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Abstract: Many prediction problems, such as those that arise in the context of
robotics, have a simplifying underlying structure that, if known, could accelerate
learning. In this paper, we present a strategy for learning a set of neural network
modules that can be combined in different ways. We train different modular struc-
tures on a set of related tasks and generalize to new tasks by composing the learned
modules in new ways. By reusing modules to generalize we achieve combinato-
rial generalization, akin to the ”infinite use of finite means” displayed in language.
Finally, we show this improves performance in two robotics-related problems.

1 Introduction

In many situations, such as robot learning, training experience is very expensive. One strategy for
reducing the amount of training data needed for a new task is to learn some form of prior or bias
using data from several related tasks. The objective of this process is to extract information that will
substantially reduce the training-data requirements for a new task. This problem is a form of transfer
learning, sometimes also called meta-learning or “learning to learn” [1, 2].

Previous approaches to meta-learning have focused on finding distributions over [3] or initial values
of [4, 5] parameters, based on a set of “training tasks,” that will enable a new “test task” to be
learned with many fewer training examples. Our objective is similar, but rather than focusing on
transferring information about parameter values, we focus on finding a set of reusable modules that
can form components of a solution to a new task, possibly with a small amount of tuning. By
reusing our learned modules, we aim at combinatorial generalization[6, 7, 8]; this is akin to the
reuse of words to construct many possible sentences. We propose that this ”infinite use of finite
means” (Von Humboldt) can be a scalable approach towards transfer and generalization.

Modular approaches to learning have been very successful in structured tasks such as natural-
language sentence interpretation [9], in which the input signal gives relatively direct information
about a good structural decomposition of the problem. We wish to address problems that may ben-
efit from a modular decomposition but do not provide any task-level input from which the structure
of a solution may be derived. Nonetheless, we adopt a similar modular structure and parameter-
adaptation method for learning reusable modules, but use a general-purpose simulated-annealing
search strategy to find an appropriate structural decomposition for each new task.

We provide an algorithm, called BOUNCEGRAD, which learns a set of modules and then combines
them appropriately for a new task. We demonstrate its effectiveness by comparing it to MAML [4],
a popular meta-learning method, on a set of regression tasks that represent the types of prediction-
learning problems that are faced by robotics systems, and show that we achieve better prediction
performance from a few training examples, and can be much faster to train. In addition, we show
that this modular approach offers a strategy for explaining learned solutions to new tasks: by ob-
serving the modules that are used in a new task, we can relate this task to previous tasks that use the
same modules. This approach also offers opportunities for verification and validation: the modules
discovered during meta-learning may be subjected to computationally expensive analytical or em-
pirical validation techniques off-line; they can then be recombined to address new tasks, generating
solutions that can be validated more efficiently as compositions of previously understood modules.

2 Related Work

Our work draws primarily from two sources: multi-task meta-learning and modular networks.
Prominent examples of meta-learning in robotic domains are MAML [4] and follow-up work [5, 10].
They perform “meta-training” on a set of related tasks with the goal of finding network weights
that serve as a good starting point for a few steps of gradient descent in each task. Others
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Figure 1: All methods train on a set of related tasks and obtain some flexible intermediate repre-
sentation. Parametric strategies such as MAML (left) learn a representation that can be quickly
adjusted to solve a new task. Our modular meta-learning method (middle) learns a repertoire of
modules that can be quickly recombined to solve a new task. A combination of MAML and mod-
ular meta-learning (right) learn initial weights for modules that can be combined and adapted for a
new task.

[11, 12, 13, 14, 15] perform different types of parametric changes in the network’s computation
conditioned on few examples. We adapt the same basic setting, but rather than finding good starting
weights, we find a good set of modules for later structural combination; see figure 1. This is akin to
the distinction in AI and cognitive science between parameter change vs. structural change [16, 17].

Neural module networks [9] provide an elegant mechanism for training a set of individual modules
that can be recombined to solve new problems, when the input has enough signal to guess an appro-
priate modular decomposition. Johnson et al. [18] later showed that the structure controller could be
trained with RL; others applied similar frameworks to get more interpretability [19] or to generalize
across robotic tasks with neural programs[20]. However, as far as we know, this framework has not
been applied in problems where the input does not give enough information about an appropriate
structure.

