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Abstract: In dynamic environments, learned controllers are supposed to take mo-
tion into account when selecting the action to be taken. However, in existing
reinforcement learning works motion is rarely treated explicitly; it is rather as-
sumed that the controller learns the necessary motion representation from tempo-
ral stacks of frames implicitly. In this paper, we show that for continuous control
tasks learning an explicit representation of motion clearly improves the quality
of the learned controller in dynamic scenarios. We demonstrate this on common
benchmark tasks (Walker, Swimmer, Hopper), on target reaching and ball catch-
ing tasks with simulated robotic arms, and on a dynamic single ball juggling task.
Moreover, we find that when equipped with an appropriate network architecture,
the agent can, on some tasks, learn motion features also with pure reinforcement
learning, without additional supervision.
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1 Introduction

In many robotic tasks, the robot must interact with a dynamic environment, where not only the dy-
namics of the robot itself but also the unknown dynamics of the environment must be taken into
account. Examples of such tasks include autonomous driving, indoor navigation among other mo-
bile agents, and manipulation of moving objects such as grasping and catching. The presence of
moving elements in the environment typically increases the difficulty of a control task substantially,
necessitating fast reaction time and prediction of the future trajectories of the moving objects.

In deep reinforcement learning (DRL), using a neural network as function approximator, a model of
the environment’s dynamics can, in principle, be learned implicitly. In simple cases, such as in some
Atari games, corresponding motion features seem to be picked up automatically [20]. However, it
can be observed that a model operating on just a single frame often has the same performance as
a model that takes a stack of successive images as input [6]. Is motion uninformative or is it just
harder to learn than static features for an end-to-end trained system? Intuitively, we expect the latter,
but then: how can we best enable the use of motion when training controllers?

In this paper, we confirm the importance of motion in learning tasks that involve dynamic objects,
and we investigate the use of optical flow to help the controller learn the use of motion features. In
a straightforward manner, optical flow can be just provided as an additional input to an RL agent.
A complication with this approach is that accurate optical flow computation is typically too slow
for training of RL models, which requires frame rates of at least hundreds of frames per second to
run efficiently. To address this issue, we design a small specialized optical flow network derived
from FlowNet [7]. The network is small enough to be run jointly with reinforcement learning while
keeping computational requirements practical. We consider two training modes: one where the
optical flow network is trained in a supervised manner beforehand, and one where the same network
is trained online via RL based just on the rewards, i.e., without explicit supervision on the optical
flow.
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We perform extensive experiments on multiple diverse continuous control tasks. We observe that
the use of optical flow consistently improves the quality of the learned policy. The improvement is
higher the more relevance the dynamics have for the completion of the task. Some tasks involving
dynamic objects cannot be learned at all without the explicit use of motion. In some tasks unsuper-
vised learning of the optical flow based on the rewards is possible, whereas on harder tasks, direct
supervision is still required to kickstart the motion representation learning.

2 Related Work

Deep reinforcement learning aims to learn sensorimotor control directly from raw high-level sensory
input via direct maximization of the task performance, by using deep networks as function approxi-
mators. This approach has allowed learning complex behaviors based on raw sensory data in various
domains: arcade game playing [20], navigation in simulated indoor environments [21, 19, 6, 16],
simulated racing [21], simulated robotic locomotion [17] and manipulation [2, 29], as well as ma-
nipulation on physical systems [12]. Despite these notable successes, there is little understanding of
how and what exactly do the DRL agents learn. In this work, we focus on studying how DRL makes
use of motion information in dynamic environments.

Previous works in DRL vary in how they provide motion information to the network. The most
standard approach is to feed a stack of several recent frames to the agent, assuming that the deep
network will extract the motion information from these if needed [20, 21, 6]. On the architecture
side, agents are commonly equipped with a long short-term memory (LSTM) that can, in principle,
pick up the motion information [21, 19, 16]. An alternative approach to using motion information
is based on future frame prediction, which can be used to learn a useful feature representation [10]
or to plan future actions explicitly [9, 8]. In contrast to all these works, we aim to understand
what representation of motion is the most useful for an RL agent and in particular experiment with
explicitly computed optical flow.

