
Modular meta-learning

Ferran Alet, Tomás Lozano-Pérez, Leslie P. Kaelbling
MIT Computer Science and Artificial Intelligence Laboratory

{alet,tlp,lpk}@mit.edu

Abstract: Many prediction problems, such as those that arise in the context of
robotics, have a simplifying underlying structure that, if known, could accelerate
learning. In this paper, we present a strategy for learning a set of neural network
modules that can be combined in different ways. We train different modular struc-
tures on a set of related tasks and generalize to new tasks by composing the learned
modules in new ways. By reusing modules to generalize we achieve combinato-
rial generalization, akin to the ”infinite use of finite means” displayed in language.
Finally, we show this improves performance in two robotics-related problems.

1 Introduction

In many situations, such as robot learning, training experience is very expensive. One strategy for
reducing the amount of training data needed for a new task is to learn some form of prior or bias
using data from several related tasks. The objective of this process is to extract information that will
substantially reduce the training-data requirements for a new task. This problem is a form of transfer
learning, sometimes also called meta-learning or “learning to learn” [1, 2].

Previous approaches to meta-learning have focused on finding distributions over [3] or initial values
of [4, 5] parameters, based on a set of “training tasks,” that will enable a new “test task” to be
learned with many fewer training examples. Our objective is similar, but rather than focusing on
transferring information about parameter values, we focus on finding a set of reusable modules that
can form components of a solution to a new task, possibly with a small amount of tuning. By
reusing our learned modules, we aim at combinatorial generalization[6, 7, 8]; this is akin to the
reuse of words to construct many possible sentences. We propose that this ”infinite use of finite
means” (Von Humboldt) can be a scalable approach towards transfer and generalization.

Modular approaches to learning have been very successful in structured tasks such as natural-
language sentence interpretation [9], in which the input signal gives relatively direct information
about a good structural decomposition of the problem. We wish to address problems that may ben-
efit from a modular decomposition but do not provide any task-level input from which the structure
of a solution may be derived. Nonetheless, we adopt a similar modular structure and parameter-
adaptation method for learning reusable modules, but use a general-purpose simulated-annealing
search strategy to find an appropriate structural decomposition for each new task.

We provide an algorithm, called BOUNCEGRAD, which learns a set of modules and then combines
them appropriately for a new task. We demonstrate its effectiveness by comparing it to MAML [4],
a popular meta-learning method, on a set of regression tasks that represent the types of prediction-
learning problems that are faced by robotics systems, and show that we achieve better prediction
performance from a few training examples, and can be much faster to train. In addition, we show
that this modular approach offers a strategy for explaining learned solutions to new tasks: by ob-
serving the modules that are used in a new task, we can relate this task to previous tasks that use the
same modules. This approach also offers opportunities for verification and validation: the modules
discovered during meta-learning may be subjected to computationally expensive analytical or em-
pirical validation techniques off-line; they can then be recombined to address new tasks, generating
solutions that can be validated more efficiently as compositions of previously understood modules.

2 Related Work

Our work draws primarily from two sources: multi-task meta-learning and modular networks.
Prominent examples of meta-learning in robotic domains are MAML [4] and follow-up work [5, 10].
They perform “meta-training” on a set of related tasks with the goal of finding network weights
that serve as a good starting point for a few steps of gradient descent in each task. Others

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.

Figure 1: All methods train on a set of related tasks and obtain some flexible intermediate repre-
sentation. Parametric strategies such as MAML (left) learn a representation that can be quickly
adjusted to solve a new task. Our modular meta-learning method (middle) learns a repertoire of
modules that can be quickly recombined to solve a new task. A combination of MAML and mod-
ular meta-learning (right) learn initial weights for modules that can be combined and adapted for a
new task.

[11, 12, 13, 14, 15] perform different types of parametric changes in the network’s computation
conditioned on few examples. We adapt the same basic setting, but rather than finding good starting
weights, we find a good set of modules for later structural combination; see figure 1. This is akin to
the distinction in AI and cognitive science between parameter change vs. structural change [16, 17].

Neural module networks [9] provide an elegant mechanism for training a set of individual modules
that can be recombined to solve new problems, when the input has enough signal to guess an appro-
priate modular decomposition. Johnson et al. [18] later showed that the structure controller could be
trained with RL; others applied similar frameworks to get more interpretability [19] or to generalize
across robotic tasks with neural programs[20]. However, as far as we know, this framework has not
been applied in problems where the input does not give enough information about an appropriate
structure.

