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Abstract

As robots become more affordable and more common in everyday life, there will be an
ever-increasing demand for adaptive behavior that is personalized to the individual needs
of users. To accomplish this, robots will need to learn about their users’ unique prefer-
ences through interaction. Current preference learning techniques lack the ability to infer
long-term, task-independent preferences in realistic, interactive, incomplete-information
settings. To address this gap, we introduce a novel preference-inference formulation, in-
spired by assistive robotics applications, in which a robot must infer these kinds of pref-
erences based only on observing the user’s behavior in various tasks. We then propose a
candidate inference algorithm based on maximum-margin methods, and evaluate its perfor-
mance in the context of robot-assisted prehabilitation. We find that the algorithm learns
to predict aspects of the user’s behavior as it is given more data, and that it shows strong
convergence properties after a small number of iterations.

1. Introduction

Robots are becoming more ubiquitous in everyday life, moving from factory floors to our
homes, roads, and workplaces. This shift has the potential to revolutionize the way we think
about transportation, healthcare, home care, and many other fields. Personal robots could
be used to prepare nutritious meals for users with mobility impairments, perform physical
tasks for users with injuries, or provide wellness and social support for older adults.

Despite their great potential, the widespread adoption of robots in personal settings
could be hindered by their limited understanding of humans and long-term human prefer-
ences. In order to successfully infer the preferences of a user, robots will have to model the
desired behaviour of a user through observation. In fact, demonstrating desired behavior
is easier than formally specifying a desirable one (Abbeel and Ng (2004); Rothkopf and
Dimitrakakis (2011)). Inferring task-dependent goals and preferences of each user will en-
able better collaboration with humans and faster learning on new unseen tasks (Wirth and
Fürnkranz (2013); Christiano et al. (2017)). This is particularly true for several important
application areas in robotics such as healthcare, which will require robots to work with
people across a multitude of tasks, including providing physical and cognitive support to
stakeholders including people with disabilities, clinicians, and caregivers (Riek (2017, 2015);
Luxton and Riek (2018); Lee and Riek (2018); Moosaei et al. (2017, 2014)).

Consider an assistive robot tasked with facilitating a rehabilitative therapy regimen
with a user. The robot’s goal in this case is to make sure that the user completes their
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regimen of exercises to speed up recovery. One possible approach would be to determine
an optimal goal, such as ensuring the user completes their prescribed stretches each day.
In standard reinforcement learning, such a goal is specified as maximizing a pre-defined
reward function. However, such directly-specified reward functions fail to take into account
the unique preferences of the user. Instead, the robot can observe the user performing a
routine alone or with an expert therapist, and infer the user’s goals and preferences with
regards to that task - for instance, which muscle groups the user wants to target or whether
they prefer motions that can be done while sitting down. Then, when the robot is facilitating
therapy on its own, it will be better able to use this information to engage in an enhanced,
individualized interaction with the user.

There is existing work in preference learning (Evans et al. (2016); Erkin et al. (2010)),
which helps set the stage for the current work. Evans et al. (2016) analyses how false beliefs
and suboptimal policies can be included in the learning of a preference inference algorithm.
Erkin et al. (2010) focused on a healthcare application, where they inferred a patient’s
preferences for liver transplant based on their health state history.

While promising, this work has several gaps. First, preference learning requires com-
plete knowledge of the environment, which is often impractical in real world robot teaming
scenarios. Second, a majority of the preferences are short term in nature and may not
endure across time, making it necessary to relearn preferences in the future. Finally, the
preferences learned are specific to the tasks in which they are learned, so preferences that
may be generalizable must be relearned across each task, no matter how similar the tasks
are.

We address these gaps by introducing a novel preference-inference formulation, inspired
by the needs of assistive robotics applications, and by demonstrating an algorithm that
effectively performs this inference in a real-world scenario. In this formulation, which we
call Observational Repeated Inverse Reinforcement Learning (ORIRL), the robot observes
the user completing multiple tasks in which the user selects a set of actions.

The robot is given some partial information about tasks, such as what constitutes task
completion, but it does not have information about the user’s preferences when selecting
each action. For example, the robot may observe a user performing a rehabilitation exercise
involving shoulder’s stretching, and a cooking task where the user needs to reach utensils and
mix different ingredients together. In realistic cases, knowledge of the tasks is insufficient to
understand and predict the user’s behavior, as different users may have different motor skill
limitations different preferences about the ordering of steps cooking steps, and many other
details. In order to best assist the user, the robot should be able to infer many of these
preferences based on observing the user’s behavior in other tasks; for example inferring that
the user might have shoulder limitations based on the previous stretching exercise might
affect the suggestions that the robot might give about the location of cooking utensils which
are not easy to reach.

