status (25 and 36) are shown, along with
structured data elements pertaining to respiratory status and ventilation.

ships to those topics. Figure 5 shows the original topic distributions over time for topics
corresponding to intubation or respiratory status (topics 25 and 36). This 88 year-old pa-
tient was admitted to the ICU shortly after 11 p.m. (hour 23). Her admission status was
“emergency.” She died in the hospital, 8 days after admission.

This patient was intubated shortly after ICU admission, at around 4 a.m. (hour 28).
Whereas the original note only indicates a rise in corresponding topic membership around
hour 31, our predicted note topics show an immediate rise in topic 36. This indicates that
our predicted note topics are able to capture changes in patient state before the actual
notes are recorded. This occurs again at hour 81, when the patient is extubated and then
intubated again shortly after. While the predicted topics show an immediate rise in Topic
36, the note was not written until 8 hours later, at hour 89.

This example demonstrates that our method enables learning meaningful correspon-
dences between the high dimensional structured EHR data and clinical summaries written
during the course of care. In addition, we note that while our predicted topics did not
always accurately represent the true topic distributions of notes (e.g., at hour 56), they still
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reflect meaningful correspondences with the structured data. This suggests that even if
cosine similarity between the predicted note and the true note is low, our predictions might
offer useful suggestions regarding topics that might be missing from the recorded notes.

7. Discussion

In this work, we proposed a method to learn to generate meaningful topic summaries from
structured patient health record data. We used existing summaries written by clinical care
team members to learn correspondences between structured health record data and the
topics underlying clinical notes. We demonstrated that using structured data alone, we
are able to generate note topics with an average cosine similarity to actual notes of 0.63,
comparable to the performance of using prior notes alone. Integrating structured data with
prior notes results in an average cosine similarity of 0.66. Using the structured data, we are
also able to generate the topics of the first note in the stay with an average cosine similarity
of 0.61.

We also demonstrated that our generated topics are able to predict clinical outcomes
such as in-hospital mortality with comparable performance to topic distributions of actual
notes written by care team members. We additionally presented a qualitative example of
correspondences between structured data elements and changes in topic distribution.

Inherent to our approach is an assumption that clinical notes are good summaries. We
believe this is usually a reasonable assumption because notes are used at the point of
care for this purpose. However, clinical notes, particularly in electronic systems, have been
shown to often contain redundancies, incorporate outdated information, and omit important
information.

There are several directions for future work. First, while our goal in this work was
to demonstrate the utility of learning associations between structured health record data
and clinical notes in a supervised learning framework, other modeling approaches should be
explored. In addition, we considered clinical events and physiological time-series together
as “structured data.” Future work could investigate other methods for combining the two
modalities of data and the relative utility of each in generating meaningful summaries.

Generating topic distributions of clinical notes could be useful in proposing potentially
missing topics to care team members while they are writing a note. In addition, our ap-
proach is a first step towards a learning-based framework for generating clinical text that
summarizes structured health record data. Future work could include generating candidate
phrases corresponding to patient history. While our analysis is limited to the intensive care
setting and to the structure and notes in MIMIC, our approach could similarly be used to
generate topics summarizing longitudinal health record data in outpatient settings.
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Appendix A.

Table A1: Differences in length of stay, care units, admission type, and adverse outcome
incidence between patients with and without physician, nursing, and general notes.

Notes Missing Notes Present

Number of patients 9171 6360
Mean LOS in ICU (days) 2.6 2.5
In-Hospital Mortality (%) 8.8 7.2
Intubation (%) 39.5 36.5
CCU (%) 12.4 13.0
CSRU (%) 17.1 16.7
MICU (%) 38.7 38.6
SICU (%) 18.8 18.1
TSICU (%) 13.0 13.7
Elective admission (%) 16.7 15.4
Emergency admission (%) 82.3 83.1
Urgent admission (%) 1.0 1.5
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Appendix B.

Table B1: Top 10 tokens describing each topic.