Structured networks have been used for meta-learning in the reinforcement-learning setting. Devin
et al. [21] use a fixed composition of two functions, one related to the robot and one to the task.
Frans et al. [22] jointly optimize a master policy and a set of sub-policies (options) that can be used
to solve new problems; this method can be seen as having a single fixed scheme of combination via
the master policy; it is in contrast to our ability to handle a variety of computational compositions.
PATHNET [23] is closely related to our work. The architecture is layered, with several modules
in each layer. An evolutionary algorithm determines gates on the connections among the modules.
After training on an initial task, the weights in the modules that contribute to the solution to that task
are frozen, and then the architecture is trained on a second task. If the tasks are sufficiently related,
the modules learned in the first task can be directly re-used to make learning more efficient in the
second task. Meyerson and Miikkulainen [24] and later Liang et al. [25] expanded these ideas to
the multitask setting with two particular compositional schemes: soft layer ordering and routing in
DAGs. We propose a general framework of which these are two important sub-cases. Moreover, we
operate in the meta-learning setting where, with few points per task, it is very easy to prematurely
optimize the structure and run into local optima, as shown in figure 5. Therefore, we believe using
simulated annealing rather than gradient descent[24] or irreversible evolution[25] may be a better fit
for our setting.

3 Modular meta-learning

We explore the problem of modular meta-learning in the context of supervised learning problems,
in which training and validation sets of input-output pairs are available. Such problems arise in
robotics, particularly in learning to predict a next state based on information about previous states
and actions. We believe that techniques similar to ours can be applied to reinforcement-learning
problems as well, but do not explore that in this paper. We use the same meta-learning problem
formulation as Finn et al.[4] used to apply MAML to supervised learning problems. We assume
an underlying distribution p(T) over tasks: a task is a joint distribution PT (x; y) over (x; y) pairs.

2

The learning problem is: Given data drawn from m meta-training tasks and a (small) amount of
data drawn from a meta-test task, where all tasks are drawn from P (T), find a hypothesis h from
some given set that incurs low expected loss on unseen data drawn from the meta-test task. In this
formulation, each task is characterized by two data sets, Dtrain and Dtest, each of which consists of a
set of input-output pairs (x; y). We assume a differentiable loss function L(ŷ; y) on true vs predicted
outputs for all tasks.

3.1 Structured hypotheses

We begin by defining a family of structured hypothesis classes. Given the specification of a compo-
sition rule and a basis set of modules, (C; F;�) represents a set of possible functional input-output
mappings that will serve as the hypothesis space for the meta-test task. F is a basis set of mod-
ules, which are functions f1; : : : ; fk; each function has a parametric form y = fi(x; �i) where �i is
a fixed-dimensional vector of parameters. In this work, all the fi are neural networks, potentially
with different architectures, and the parameters � = (�1; : : : ; �k) are the weights of the neural net-
works, which differ among the modules. C is a compositional scheme for forming complex functions
from simpler ones, defined by an initial structure and a set of local modification operations on the
structure. Some examples include:

• Single module h(x) = fi(x), as fig. 5. The local modification is to change which module is used.
• A fixed compositional structure, e.g., h(x) = fi(x) + fj(x) or h(x) = fi(fj(x)). The local

modifications are to change which module is used for each of the component functions. We could
generalize this to stacking many CNN/ResNet layers [26] for meta-learning in vision problems.

• A weighted ensemble, of the same basic form as an attention mechanism:

h(x) =

mX
l=1

efil
(x)Pm

l′=1 e
fi

l′
(x)
gjl(x)

where i1; : : : ; im and j1; : : : ; jm are elements of the set {1; : : : ; k}, picking out which modules to
use to play these roles in the network. There are modules of two types: the fi have a scalar output
and the gi have an output that is the output dimension of the main regression problem. The local
modifications are to change which particular f and g modules are used for each role.

• A general function-composition tree, where the local modifications include both changing which
fi is used at each node, as well as adding or deleting nodes from the tree.

Let S be the set of possible structures and S ∈ S be a particular structure, generated by C, including a
choice of which particular functions fi ∈ F are included in the structure. To formulate a structured-
hypothesis model, we must specify the number and parametric forms, but not parameter values, of
basis functions, F , and compositional scheme C. This is analogous to specifying the architecture of
a deep neural network.

Our approach has two phases: an off-line meta-learning phase and an on-line meta-test learning
phase. In the meta-learning phase, we take training and validation data sets for tasks 1; : : : ; k as
input and generate a parametrization for each module, � = (�1; : : : ; �k) as output; the objective is
to construct modules that will work together as good building blocks for future tasks. In the meta-
test learning phase, we take a training data set for the meta-test task as input, as well as S and �; the
output is a compositional form S ∈ S which includes a selection of modules f1 : : : ; fms

to be used
in that form (a single element fj ∈ F may occur multiple times in S). Since � is already specified,
the choice of S completely determines a mapping from inputs to outputs; we will abuse notation
slightly and write S� to stand for the function from input to output generated by structure S and
parameters �. We may optionally include a meta-test tuning phase, which will adapt the parameter
vectors; this is discussed in section 3.3.