In particular, we do not assume to have complete information about the tasks, including
the preference of a user towards each task. The goal of the robot is to infer the user’s
preferences in a task-independent manner, as well as to understand how these preferences
interact with the various tasks to produce the observed behavior. Previous work on inferring
users’ task-independent preferences makes unrealistic assumptions on how feedback can
be obtained, assuming the existence of an expert that provides optimal demonstrations
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whenever the robot makes a suboptimal decision (Amin et al. (2017)). In our formulation
the robot cannot assume a user will provide such oversight, and must learn task-independent
preferences exclusively from observation.

Clinical Relevance Many potential applications of assistive robotics will require un-
derstanding human preferences across tasks to a degree that is not currently feasible in
real-world environments. Existing preference-inference techniques suffer from unrealistic
requirements on the degree of available supervision and interactivity, on the amount of
available training data, or on the feasibility of retraining from scratch for each task. Con-
structing task-independent user-preference models allows us the flexibility to model multiple
disparate tasks, while also providing the ability to utilize information learned in previous
tasks to quickly generalize to new tasks. This affords an improved ability to handle tasks
where it is difficult to gather a large number of human demonstrations, while also allowing
faster generalization to new tasks. For example, if the therapy facilitation robot mentioned
earlier was tasked with a new objective, such as helping prepare a meal, it could use infor-
mation learned in the facilitation task to more effectively satisfy the user’s preferences in
the cooking task. The robot might have learned that the user has difficulty bending over
and lifting objects, which can then be transferred to the meal preparation task space.

This information reflects the user’s task-independent preferences, and utilizing that
information will allow the robot to better provide cooking assistance even with sparse
demonstration information - such as by knowing ahead of time to fetch objects stored
near the ground for the user. This transfer of knowledge from one task to another (transfer
learning), relies on a sufficiently expressive model of a user’s task-independent preferences
and a minimal description of the task (such as which food is being prepared), Transfer
learning allows the robot to effectively perform a personalized version of the task without
ever observing a user demonstration for that task (Chao et al. (2011)).

In robotic healthcare assistance, one concrete application of interest for human-robot
interaction is in facilitating prehabilitation activities. For instance, “active” breaks, wherein
users partake in exercises that strengthen muscles implicated with repetitive strain injury,
have been shown to provide significant health benefits (Abdelhameed and Abdel-aziem
(2016)). This prehabilitative approach has the potential to offer much greater long-term
health benefits as compared to non-active breaks (i.e, breaks where users simply rest affected
muscle groups) due to injury-susceptibility reduction. In addition to being a desirable
application area in its own right, the prehabilitation setting enables the performance of many
tasks with correlated underlying preferences, allowing us to gather long-term data about
the choices a user makes, and exposing relationships between choices made on different
days. This makes prehabilitation an ideal context for evaluating candidate algorithms for
our preference-inference formulation.

Technical Significance The contributions of this paper include: a new preference-
learning formulation, the presentation of an algorithm for performing this inference, and a
validation of this approach in a realistic, long-term robot-assisted interaction study. The
formulation builds upon Repeated Inverse Reinforcement Learning (Amin et al. (2017))
with relaxed assumptions that allow for incomplete information and non-expert users. The
proposed algorithm for performing this inference is an application of the maximum-margin
framework, one of the most common classes of approaches to Inverse Reinforcement Learn-
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ing (IRL). We demonstrate that, using our new max-margin approach, we can successfully
infer a user’s task independent preferences and predict features of a user’s actions for unseen
tasks, facilitating personalized workflows for each user.

The outline of the paper is as follows. First, we discuss the ideas and existing literature
behind preference learning in Secion 2. Then, in Section 3, we formalize the aforementioned
proposal for incomplete-information task-independent preference inference, and introduce
the new max-margin algorithm. Next, we present an empirical evaluation of the algorithm
(see Section 4). Our Results, described in Section 5, show that we are able to predict
features of unseen tasks and infer the user’s preferences across different tasks. Finally, we
discuss the implications of these findings for the robotics community in Section 6.

2. Preference Learning

Preference learning is a subfield of machine learning concerned with learning individuals’
proclivities. This allows a system to make sensible predictions based on the users’ historical
choices. Some examples in AI include recommendation systems which use other users’
preferences or products’ features to recommend products that the user might like Schafer
et al. (2007), adaptive user interfaces which change according to the user’s preferences, and
autonomous agents which adjust their suggestions based on previous responses by the user
(Wirth and Fürnkranz (2013)).

In robotics, examples of preference learning include robots that collaborate directly with
humans (Nikolaidis et al. (2017); Saunders et al. (2016); Munzer et al. (2017)). For example,
Munzer et al. (2017) show how learning the user’s preferences can be beneficial during a
toolbox making task. In this task, the robot passed the human the pieces needed to build
a toolbox and it adapted at each iteration based on whether it provided the right piece to
the human or not.