Structured networks have been used for meta-learning in the reinforcement-learning setting. Devin
et al. [21] use a fixed composition of two functions, one related to the robot and one to the task.
Frans et al. [22] jointly optimize a master policy and a set of sub-policies (options) that can be used
to solve new problems; this method can be seen as having a single fixed scheme of combination via
the master policy; it is in contrast to our ability to handle a variety of computational compositions.
PATHNET [23] is closely related to our work. The architecture is layered, with several modules
in each layer. An evolutionary algorithm determines gates on the connections among the modules.
After training on an initial task, the weights in the modules that contribute to the solution to that task
are frozen, and then the architecture is trained on a second task. If the tasks are sufficiently related,
the modules learned in the first task can be directly re-used to make learning more efficient in the
second task. Meyerson and Miikkulainen [24] and later Liang et al. [25] expanded these ideas to
the multitask setting with two particular compositional schemes: soft layer ordering and routing in
DAGs. We propose a general framework of which these are two important sub-cases. Moreover, we
operate in the meta-learning setting where, with few points per task, it is very easy to prematurely
optimize the structure and run into local optima, as shown in figure 5. Therefore, we believe using
simulated annealing rather than gradient descent[24] or irreversible evolution[25] may be a better fit
for our setting.

3 Modular meta-learning

We explore the problem of modular meta-learning in the context of supervised learning problems,
in which training and validation sets of input-output pairs are available. Such problems arise in
robotics, particularly in learning to predict a next state based on information about previous states
and actions. We believe that techniques similar to ours can be applied to reinforcement-learning
problems as well, but do not explore that in this paper. We use the same meta-learning problem
formulation as Finn et al.[4] used to apply MAML to supervised learning problems. We assume
an underlying distribution p(T ) over tasks: a task is a joint distribution PT (x, y) over (x, y) pairs.
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The learning problem is: Given data drawn from m meta-training tasks and a (small) amount of
data drawn from a meta-test task, where all tasks are drawn from P (T ), find a hypothesis h from
some given set that incurs low expected loss on unseen data drawn from the meta-test task. In this
formulation, each task is characterized by two data sets, Dtrain and Dtest, each of which consists of a
set of input-output pairs (x, y). We assume a differentiable loss function L(ŷ, y) on true vs predicted
outputs for all tasks.

3.1 Structured hypotheses

We begin by defining a family of structured hypothesis classes. Given the specification of a compo-
sition rule and a basis set of modules, (C, F,Θ) represents a set of possible functional input-output
mappings that will serve as the hypothesis space for the meta-test task. F is a basis set of mod-
ules, which are functions f1, . . . , fk; each function has a parametric form y = fi(x; θi) where θi is
a fixed-dimensional vector of parameters. In this work, all the fi are neural networks, potentially
with different architectures, and the parameters Θ = (θ1, . . . , θk) are the weights of the neural net-
works, which differ among the modules. C is a compositional scheme for forming complex functions
from simpler ones, defined by an initial structure and a set of local modification operations on the
structure. Some examples include:

• Single module h(x) = fi(x), as fig. 5. The local modification is to change which module is used.
• A fixed compositional structure, e.g., h(x) = fi(x) + fj(x) or h(x) = fi(fj(x)). The local

modifications are to change which module is used for each of the component functions. We could
generalize this to stacking many CNN/ResNet layers [26] for meta-learning in vision problems.

• A weighted ensemble, of the same basic form as an attention mechanism:

h(x) =

m∑
l=1

efil (x)∑m
l′=1 e

fi
l′

(x)
gjl(x)

where i1, . . . , im and j1, . . . , jm are elements of the set {1, . . . , k}, picking out which modules to
use to play these roles in the network. There are modules of two types: the fi have a scalar output
and the gi have an output that is the output dimension of the main regression problem. The local
modifications are to change which particular f and g modules are used for each role.

• A general function-composition tree, where the local modifications include both changing which
fi is used at each node, as well as adding or deleting nodes from the tree.

Let S be the set of possible structures and S ∈ S be a particular structure, generated by C, including a
choice of which particular functions fi ∈ F are included in the structure. To formulate a structured-
hypothesis model, we must specify the number and parametric forms, but not parameter values, of
basis functions, F , and compositional scheme C. This is analogous to specifying the architecture of
a deep neural network.