Topic Tokens

0 post, surgery, op, epidural, bladder, repair, iabp, stent, urology, pain
1 pleural, effusion, chest, tube, ct, effusions, fluid, drain, cxr, placement
2 fluid, na, stool, acidosis, diarrhea, diff, sodium, free, hyponatremia, cont
3 cancer, mass, ca, metastatic, lung, malignant, tumor, neoplasm, chemo, cell
4 skin, left, right, site, wound, groin, area, leg, impaired, intact
5 pain, abdominal, nausea, ct, vomiting, abd, ercp, zofran, iv, abdomen
6 lithium, morbid, myasthenia, suprapubic, mtx, girlfriend, atropine, cystitis, aureus, shocks
7 respiratory, pneumonia, pna, copd, aspiration, cxr, distress, bipap, sputum, nebs
8 code, continue, total, balance, rhythm, review, systems, labs, comments, prophylaxis
9 mental, status, altered, airway, delirium, cont, aspiration, agitation, agitated, risk
10 heparin, pe, ptt, started, dvt, gtt, pulmonary, transferred, cta, filter
11 impaired, problem, description, skin, enter, abscess, comments, integrity, tooth, clindamycin
12 right, left, ct, fractures, hematoma, injury, lobe, chest, posterior, thoracic
13 present, pulse, min, extremities, mmhg, current, regular, rhythm, insulin, chest
14 family, care, dnr, support, daughter, dni, son, comfort, morphine, social
15 etoh, abuse, ciwa, withdrawal, alcohol, pancreatitis, valium, scale, thiamine, seizures
16 liver, cirrhosis, lactulose, transplant, encephalopathy, ascites, hepatic, varices, sbp, albumin
17 seizure, sdh, dilantin, subdural, activity, neuro, seizures, brain, head, keppra
18 hct, bleeding, blood, stable, prbc, monitor, bleed, inr, cont, transfusion
19 afib, atrial, fibrillation, coumadin, rate, af, fib, po, metoprolol, amiodarone
20 gi, bleed, hct, bleeding, gib, egd, stable, gastrointestinal, protonix, upper
21 lasix, chf, diuresis, edema, failure, iv, heart, chronic, acute, goal
22 cath, cardiac, cad, heparin, chest, asa, nstemi, plavix, pain, disease
23 fever, temp, cont, wbc, cultures, sent, abx, cx, vanco, culture
24 neuro, commands, exam, extremities, eyes, pupils, checks, continue, noted, monitor
25 spontaneous, rr, min, set, vt, tube, ventilator, peep, mode, ve
26 arrest, cardiac, vt, icd, av, ccu, bradycardia, ep, rhythm, pacer
27 fx, fracture, fall, trauma, rib, collar, multiple, neck, injuries, pain
28 insulin, dm, diabetes, type, blood, gtt, scale, sliding, fs, bs
29 iv, order, total, extremities, rhythm, current, po, prn, fluid, balance
30 bed, oriented, oob, able, swallow, po, speech, chair, today, alert
31 present, normal, sounds, left, right, cardiovascular, respiratory, nose, pulse, absent
32 left, ct, head, hemorrhage, right, neuro, sbp, sah, stroke, sided
33 gtt, monitor, sbp, iv, bp, continue, remains, stable, noted, shift
34 neo, map, hypothermia, wean, pad, bair, hugger, temp, bypass, sfa
35 note, time, agree, section, protected, resident, present, saw, examined, services
36 intubated, sedation, vent, propofol, abg, extubation, sedated, fentanyl, wean, respiratory
37 hypotension, line, shock, sepsis, levophed, cvp, fluid, bp, pressors, map
38 cabg, artery, wires, coronary, bypass, temporary, graft, svg, avr, valve
39 likely, continue, pending, culture, negative, blood, cultures, infection, consider, cx
40 renal, failure, acute, hd, arf, chronic, cr, urine, bun, kidney
41 po, pain, denies, past, ed, prn, home, chest, prior, recent
42 valuables, transferred, rate, pmh, weight, heart, bp, total, sent, money
43 pain, control, chronic, acute, continue, prn, dilaudid, morphine, po, iv
44 abd, bowel, drainage, soft, output, urine, draining, bs, abdomen, ngt
45 ct, head, mri, status, mental, negative, osh, lp, spine, eeg
46 left, aortic, valve, right, normal, ventricular, mitral, systolic, stenosis, wall
47 ed, received, micu, bp, transferred, noted, iv, arrival, started, sent
48 sats, cough, nc, clear, face, mask, diminished, resp, bases, secretions
49 assessed, pulse, total, comments, left, right, balance, review, systems, labs
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Appendix C.

Table C1: Number of units in LSTM layer (or fully-connected layer for model using static
data) in final model configurations.

Model Hidden Layer Units

Note Topic Distribution Prediction

struct2note 256
notes2note 64

struct-notes2note 256

Outcome Prediction

static 16
struct 32
notes 32

predicted notes 32
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