There are several methods used to infer preferences from observed user behavior.
One approach is recommender systems, which attempt to infer which products a user will

like based on how they have felt about other options (Schafer et al. (2007)). Recommender
systems typically use collaborative filtering or content filtering to perform this inference.

Collaborative filtering approaches tackle this problem by imposing a similarity score on
users, which is based on whether users expressed similar responses for the same products.
Unfortunately, this approach requires having a large corpus of user data. In fact predicting
how a user will feel about a new product requires a sufficiently large number of similar
users who have themselves provided feedback on the new product. By comparison, content
filtering seeks to build a model of the user’s preferences in relation to features of another
entity (Schafer et al. (2007)).

Finally, another approach worth mentioning is meta-learning. Finn et al. (2017) has
shown how meta-learning can successfully build algorithms that are model-agnostic and
which are applicable to a wide variety of tasks.

While these methods offer great results, they are ill-suited toward longitudinal robot
preference learning as they require a large volume of labeled data, only work in the short
term, and rely on problems which depend only on the present state, a property also known
as the markov property. Many applications in robotics are in longer-term interactive set-
tings in which the user’s choices influence the future state and are influenced by the past.
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Furthermore in HRI, since the user interacts with the environment and the robot in a com-
plex manner, it is more relevant to build a predictive model based on inverse reinforcement
learning (IRL) (Ng and Russell (2000)).

IRL uses observation to derive the reward function, and hence also preferences, of a user
(Argall et al. (2009); Chernova and Thomaz (2014)). IRL has been used with great success
in many robotic applications (Hadfield-Menell et al. (2016); Abbeel and Ng (2004); Jin et al.
(2015)) Abbeel and Ng (2004) spearheaded the efforts in IRL by demonstrating how a car
in a simulation can learn a reward function simply by observing an expert. Further work
by Hadfield-Menell et al. (2016) explores the implications of IRL not only in an isolated
environment but also in a cooperative one where human actors change their behaviour when
interacting with artificial agents.

Within IRL, there are three main approaches: maximum-margin methods, feature ex-
pectation matching, and methods that treat the policy as being parameterized by the reward
function (Abbeel and Ng (2011)). Max-margin methods address the problem by optimizing
for a reward function that makes the expert’s observed policy as good as possible compared
to alternatives, while also selecting for simpler rewards (Ratliff et al. (2006)). Feature expec-
tation matching attempts to find a policy that generates features similar to those generated
by the expert’s policy, without emphasising inference of the true reward function. The last
class of methods assume the expert’s policy is a function of the reward, allowing solution
with methods such as gradient descent and approximate Bayesian inference (Rothkopf and
Dimitrakakis (2011)).

While IRL has been successful in many domains, it traditionally involves inferring a
single reward function for a single task, and does not allow robots to take advantage of
similarities to generalize to new tasks. This is because such approaches model a task’s
reward function as a single atomic entity, independent of the reward functions for other
tasks. Because the robot observes different behavior when the user completes different
tasks, it therefore must either throw away all known information and model a new task
from scratch, or it must attempt to model a single unified reward function that explains
all behavior in all tasks. The former method suffers from inefficiency and the inability to
build up general models of the user’s preferences over time, while the latter suffers from
incredibly high complexity and the need for huge amounts of demonstrations over a wide
variety of tasks. Thus, we must use a cross-task method which is able to transfer knowledge
gained for historical tasks on new unseen ones.

There has been some existing work on extending IRL outside the single-task single-
reward model. Inferring multiple reward functions has been studied in contexts where
observations are generated from multiple (unknown) experts (Choi and Kim (2012)), as
well as the case where multiple reward functions are stochastically interchanged (Slivkins
and Upfal (2008)). However, these cases are different than the example described in Section
1, in which a single user is observed completing multiple different tasks and we must build
up a unified and coherent model of their overarching preferences.

Rothkopf and Dimitrakakis (2011) present a Bayesian formulation for inferring reward
functions for multiple related tasks, which assumes tasks are drawn randomly from a prior
which must be inferred. This is along the same line as other work which attempts to infer
priors in Bayesian settings (Evans et al. (2016)). In contrast, in our work we do not make any
assumptions about the possible range of tasks; instead we focus on how the user’s individual
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preferences affect a given task. For example, we would like to infer what actions and how
much time a user will spend on a new task based on their previous global preferences. In
addition, we utilize existing partial information about task structure (for instance, that a
cleaning task involves a higher reward after the room is cleaned) to improve the inference.

Recent work on repeated inverse reinforcement learning (RIRL) has also extended IRL
to settings in which a user is observed performing different tasks (Amin et al. (2017)). The
goal in RIRL is the same as the goal in our domain: to infer user-specific, task-independent
reward terms that the user attempts to satisfy in all settings, For example, Amin et al.
(2017) focused on autonomous driving and inferred user preferences for safety that may not
be explicitly specified in the given task rewards.