Our approach has two phases: an off-line meta-learning phase and an on-line meta-test learning
phase. In the meta-learning phase, we take training and validation data sets for tasks 1, . . . , k as
input and generate a parametrization for each module, Θ = (θ1, . . . , θk) as output; the objective is
to construct modules that will work together as good building blocks for future tasks. In the meta-
test learning phase, we take a training data set for the meta-test task as input, as well as S and Θ; the
output is a compositional form S ∈ S which includes a selection of modules f1 . . . , fms

to be used
in that form (a single element fj ∈ F may occur multiple times in S). Since Θ is already specified,
the choice of S completely determines a mapping from inputs to outputs; we will abuse notation
slightly and write SΘ to stand for the function from input to output generated by structure S and
parameters Θ. We may optionally include a meta-test tuning phase, which will adapt the parameter
vectors; this is discussed in section 3.3.

At learning time on the meta-test task, the space of possible structures S and parameters Θ are fixed,
and the objective is to find and return the best structure in S. Define e(D,S,Θ) to be the loss of the
hypothesis SΘ on data set D: e(D,S,Θ) =

∑
{(x,y)∈D} L(SΘ(x), y). Then our hypothesis is

S∗Θ = arg min
S∈S

e(Dtrain
meta-test, S,Θ) (1)

The hope is that, by choosing a limited but flexible and appropriate hypothesis space based on
previous tasks, a good choice of S∗Θ can be made based on a small amount of data in Dtrain

meta-test.
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At meta-learning time, S is specified, and the objective is to find parameter values Θ that constitute
a set of modules that can be recombined to effectively solve each of the training tasks. We use
validation sets for the meta-training tasks to avoid choosing Θ in a way that over-fits. Our training
objective is to find Θ that minimizes the average generalization performance of the hypotheses
chosen by equation 1 using parameter set Θ:

J(Θ) =

m∑
j=1

e(Dtest
j , arg min

S∈S
e(Dtrain

j , S,Θ),Θ) . (2)

3.2 Learning algorithm

The optimization problems specified by equations 1 and 2 are in general quite difficult, requiring a
mixed continuous-discrete search in a space with many local optima. In this section, we describe
the BOUNCEGRAD algorithm, which performs local searches based on a combination of simulated
annealing and gradient descent to find approximately optimal solutions to these problems.

3.2.1 Meta-test learning phase

In the meta-test learning phase, we have fixed the parameters Θ and only need to find an optimal
structure S ∈ S according to the objective in equation 1. We use simulated annealing [27] to
perform this search: it is a local search strategy that uses stochasticity to avoid local optima and
has asymptotic optimality guarantees. We start with an initial structure, then randomly propose
structural changes using local modification operators associated with the compositional scheme S,
accept the change if it decreases the error on the task and, with some probability, even if it does not.

procedure ONLINE(Dtrain
meta−test , S, Θ, T0, ∆T , Tend )

S = random simple structure from S
for T = T0; T = T −∆T ; T < Tend do

S′ = PROPOSES(S)
if ACCEPT(e(D,S′,Θ), e(D,S,Θ), T ) then S = S′

return S
procedure ACCEPT(v′, v, T )

return v′ < v or rand(0, 1) < exp{(v − v′)/T}

In order for simulated annealing to converge, the temperature parameter T must be decreased over
time. The schedule we use decreases too quickly to satisfy theoretical convergence guarantees, yet is
practically effective. Given the training set for the meta-test task, we run ONLINE(Dtrain

meta−test ,S,Θ)
to obtain a hypothesis for that task.

3.2.2 Meta-learning phase

To perform the optimization in equation 2, we might use an algorithm that, in the outer loop, per-
forms optimization over continuous parameters Θ, where the evaluation of Θ consists of running
procedure ONLINE on each of the training data sets, and evaluating the resulting structural hypothe-
ses using the validation sets. This strategy is ineffective because of the prevalence of bad local
optima in the space, as illustrated in figure 5. As in clustering, we can smooth out some local optima
by changing the objective function, although we will do so only during search, so our meta-test
objective will remain the same. We formulate a smoothed objective

Ĵ(Θ, T ) =

m∑
j=1

ES∼MC(S,v(s;Θ),T )e(D
test
j , S,Θ) (3)

Here, MC(S, v, T ) is the Markov chain induced by executing the simulated-annealing sampler in
the structure space S using its proposal operator, with score function v(s; Θ) = e(Dtrain

j , s,Θ) and
fixed temperature T . Rather than trying to find the Θ values that work best when we choose the best
structure S, we will instead try to find Θ values that work best in expectation given the distribution of
structures induced by the Markov chain. This space is smoother and less susceptible to local optima.
At the same time as we are optimizing Θ via stochastic gradient, we will cool the temperature of the
Markov chain. As T approaches 0, the objective Ĵ becomes the same as our original objective J .
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(a) (b)

Figure 2: (a) A schematic view of the optimization landscape over Θ and T . At each point, there is a
distribution over structures. As temperature decreases, the variance of the distribution decreases and
modules become more specialized. (b) benchmarked robotic domains: MIT push dataset [28](top),
action (throwing a ball) in the Berkeley MHAD dataset [29] (bottom).