The use of optical flow relates our work to the line of research on using explicit perception systems
to improve the performance of learned sensorimotor control policies. Providing ground truth depth
maps to the agent has been shown to lead to improved navigation performance compared to a system
making use of only color images [19, 24]. In the domain of autonomous driving, semantic segmen-
tation can help improve the driving command prediction [32] or allows the transfer from simulation
to the real world [22]. Goel et al. [11] show that object segmentation learned in an unsupervised
fashion leads to improved performance in some Atari games. Clavera et al. [5] use object detection
to improve transfer of learned object manipulation policies. Our work is similar in spirit to these,
but we focus on analyzing the use of motion and optical flow in deep reinforcement learning, which,
to our knowledge, has not been previously addressed.

While optical flow is not commonly used in DRL, it has a long history in robotics. Vision-based
robotic systems have employed optical flow a range of diverse applications: tracking [18], navi-
gation [23, 31, 4], obstacle avoidance [26], visual servoing [1], object catching [27]. Applications
of optical flow have been complicated by the trade-off between computational efficiency and the
accuracy. Only recently, deep-learning-based methods have allowed for fast and accurate estima-
tion of optical flow [7]. In this paper, we build on this progress and use a miniaturized variant of
FlowNet [7, 15] to estimate optical flow. Our optimized small FlowNet is extremely efficient, which
allows its use for training reinforcement learning agents.

3 Method

We study an agent operating in an environment in discrete time. At each time step t the agent gets an
observation ot from the environment and generates an action at in response. In this work we focus
on environments where observation is a high-dimensional sensory input, such as an image, and the
action is a relatively low-dimensional vector of continuous values. In addition to the observation, at
each step the agent gets a scalar reward rt. In this work the reward is often the sum of two terms
rt = rsct + rsht : the typically sparse scoring reward rsct (we often refer to it as score) and a denser
shaping reward rsht . We are interested in achieving high scoring reward, but add a shaping reward
to simplify training.
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Figure 1: Illustration of the approach. The RL agent uses an explicit motion representation provided
in the form of optical flow.

Since we deal with continuous control tasks, we use Proximal Policy Optimization (PPO) [25] as
our base RL algorithm. To enable processing of high-dimensional inputs, we use a convolutional
network (CNN) as a function approximator. We use an architecture similar to Mnih et al. [20]. In
tasks involving manipulation of moving objects we provide the vector of robot state variables to the
network in addition to the high-dimensional sensory observation. We process this vectorial input by
a separate fully connected network and concatenate the output with the output of the perception part
of the CNN (full architecture is shown in Table S1).

To understand the role of motion perception in training of an RL agent, we vary the input provided to
the agent. The straightforward options are to provide the network with just the current observation
or several recent observations stacked together. A more interesting scenario is to provide optical
flow explicitly to the RL network. In this case, we use a separate convolutional network to estimate
the optical flow. This setup is illustrated in Figure 1.

For optical flow estimation we use a miniaturized version of the FlowNetS network [7], which we
refer to as TinyFlowNet. This is necessitated by two considerations: first, we need the flow com-
putation to be sufficiently fast to support RL training and, second, the input resolution used for RL
is much smaller than that assumed by the full FlowNet. TinyFlowNet consists of a 5-layer encoder
and a 2-layer decoder, compared to a 9-layer encoder and a 4-layer decoder in the original FlowNet.
Moreover, there are only two strided layers, the maximum number of channels is 128, and all convo-
lutional kernels are 3 × 3. We find that this smaller network is sufficiently expressive to accurately
estimate optical flow in environments we consider in this work, while processing 225 mini-batches
of 8 image pairs per second on a Geforce 1080 Ti GPU. The full TinyFlowNet architecture is shown
in Table S3.