However, work by Amin et al. (2017) assumes that the agent possesses complete prior
information not only about task reward structure, but also about the interactions between
the various task rewards and the user’s overall preferences, which is unrealistic in most
applications of interest. For example, the robot may know that a particular user just
left rehabilitation and has some shoulder mobility issues, and it may have some partial
information about what it means to complete a cooking task. However, the robot does not
assume to know ahead of time how the user weights the task reward relative to their overall
preferences; some users may be able to reach items on a high shelf when cooking, while
others are not, and this uncertainty only compounds as more tasks are added. Furthermore,
Amin’s work was not tested in a real-world environment with a physical robot, limiting the
potential impact that their findings might have in HRI.

The existing literature covers a large range of diverse applications as described above,
but there is a gap in modelling preferences in the repeated setting when only partial infor-
mation is known about task rewards. Our work addresses this gap by introducing a method
for preference inference in the more realistic ORIRL setting with only partial task-reward
knowledge. Furthermore we focus on a real-world scenario where a robot interacts with
human actors. The proposed method uses max-margin learning to learn the task depen-
dent reward functions in combination with a global reward function which is affected by
the user’s task independent preferences.

We evaluate our method within a prehabilitation scenario, in which a user may have
multiple tasks recommended to them by a healthcare professional, such as a series of exer-
cises to prevent injury. This is an excellent application domain for our method, as one of the
roadblocks to successful health behavior change is patient adherence (e.g., continuing to do
exercises even when losing interest). Our prior work (Riek (2017); Adamson et al. (2016);
Riek (2015); Lee and Riek (2018)), and work by others, suggests a personalized approach
to health technology will facilitate greater adherence (Ludden et al. (2015); Hermsen et al.
(2016); Mohr et al. (2014)). Having a greater understanding of a user’s preferences in this
domain may enable us to provide better autonomous support.

In this domain, a robot knows at most the reward structures of the given tasks, but
not their magnitude; it does not in general know the relative levels of motivation that the
user will feel towards completing each task relative to other preferences. In addition, the
multi-task inference method by Amin et al. (2017) has only been tested in simulation, with
data generated by simulated experts who obey the modelling assumptions in the respective
approaches. We are interested in empirical validation of multi-task preference inference with
human users, in order to test modelling assumptions as well as algorithmic performance.
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Figure 1: Decomposition of a task-specific preference. Ri is presumed to be known in
advance, ki and θ are not.

3. Observational Repeated Inverse Reinforcement Learning

Based on the classes of IRL methods described above, we introduce a new preference-
inference formulation: Observational Repeated Inverse Reinforcement Learning, or ORIRL.
We would like to highlight the difference between observed behavior and preferences in this
context. We assume that the observable behavior that we record is partially determined
by some hidden variables or a user’s preferences. ORIRL aims to learn the preferences of a
user which are not directly observable. We then propose a max-margin learning approach
to infer a global reward function which combines the task-dependent reward functions with
the user’s task independent preferences. Some IRL approaches such as feature expectation
matching attempt to infer enough about the user to predict their actions, without emphasis
on learning the true underlying preference function. However, in many applications the
true preference function itself may encode useful information. For instance, in rehabilita-
tion applications, a clinician reward function may include relevant information about health
and pain levels. In our case, we are trying to infer task-independent rewards to generalize
the user’s preferences to new tasks, which requires a model of the reward. Max-margin ap-
proaches are well-suited to our use-case, as they attempt to learn the underlying preference
function directly (Abbeel and Ng (2011)).

3.1. ORIRL Formulation

We model tasks and environments in terms of Markov decision processes (MDPs). An MDP
is defined by the state space S, action space A, transition dynamics P : S × A → ∆(S),
initial state distribution ψ ∈ ∆(S), discount factor γ ∈ [0, 1), and reward Y : S → IR. In
addition, an agent’s strategy in an MDP is denoted by their policy π : S → ∆(A), which
determines the (possibly stochastic) action to take in any given state. The state inhabited
at timestep t is denoted as st.

In many cases of interest, a full Markovian state-space formulation for the MDP is nec-
essarily large or infinite, leading to problems with tabular reinforcement-learning methods
(Sutton and Barto (1998)). This is commonly addressed through a mapping φ from states
to low-dimensional state features. We can extend this to a function µ that maps policies
to the expected exponentially-discounted sum of state features under that policy, known as
feature expectations (Abbeel and Ng (2004)). That is, µ(π) = Eπ

∑
i γ

iφ(si). The reward
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function is commonly assumed to be approximately linear in these state features, so that
the reward is parameterized by a vector ω. Thus, the expected discounted reward from a
policy π is just the dot product between ω and µ(π).