Given particular structures Sj , then for each task Tj , we know the parametric form of a differentiable
feed-forward function that has parameters drawn from Θ, but possibly with parameter tying within
and across the tasks due to re-use of the basis functions in F and possibly with some parameters in
Θ left unused. We can adjust Θ using stochastic gradient descent, as defined in procedure GRAD.
It takes the structures and training data as input, as well as a step size η and performs one step of
standard stochastic gradient descent, or any alternative optimizer:

procedure GRAD(Θ, S1, . . . , Sm, Dtest
1 , . . . , Dtest

m , η)
∆ = 0
for j = 1 . . .m do

(x, y) = rand elt(Dtest
j ); ∆ = ∆ +∇ΘL(SjΘ(x), y)

Θ = Θ− η∆

However, we do not know the appropriate structure for each task, and so, according to the smoothed
criterion in equation 3, we sample structures using a stochastic process based on simulated anneal-
ing. We define a procedure BOUNCE that takes a simulated annealing step on a structural hypothesis
for each task, using the current Θ values, for a fixed temperature T :

procedure BOUNCE(S1, . . . , Sm, Dtrain
1 , . . . , Dtrain

m ,T , S, Θ)
for j = 1 . . .m do

S′j = ProposeS(Sj ,Θ)

if Accept(e(Dtrain
j , S′j ,Θ), e(Dtrain

j , Sj ,Θ), T ) then Sj = S′j

Finally, we combine these methods into an overall algorithm for optimizing equation 1 via optimiz-
ing equation 3 and decaying T :

procedure BOUNCEGRAD(S, Dtrain
1 , . . . , Dtrain

m , Dtest
1 , . . . , Dtest

m , η, T0,∆T , Tend )
S1, . . . , Sm = random simple structures from S; Θ = neural-network weight initialization
for T = T0; T = T −∆T ; T < Tend do

BOUNCE(S1, . . . , Sm, Dtrain
1 , . . . , Dtrain

m , T , S, Θ)
GRAD(Θ, S1, . . . , Sm, Dtest

1 , . . . , Dtest
m , η)

We can think of the state of the optimization algorithm as consisting of both the parameters Θ and
the temperature T ; these values induce a distribution on structures. The optimization landscape
is illustrated in figure 2a. At high temperatures, the distribution over structures is diffuse and the
modules will tend to be very generalized. As the temperature decreases, modules can specialize to
perform well at the roles they are being selected to play in the structures.

3.3 Parameter tuning in online phase

In the basic ONLINE method, we search for the best structure for the new task, without modifying
parameters Θ. In fact, in many cases it may be useful to perform some additional parameter opti-
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mization as well. One strategy would be to proceed as we have described before, running BOUNCE-
GRAD on the training tasks to get Θ, finding the best S for the meta-test task using ONLINE, and
then taking some gradient steps on Θ, given S, to better optimize loss onDtrain. However, we can do
better by incorporating the objective of MAML more deeply into both ONLINE and BOUNCEGRAD,
by redefining the inner error function used in the optimization criterion for Θ: instead of using Θ
directly, we will evaluate the result of taking one (or a few) gradient steps away from Θ, specialized
to optimize D. So, eMAML(D,S,Θ) =

∑
{(x,y)∈D} L(SO(Θ,D,S)(x), y), where the optimized pa-

rameters O(Θ, D, S) are obtained by a gradient update: O(Θ, D, S) = Θ− η∇Θe(D,S,Θ). Then,
the meta-learning objective becomes

JMAML(Θ) =

m∑
j=1

e(Dtest
j , arg min

S∈S
eMAML(Dtrain

j , S,Θ),Θ) (4)

We can therefore use eMAML in place of e in the GRAD and ONLINE procedures, and perform a few
additional gradient steps on Θ after obtaining the structure from ONLINE. We will call this overall
algorithm MOMA, MOdular MAml.