At learning time on the meta-test task, the space of possible structures S and parameters � are fixed,
and the objective is to find and return the best structure in S. Define e(D;S;�) to be the loss of the
hypothesis S� on data set D: e(D;S;�) =

P
f(x;y)2Dg L(S�(x); y). Then our hypothesis is

S�� = arg min
S2S

e(Dtrain
meta-test; S;�) (1)

The hope is that, by choosing a limited but flexible and appropriate hypothesis space based on
previous tasks, a good choice of S�� can be made based on a small amount of data in Dtrain

meta-test.

3

At meta-learning time,S is speci�ed, and the objective is to �nd parameter values� that constitute
a set of modules that can be recombined to effectively solve each of the training tasks. We use
validation sets for the meta-training tasks to avoid choosing� in a way that over-�ts. Our training
objective is to �nd � that minimizes the average generalization performance of the hypotheses
chosen by equation 1 using parameter set� :

J (�) =
mX

j =1

e(D test
j ; arg min

S2 S
e(D train

j ; S; �) ; �) : (2)

3.2 Learning algorithm

The optimization problems speci�ed by equations 1 and 2 are in general quite dif�cult, requiring a
mixed continuous-discrete search in a space with many local optima. In this section, we describe
the BOUNCEGRAD algorithm, which performs local searches based on a combination of simulated
annealing and gradient descent to �nd approximately optimal solutions to these problems.

3.2.1 Meta-test learning phase

In the meta-test learning phase, we have �xed the parameters� and only need to �nd an optimal
structureS 2 S according to the objective in equation 1. We use simulated annealing [27] to
perform this search: it is a local search strategy that uses stochasticity to avoid local optima and
has asymptotic optimality guarantees. We start with an initial structure, then randomly propose
structural changes using local modi�cation operators associated with the compositional schemeS,
accept the change if it decreases the error on the task and, with some probability, even if it does not.

procedure ONLINE(D train
meta � test , S, � , T0, � T , Tend)

S = random simple structure fromS
for T = T0; T = T � � T ; T < T end do

S0 = PROPOSES(S)
if ACCEPT(e(D; S0; �) ; e(D; S; �) ; T) then S = S0

return S
procedure ACCEPT(v0, v, T)

return v0 < v or rand(0, 1)< expf (v � v0)=Tg

In order for simulated annealing to converge, thetemperatureparameterT must be decreased over
time. The schedule we use decreases too quickly to satisfy theoretical convergence guarantees, yet is
practically effective. Given the training set for the meta-test task, we run ONLINE(D train

meta � test ; S; �)
to obtain a hypothesis for that task.

3.2.2 Meta-learning phase

To perform the optimization in equation 2, we might use an algorithm that, in the outer loop, per-
forms optimization over continuous parameters� , where the evaluation of� consists of running
procedure ONLINE on each of the training data sets, and evaluating the resulting structural hypothe-
ses using the validation sets. This strategy is ineffective because of the prevalence of bad local
optima in the space, as illustrated in �gure 5. As in clustering, we can smooth out some local optima
by changing the objective function, although we will do so only during search, so our meta-test
objective will remain the same. We formulate a smoothed objective

bJ (� ; T) =
mX

j =1

ES� MC(S;v (s;�) ;T) e(D test
j ; S; �) (3)

Here,MC(S; v; T) is the Markov chain induced by executing the simulated-annealing sampler in
the structure spaceS using its proposal operator, with score functionv(s; �) = e(D train

j ; s; �) and
�xed temperatureT. Rather than trying to �nd the� values that work best when we choose the best
structureS, we will instead try to �nd� values that work best in expectation given the distribution of
structures induced by the Markov chain. This space is smoother and less susceptible to local optima.
At the same time as we are optimizing� via stochastic gradient, we will cool the temperature of the
Markov chain. AsT approaches0, the objectivebJ becomes the same as our original objectiveJ .

4

	Introduction
	Related Work
	Modular meta-learning
	Structured hypotheses
	Learning algorithm
	Meta-test learning phase
	Meta-learning phase

	Parameter tuning in online phase

	Experiments
	Functions
	Learning to model results of pushing actions
	Predicting skeleton configurations
	Conclusion

	More insight into the difficulty of meta-training
	More results on functions dataset
	Experimental details