In ORIRL, the true reward for a given task is a weighted sum between a task-independent
reward term and a task-dependent reward term. If we use a linear approximation ω of the
reward function, this means for task i that ωi = θ + kiRi, where θ is the task-independent
reward term, Ri is the reward for task i, and ki is the weighting for task i. We define K as
the vector of scalars K = [k1, k2, . . . , kn], where n is the number of tasks.

3.2. Max-Margin ORIRL

The original IRL problem as defined by Abbeel and Ng (2004) was to infer a reward function
that matched the observed behavior, assuming the expert behaves optimally. However, this
leads to problems of ambiguity, as there are many reward functions that would explain any
given observation. The problem is exacerbated if the expert’s demonstration is suboptimal,
as will be the case if the expert is a human acting in a complex environment, such as on a
busy road or in an operating room.

In order to overcome the challenges inherent in the original IRL formulation, Ratliff
et al. (2006) proposed the use of max-margin methods. In this formulation, we first turn
the feasibility problem into one of optimization - namely we minimize the L2 norm of the
weight vector, as a form of complexity penalty, subject to the optimality constraints. This
means we will find a unique solution, but since we are minimizing the L2 norm, the reward
function that always returns 0 will be selected for any given set of observations, despite the
fact that humans rarely have exactly no preference over any possible state.

To deal with this class of problem, maximum-margin methods incorporate the intuition
that the expert’s policy is likely significantly better than alternatives. Structured-prediction
maximum-margin methods require the expert’s observed policy to not only match, but beat
all other policies by an amount that scales with a measure of difference between the policies.
This encodes the idea that “nearby” policies may be nearly as good as the expert’s policy,
but “faraway” policies are probably worse than the optimal policy by a larger amount.

This still leaves the unsatisfactory assumption that the expert’s policy is exactly optimal
with respect to the hidden reward. While it may be a good heuristic that the expert’s policy
is significantly better than others, this may not always be the case. Maximum-margin
methods handle this concern by including the “slack” variable, ξ, that can allow policies to
be close to or better than the expert’s policy, at some cost in the optimization term. Thus,
the full optimization problem becomes one of solving:

min
ω,ξ
||ω||22 + Cξ (1)

s.t.ω>µ(π∗) ≥ ω>µ(π) +m(π∗, π)− ξ ∀π (2)

Where π∗ is the expert’s (near) optimal policy, ω represents the weights for the reward
function, and m(.) is a distance function which compares the optimal policy π∗ and the
alternative policy π.
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We can additionally extend this to multiple MDPs that share the same reward function
by using:

min
ω,ξi
||ω||22 + C

∑
i

ξi (3)

s.t.ω>µ(π∗i ) ≥ ω>µ(πi) +m(π∗i , πi)− ξi ∀i, πi (4)

The optimization term is quadratic and the constraints are linear, allowing efficient
solutions for a given number of constraints using quadratic programming. However, there
is a constraint for every possible policy, which may be large or infinite. Ratliff et al. (2006)
address this by modifying the form of the constraints and using subgradient methods, but
a simpler alternative is iterative constraint generation of the form used by Abbeel and Ng
(2004).

With these existing formulations, modeling multiple MDPs can be done in one of two
ways. We can assume all rewards are independent and solve distinct instances of equation 1,
or conversely we can assume that all rewards are identical and solve the combined equation 3.
RIRL proposes a third, hybrid approach where there is a shared task-independent reward
term, as well as separate task-dependent reward terms. In ORIRL, the direction of the
task-dependent reward terms are known, but their magnitudes are not. This encodes the
situation in which we have some partial prior information about which aspects of a task
are relevant and distinct from other tasks, but we do not know how strongly any given
user will weight each task-dependent reward relative to their underlying task-independent
preferences.

In order to extend equation 3 so that it solves ORIRL-style problems, we must make
three changes. First, the single reward term ω in the constraints becomes the combination of
task-dependent and task-independent rewards θ∗+KiRi. Second, instead of minimizing over
the full reward ω in the minimization term, we only minimize over θ∗, the task-independent
portion of the reward. Finally, we must add a complexity penalty for K in the minimization
term in order to re-establish the desirable properties of max-margin described above. The
L2 norm fulfills this function, but unlike θ∗ we normalize K towards a positive constant
vector d̂ instead of 0̂ to take into account a prior that users are more likely to have positive
weights for task-dependent terms. We are left with the following equation:

min
θ∗,K,ξi

||θ∗||22 +B||K − d̂||22 + C
∑
i

ξi (5)

s.t.(θ∗ +KiRi)
>µ(π∗i ) ≥ (θ∗ +KiRi)

>µ(πi) +m(π∗i , πi)− ξi ∀i, πi (6)

With this formulation, the optimization remains quadratic and the constraints remain
linear, allowing an efficient solution through quadratic programming methods.