4 Experiments

We compare four different learning approaches: training a single network using the combined data
from all tasks (POOLED), training a single network using the MAML criterion, training a modular
network without weight adaptation in the online training (BOUNCEGRAD), and training a modu-
lar network with MAML adaptation in the online training (MOMA). To make the comparisons
as fair as possible, for experiments on a given data set, all networks have the same shape: gen-
erally, a feedforward structure of 3–4 layers. We selected a set of layer sizes so that POOLED
and MAML had about 10 times as many parameters as the structured methods, to compensate for
BOUNCEGRAD and MOMA having about 10 modules to combine. We also verified that none of
the algorithms’ performance was sensitive to modest changes in these parameters. We used Py-
Torch and ADAM[30, 31]; the MAML code was adapted from Rakelly [32]. The code is available on
https://github.com/FerranAlet/modular-metalearning. The target output values y in all
data-sets were standardized to have mean 0 and standard deviation 1. The loss function then assigns
loss 100 to a mean squared error of 1. More experimental details are available in the supplement.

We tested these methods in three domains: simple functional relationships, predicting the result of
a robot manipulator pushing an object, and predicting the next frame of a kinematic skeleton based
on previous frames using motion-capture data. The last two domains represent the main motivation
for this work: a robot’s experience of interacting with various entities in real-world situations should
enable it to learn more efficiently about a new entity in a new situation. There is typically some sen-
sible decomposition of the prediction function, but that decomposition is not known in advance. We
hope that BOUNCEGRAD can find an appropriate decomposition and that doing so will significantly
leverage learning, as well as reveal interesting structure, in the new domain.

An additional advantage of BOUNCEGRAD is computational efficiency. Unlike MAML, it does not
have extra gradient steps embedded in the inner loop at meta-training time, which offers some effi-
ciency; in addition, forward and backward passes can be done much more efficiently on GPUs by
parallelizing over tasks. MAML is generally faster at online training time, since BOUNCEGRAD has
to search over structures. However, this training took at most 10 seconds in our examples. More-
over, to store a structure we only need a few integers, compared to storing a whole set of weights for
parametric methods.

4.1 Functions

We begin by testing on an extended version of the sine-function prediction problem [4], which
consisted of data-sets generated from functions of the form sin(ax + b) for varying values of a
and b. The compositional scheme for BOUNCEGRAD is h(x) = fi(fj(x)); F consists of 20 feed-
forward neural networks, 10 with 1 hidden layer and 10 with 2. In our experiments in this section
MAML and POOLED use the same architecture as the original MAML experiments. We construct
an additional illustrative domain consisting of sums of pairs of common non-linear functions, such
as exp and abs, scaled so the output is contained in the range [−1,+1], generating 162 possible
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Figure 3: Random functions (left); BOUNCEGRAD (center) and MOMA (right) modules. All but
one BOUNCEGRAD modules(blue) are nearly identical to a basis function(red).

Dataset POOLED MAML BOUNCEGRAD MOMA Structure

Parametrized sines 98.1 26.5 32.5 19.8 composition

Sum of functions (1-4pts) 32.7 19.7 12.8 18.0 sum

Sum of functions (16pts) 31.9 8.0 0.4 0.4 sum

MIT push: known objects 21.5 18.5 16.7 14.9 attention

MIT push: new objects 18.4 16.9 17.1 17.0 attention

Berkeley MoCap: known actions 35.7 35.5 32.2 31.9 concatenate

Berkeley MoCap: new actions 79.5 77.7 77.0 73.8 concatenate
Table 1: Summary of results; lower is better; bold results are not significantly different from best.

prediction tasks. We use 230 randomly selected tasks for meta-training and a different task for
testing. Example functions are shown on the left of figure 3. We use the same architectures for this
domain as for the sine domain, except that the compositional scheme is h(x) = fi(x) + fj(x).

The results are shown in table 2. As expected, training a single network on pooled data from all
the tasks (POOLED) works poorly in all of these domains. In the sine domain, MAML outperforms
BOUNCEGRAD because the detailed parameter values are critical to performing well in a new do-
main, but MOMA significantly improves on both methods, showing that both the structure and
gradient meta-learning methods are useful. For sums of functions, we report results in two cases:
one in which we average over performance for 1–4 training examples, and one for 16 training ex-
amples. With a small amount of online training data, BOUNCEGRAD outperforms other methods
because it has the proper structural prior. With more data, all methods improve, but BOUNCEGRAD
and MOMA improve on MAML. The plots in the middle and right of figure 3 show some of the basis
modules learned by BOUNCEGRAD and MOMA, respectively. Those learned by BOUNCEGRAD
are an almost perfect recovery of the actual primitives used to generate the data, even though the
algorithm had no information about those functions; MOMA has found similar functional shapes,
yet with different values because it can still modify its parameters at online training time.