4. Method Validation

4.1. Experimental Context

The motivating context for our work is healthcare. We are particularly interested in methods
to infer preferences from users who have been given non-binding therapeutic advice from
clinicians, and then must determine how to balance activity engagement given their own
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Table 1: Prehabilitative activities for RSI prevention

Pathology
Forward

Head
Posture

Kyphotic
Posture

Wrist
Tension

&
Irritation

Pelvic
Tilt

Prolonged Hip &
Knee Flexion

Limited
Hallux

Dorsiflexion

Body
Part

Neck
Pecs &
Traps

Wrists Back Hips & Hamstrings Toes

Non-
Standing
Variation

Lying Lying Lying Lying
Lying (Hips) &

Sitting (Hamstrings)
Sitting

preferences. This is a particularly interesting application space for two reasons. First, this is
a common scenario in ambulatory care - clinicians provide proscriptive advice which may or
may not be followed by users, or may be only followed for a short time, etc. However, if we
can infer their preferences in these scenarios and build interactive, adaptive systems based
on them, it can have a substantial practical impact – tailored, individualized treatment
plans are far more likely to be adhered to (Ludden et al. (2015); Hermsen et al. (2016);
Mohr et al. (2014)). Second, the clinician’s advice can influence the choices a user might
make, and hence the reward of corresponding tasks. Because of this, our system will not
only depend upon the user’s preferences, but also the expert’s advice.

Thus, we evaluate our methods in a rehabilitation setting across multiple activities,
in which participants receive written advice from a physical therapist, and then interact
with a robot facilitator to choose a set of activities to perform. In our study, participants
participated in a week-long, twice-a-day prehabilitation activity session with a robot (See
Fig. 2(b)). The sessions lasted for 10 minutes, wherein the robot solely provided instruction
and structure. In each session, participants would be greeted by the robot and presented
with advice from a licensed physical therapist (randomized by day and participant). The
advice was related to the different categories of activities to bias activity selection. The
activity categories consisted of eight different body parts, each with standing or not standing
versions, for a total of 16 unique prehabilitative activities (See Table 1).

Participants then navigated to a main screen where they could choose the activity they
wanted to perform. They would then view an instruction screen which contained a video
example of the activity and brief explanatory text. Once ready, participants would then
begin the activity, at which point a session timer would start. Participants could perform
an activity for as long as they liked. Once participants finished, they would navigate back to
the main activity selection screen which would pause their session timer. The robot would
offer a break if the time had reached five minutes; if it exceeded 10 minutes the robot would
end the session.

4.2. Participants

We recruited four participants to participate in our study (three females and one male with
ages ranging from 20-24). They were primarily undergraduate and graduate students who
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Figure 2: (a) - From left to right: The main activity selection menu, the standing/not
standing version selection screen, a sample instructions screen, and a sample of
the screen that plays while the user performs an activity. (b) - Left: the robot in
a real-world setting. Right: A user interacting with the robot.

spend a majority of their time sitting, working at computers. No participants reported any
pre-existing health conditions which would affect their participation.

4.3. Exercise Choices

Based on feedback from a licensed physical therapist, we focused on activities that would
reduce susceptibility to repetitive stress injury (RSI) in office workers. The activities in
our study focused on eight body parts, with a standing version and a non-standing version
(either seated or lying down) for each, yielding a total of 16 exercises. Table 1 lists the six
major conditions we focused on improving, and their corresponding eight body parts. For
brevity we will not describe these conditions in detail; readers can consult physical medicine
texts such as by DeLisa et al. (2005) for detail.

To emulate expert advice given for multiple tasks, there were six sets of advice provided
by a therapy expert, targeting each condition. Each set of advice referred to a known expert-
specified reward function over state features. We emphasize simple, easy to specify reward
functions that give a positive reward when the task is completed and no reward everywhere
else. For instance, a set of advice targeting neck posture would have a positive reward only
when designated neck stretches and exercises are completed. Because we want to learn the
preferences of the users, we do not assume to know ahead of time to what extent the users
are influenced by the therapist’s advice, and users are encouraged to perform whichever
activities they want to perform regardless of the advice.

4.4. Equipment and Interaction Design

In our study, we utilized a Double robot, and two small exercise mats (See Fig. 2 (b)). The
robot ran a custom application designed specifically for the study. In accordance with best
practices in the health behavior change community (Hermsen et al. (2016); Notthoff and
Carstensen (2014); Ybarra et al. (2014)), all messaging in the application was delivered in
an positive manner, e.g., “Welcome [User]! It’s so great to see you again!” and “You did
great, I can’t wait to see you again!”.