4.2 Learning to model results of pushing actions

An important sub-problem in robot manipulation is to acquire models of the effects of the robot’s
motor actions on the objects in the world. The MIT push data-set [28] contains the results of exe-
cuting pushing actions with a manipulator hand, for 11 different objects with different shapes on 4
surfaces with different friction properties. The behavior of the object on these surfaces is close to
quasi-static , so the state can be characterized by an input x consisting of: position of the object (2d),
orientation of the object (1d), position of the pusher (2d), and velocity of the pusher (2d). Given this
7-d input, the objective is to predict the 3-d change in the object’s position and orientation. Each
task represents experience with a particular object on a particular surface.

The compositional scheme for BOUNCEGRAD is the weighted ensemble described in section 3.1;
F consists of 20 feedforward neural networks, 10 attention modules and 10 regressors. We consider
two different meta-learning scenarios. In the first, the object-surface combination in the test case was
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Figure 4: Shared modules show internal structure of the datasets (left–pushing; right–motion). In
particular, less important factors (surfaces and subjects) do not change the structure while bigger
changes (objects and actions) do. Within the structural changes, there is more sharing between
conceptually similar datasets.

present in some meta-training task; in the second, the objects used in the meta-training tasks differ
from the object used in the test task. The results in table 2 show that, for previously encountered
objects, MOMA performs best, and BOUNCEGRAD outperforms MAML. For unknown objects, all
three approaches perform roughly equivalently.

Another important aspect of the structured hypothesis space is that it can give us insight into the
relationships between tasks. Figure 4 illustrates the structural relationships that were uncovered in
this data. The matrix on the left is indexed according to which object was being pushed. The entry in
location i, j represents the average percentage of modules shared by the structure learned to predict
results for object i and the structure learned for object j. We can see it distinguishes 3 clusters of
data: butterfly, all ellipses, and all triangles. The biggest rectangle shares modules with the biggest
triangle, probably due to similar size and aspect ratio. The matrix labeled ”Surfaces” does not show
dependence on the surface, as expected for the quasi-static regime.

4.3 Predicting skeleton configurations

Robots that interact with humans should be able to understand and predict human action, both for
the purposes of safety and for task-driven collaboration. We applied meta-learning to this problem,
using data from the Berkeley MHAD motion capture dataset [29]. This domain is dynamic, and
so we use three previous configurations (at intervals of 0.1 sec) of a human skeleton to predict the
next one. Each configuration is characterized by one 3-d position and 90 joint angles describing
a kinematic tree, so the input has dimension 279 and the output has dimension 93. There are 12
subjects performing 11 different actions several times, for a few seconds each.

We constructed a compositional scheme for BOUNCEGRAD that is related to this task. It has a
fixed first layer with 128 output units to compress the input, which is the same for all structures,
and independent “parallel” modules that take those 128 inputs and produce kinematic sub-trees for
each body part (2 legs, 2 arms, and torso). For MAML and POOLED we use a single architecture
of the same depth with 4 times more parameters. We again consider two different meta-learning
scenarios. In the first, the activities used in the training task are the same as the activities used in
the meta-test task, but the human actor varies; in the second, the activities used in the training tasks
differ from the activity used in the test task. The results in table 2 show that, for known activities,
BOUNCEGRAD and MOMA perform best. For unknown activities, none of the methods perform
very well, but MOMA outperforms the others. We obtain a similar pattern of correlation among
shared modules, shown in figure 4, in which there is significant module-sharing among similar tasks
and no real pattern of module-sharing among human actors.