A robot’s morphological and behavioral features have been shown to have a significant
impact on attentional capture (Li et al. (2015)) and user engagement, which can affect both
the quality of data gathered and the algorithmic performance that depends on that data.
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For this reason, the robot’s height was dynamically adjusted at certain parts of the study
to promote greater engagement. At the start of the study, the robot would be initially
set to its minimum height (about three feet from the ground) to simulate that the robot
was asleep/off. Once the user began a session, the robot would raise its display to its
maximum height, which corresponded to eye level for our participants (about five feet from
the ground). When choosing non-standing activities, the robot would lower itself back to
its minimum height to help maintain a comfortable viewing angle. Once the participant
completed this activity, the robot would then raise itself back to its maximum height. To
ensure a comfortable interaction, the users had the option of adjusting the height manually
at any point in the session.

Finally, to simulate cooperative behavior, the robot would provide the participant with
an encouraging remark when the user completed an activity after the five minute mark of
the study. The robot would then and inform the participant that it was itself motivated to
take a stretching break. It would redisplay its smiling face, and turn 360 before prompting
the user that it was ready to continue. This was the only time the robot moved, and its
kickstands were deployed immediately after to ensure user safety.

4.5. Procedure

At the beginning of the study, participants participated in an orientation session. An
experimenter taught them how to properly interface with the robot and performed demon-
strations of the 16 different prehabilitation exercises of the study. Participants participated
in approximately two sessions per day, five times per week (Monday - Friday), for one week.

Prehabilitation sessions consisted of participants entering the experimental area, where
the interactive robotic facilitator (see Fig. 2(b)) would take them through the day’s activi-
ties, as explained in Figure 2(a).

To mitigate possible ordering effects, exercises presented on the robot’s display at the
activity selection screen was randomly chosen for each session. Additionally, to minimize
gender and/or cultural bias, all videos and pictures were presented as thermal images or
silhouettes.

In our experiment we used the following measures: the group of the selected action, its
duration, and whether the user performed the seated or standing variation of the activity.
The action’s group is linked to a unique identifier and it tells us which muscle group was
activated during the exercise. The action’s duration was measured in seconds and was also
used to calculate the total duration of a session. Finally, the action’s sit/stand variation
was recorded as a boolean variable.

During each activity session, each participant read the session’s prompt and chose a
sequence of actions to perform. To emulate a home care setting, no human facilitators
or other participants were present during the sessions; each participant’s activities were
classified by the interactive visual dialogue system on the robot’s touch screen. Each session
generated data consisting of the participant’s ID, the session ID, and the sequence of actions
the participant selected, which includes the three measures described above. Each action
is then encoded as a vector that combines a one-hot encoding of its targeted muscle group,
its discretized duration, and whether it was the sitting or standing variation. In addition,
the session is linked to the advice given in that session.
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Figure 3: (a): Averaged mean squared error between max-margin ORIRL’s prediction of
the next session’s duration and the empirical duration of that session, plotted
against the number of sessions the system has already observed for a user.
(b): Convergence measured by the averaged MSE of θ at each iteration of ORIRL,
relative to the final estimate.

This data is provided to ORIRL as a set of feature expectations generated by the
participant’s actions. That is, the algorithm models the set of sessions as an MDP, and
observes the empirical discounted sum of state features resulting from the participant’s
choices.

The features provided to the algorithm approximate the relevant information about the
actions and state. In addition to the action features described above, the state was mapped
by concatenating the following vectors: (Vi, Vi

2, ViVi−1, Xi, Xi
2, XiXi−1, Ti, where Vi corre-

sponds to an array that keeps count of the variations (standing or sitting) up to state i,
Xi corresponds to an array that counts the muscles targeted up to state i and Ti corre-
sponds to a one-hot encoding vector which discretizes the total duration of the session up to
state i. These features were selected to give ORIRL sufficiently expressive representations
with which to model preferences, without biasing the algorithm by providing extra prior
data. For instance, the algorithm initially has no prior expectation that participants might
tend to prefer to take varied actions in each session, and must learn such associations from
observation.

5. Results

Ground truth data for user preference models is infeasible to obtain, so we measure the
performance of the algorithm by its predictive power and its convergence properties.

To see how the predictive power of the model changes as it is given more sessions to
train on per user, we gave the model the first n sessions for each user and measure how
well it predicts aspects about session n+ 1. Namely, we measured the mean squared error
between the time features of the user’s actions with the time features of the policy optimal
with respect to the inferred preferences. Unlike the other features, time is continuous, which
allows a straightforward error analysis. The results in Figure 3(a) show how error decreases
as more sessions are provided to train on, with diminishing returns.
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Figure 4: Averaged prediction error scores per task. Prediction error scores are based on the
negative log-likelihood of observing the user-generated dataset under the inferred
preferences at each iteration.

To track the convergence rate of the algorithm, we run the algorithm until it converges to
an estimate θ of the user’s task-independent preferences. We then observe the mean squared
error of the estimate θi after iteration i with respect to the final converged θ. Figure 3(b)
plots this convergence, in which we observe a rapid convergence in the first few iterations,
until after iteration 6 the weight values for the inferred task-independent preferences only
undergo small adjustments.

Finally, in order to get a more general estimate of predictive power beyond just predicting
the time variable, we define an error metric based on the negative log likelihood of observing
the user data under the inferred preferences. In the vein of Ramachandran and Amir
(2007), we assume a generative model where a user selects actions based on an exponential
distribution over the Q-values of that state-action pair. That is: P (a|s,R) = 1

Z e
αQ∗

R(s,a),
where α is a hyperparameter weighting how “noisy” the user’s choices are, Q∗R(s, a) is the
Q function that gives the expected discounted sum of rewards from following the optimal
policy after taking action a in state s, and Z is a weighting term to make the probabilities
for all actions sum to 1.

Given this generative model, we can compute the error score as the negative log like-
lihood of observing the user data under the total reward function inferred by the ORIRL
model. That is, for each estimated total reward, we define a probability function over the
set of actions selected in the observed states, and rate the model based on how much prob-
ability mass its inferred reward function assigned to the set of true user actions. Figure 4
plots this score per iteration for each task the model is inferring. The first iteration bases its
predictions off a random policy, and we observe a very significant improvement in predictive
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power after just one additional iteration. Afterwards, the error score continues to steadily
improve (note the logarithmic scale on the Y-axis means improvement slows over time).

6. Discussion

The main contributions of this paper are the introduction of the ORIRL framework for real-
istic task-independent preference inference and the presentation of a max-margin algorithm
that efficiently performs this inference. Unlike existing approaches, the ORIRL framework
makes no assumptions about the ability of users to provide interpretable feedback to the
robot in the form of corrective demonstrations. Instead, it relies completely on observa-
tional data gathered as the user completes tasks; the ease of gathering this kind of training
data make it a much more suitable choice for an assistive robot working with users who are
not robotics experts. Overall, the results we obtained with max-margin suggest that it is
possible to learn task-independent preferences in this framework (See Figs. 3(a) and 4) in
a small number of iterations (See Fig. 3(b)).

The algorithm achieves a sensible time inference accuracy on unseen sessions (see Figure
3(a)), suggesting that the inferred user preference model is able to successfully capture
relevant information about the user’s task-independent preferences. Moreover, max-margin
ORIRL is able to successfully learn the global preferences of a user across different real-
world tasks (see Fig. 4). For example, ORIRL learned that one user prefers to stand when
performing an exercise, and also prefers activities involving the back. It can then transfer
these general inferences to better predict the user’s behavior even on tasks it has never seen
the user perform before.

Inferring user preferences in observational settings, as ORIRL does, will greatly benefit
robotics by promoting more personalized long term interactions between robots and humans.
A robot with a stronger understanding of the user will be able to better handle uncertainty
introduced by new situations. For example, they can rely upon previous knowledge in new
situations, as was demonstrated when the algorithm predicted features of unseen tasks (See
Fig. 3(a)).

While ORIRL’s observational nature means it relies on weaker assumptions than prior
work, it does assume that the robot can infer which task the user is performing. This is
a sensible assumption, as it can often be done for distinctive tasks (Stauder et al. (2014);
Arbab-Zavar et al. (2014)). However, even in cases where there is no easy way to identify
tasks a priori, Babes et al. (2011) show that clustering approaches can be used to group
demonstrations together based on the task that generated them.

In the future, we seek to improve the features used to map each action taken by the user.
We could improve the current feature set by learning the features themselves, as in deep
neural networks, but this requires much more data than we had the resources to collect.
One possible way to tackle the lack of data could be the application of deep generative
model learning on a pre-existing smaller dataset to generate new user data using a different
Gaussian distribution. Another option is to craft stronger priors, so that the algorithm only
has to learn how each user differs from some “average”, rather than learning preferences
from scratch. Construction of such priors would likely require significantly fewer data points
than would be required for a fully-learned feature mapping.
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We also plan to explore new applications of ORIRL. This work could be extended to
content filtering in more interactive recommender systems, such as movie recommenders.
Instead of modeling a user’s movie preferences as a static mapping from movies to ratings,
the system could learn preferences as task-independent rewards like RIRL and ORIRL, en-
abling such a system to better take context into account and different recommendations that
adapt to the user’s actions and environment, including interactions with the recommender
itself.

The ORIRL framework described in this paper is a step forward towards better human
understanding. This has impactful and far-reaching applications in robotics, and especially
in the field of HRI. The ability to model a user’s preferences across different situations over
a long period of time will enable more personalization and improved collaboration between
the user and robot. This is especially important now as robots are becoming more involved
in our daily routines, and commonly operate inside our homes. It is our hope that future
work continues to expand these ideals and ensure that personal robots are truly personal.
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