4.4 Conclusion

We have demonstrated that modular compositional structure can provide a useful basis for transfer-
ring learned competence from previous tasks to new tasks. It can also yield insight into the under-
lying structure of the domain. We believe this combinatorial generalization is a promising route to
scale to large numbers of tasks and continual learning settings as we can increase our knowledge
in modular ways without forgetting previously learned concepts. The structural information to be
provided in advance is a few lines of code to describe the possible modifications that can be made to
a structure, which is not much more than would be required for specifying a typical neural network.
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A More insight into the difficulty of meta-training

Once the modules are trained, finding the best structure is just a matter of search. Similarly, if
someone told us the best structure for each task, we would be able to find the best parameters
by pure gradient descent. However, we start in the opposite situation: we don’t know the module
weights nor the best structure for each dataset. This leads to a chicken-and-egg problem: the concept
of best structure is meaningless without first having good modules and we cannot train the modules
if we do not know which roles they should play.

An important problem this causes, illustrated in figure 5 is that if we greedily optimize the structure
we have the risk of premature optimization and running into a local optima. This motivated our
smoothed objective where modules and structures slowly adapt to one another.

Figure 5: Gray lines are different tasks; the composition is just a single module h(x) = fi(x), either
the red or the blue. We have to place our modules such that they cover the tasks (grey lines well).
The second frame represents the initial state of a search for parameters. If we make local steps in
structure and parameter space, we will converge to the solution on the left, without ever updating the
blue. However, if we consider a smoothed criterion with a non-point distribution over structures, we
will update the parameters for the blue module and eventually arrive at the solution on the far right.

B More results on functions dataset

In the main text we claim we find the basis set of functions. This is compatible with some modules
not having a closeby function, since there are 20 modules for 16 basis functions. To prove our claim,
we plot the 16 functions and the closest module to each of them.

C Experimental details

Functions used in the functions dataset: (abs, arcsinh(4x)/arcsinh(4),
arctan(4x)/arctan(4), cbrt, ceil, cos(4πx), cosh(4x)/cosh(4), exp2(4x)/exp2(4),
floor, rint, sign, sin(4πx), sinc(4πx), square, tanh, id). To create a dataset
we picked all pairs of functions and More information, including the dataset itself, can
be found in http://lis.csail.mit.edu/alet/modular-metalearning.html and
https://github.com/FerranAlet/modular-metalearning.

Learning rates and epochs were generally the same. POOLED and BOUNCEGRAD had twice as many
epochs in MIT push and Berkeley (500 vs 1000), still taking less amount of time to train thanks to
being 4 times faster. We tried several similar architectures and learning rates for all algorithms
and checked all algorithms converged appropriately. Other parameters: MAML inner updates: 5,
MAML step size 0.001. For an up-to-date version of the implementation please visit https://
github.com/FerranAlet/modular-metalearning.
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Figure 6: Our learned set of modules recovers all 16 basis functions. The 16 basis functions (never
seen alone by the algorithm) are plotted in red, the closest module is plotted in blue. All except the
since function near 0 are close matches. All modules are different except for row 2, column 3 and 4:
3
√
x and arctan(4 ∗ x)/π

Dataset sine functions MIT push Berkeley MoCap

# training metatasks 230 230 236 236
# training points 16 (1-4),16 32 128

# validation points 64 64 48 192

#nodes POOLED & MAML [1-64-64-1] [7-128-64-3] [279-512-97]
#modules per type of module 10,10 10,10 1,3,3x4

#nodes BOUNCEGRAD& MOMA [1-16-1], same as left [7-32-1], [279-128],[128-21],
[1-16-16-1] [7-64-32-1] [128-18]x4

learning rate for all architectures 0.003 0.001 0.001

statistical variability 0.8 0.4 0.7 0.7
Table 2: Summary of number of training plus architectural descriptions.
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Figure 7: Sharing between datasets containing each function, similar to figure 4. The diagonal is
very dominant, showing if two datasets which share one function their corresponding structures will
likely share a module. Only sinc(x) and |x| don’t have near the predictable 50% sharing rate: one
because the fitted module is not perfect, the other because it has two modules that fit it perfectly.
The other exception is the relation between arctanx and 3

√
x, since a single module is close to both

of them.

Figure 8: All modules and their closest function, completing figure 3. There are 20 modules: 4 are
useless, 2 encode |x|, 13 encode a single function, 1 encodes both the 3

√
x and arctan(4 ∗ x)/π.

13


	Introduction
	Related Work
	Modular meta-learning
	Structured hypotheses
	Learning algorithm
	Meta-test learning phase
	Meta-learning phase

	Parameter tuning in online phase

	Experiments
	Functions
	Learning to model results of pushing actions
	Predicting skeleton configurations
	Conclusion

	More insight into the difficulty of meta-training
	More results on functions dataset
	Experimental details