We investigate two approaches to training the two-network system: pre-training the flow net-
work separately or training both networks from scratch with RL. In the first case, we pre-train
TinyFlowNet in a supervised fashion on data extracted automatically from the RL environments
using FlowNet 2.0 [15] to provide targets for training; see Figure 2. This student-teacher setup
allows training without ground truth optical flow, making the approach applicable to arbitrary envi-
ronments. In the second case, we initialize both networks with random weights and train the whole
system from scratch with RL.

Figure 2: Training of TinyFlowNet using FlowNet 2.0 [15] as a teacher.
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3.1 Training details

We use images of resolution 84× 84 pixels as sensory observations in all environments. The action
space varies depending on the environment. We train all agents for 20 million time steps. This
is longer than what is typically used for PPO [25], since training from raw sensory observations
is more difficult than from low-dimensional state vectors. We use the same hyperparameters as
used by Schulman et al. [25] for Atari environments. However, we adjust the learning rate to 1 ×
10−4 and the number of epochs to 2, which resulted in better and more stable performance in our
environments.

The pre-training of TinyFlowNet is illustrated in Figure 2. We compute optical flow in high reso-
lution (512 × 512 pixels) using FlowNet 2.0. This optical flow is downsampled to 84 × 84 pixels
and used as target for training TinyFlowNet. To ensure accurate optical flow prediction, we trained
a separate flow network for each of the environments, by extracting a dataset of 20,000 image pairs.
For the standard control tasks (Walker, Swimmer, Hopper) we execute random actions to generate
training data. In our new tasks with moving objects, we keep the robot arm static while creating the
dataset. This makes the optical flow estimation focus on the moving objects.

4 Experiments

We compare the flow-based approach against several baselines on standard control tasks and on
a series of new tasks that require interaction with dynamic objects. We evaluated the following
models:

• Image: processes the current image by a feedforward CNN

• Image stack: processes a stack of the 2 most recent images by a feedforward CNN

• LSTM: processes the current image by a CNN with an LSTM layer

• Segmentation: processes the current image and a segmentation mask of the moving object
by a feedforward CNN. The mask is a motion segmentation taken from the predicted optical
flow

• Flow: processes the current image and the optical flow between the current frame and the
previous one by a feedforward CNN. Flow is computed in the backward direction to ensure
that the object in the flow image is co-located with the object in the color image

4.1 Standard control tasks

We started by experimenting with three standard control tasks from the OpenAI Gym framework [3]:
Walker, Swimmer, and Hopper. We additionally adjusted these environments with visual modifica-
tions from the DeepMind Control Suite [28]. Typically, these tasks are trained with the robot’s
state vector provided as input to the network. We rather focused on learning solely from raw im-
ages and investigated whether information about motion, represented by optical flow, helps learning
better policies. Because of the high variance of the performance on these tasks [14], we trained
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Figure 3: Training curves on standard control tasks with pixel control. We trained 8 models in each
condition. Lines show the mean reward; shaded areas show the standard deviation.
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(a) 2D Catcher (b) 2D Chaser (c) 3D Catcher (d) 3D KeepUp

Figure 4: The tested environments with moving objects.

each model 8 times with different random seeds and show the average performance and the standard
deviation in Figure 3.

Although there are no moving objects in these tasks apart from the agent itself, providing optical flow
as input clearly improves results compared to providing just the stack of images. This supports our
initial hypotheses that motion information is very useful in dynamic environments and that the agent
has problems deriving good motion features from the plain image stack using a standard network
architecture.

4.2 Tasks with dynamic objects

We analyze the effect of motion perception in more detail on a specifically designed set of tasks,
where the environment surrounding the robot contains moving objects. In such environments, the
use of motion information is expected to be even more crucial than on the control tasks above.
In these experiments we complement the high-dimensional sensory observations with the vector
containing the current state of the robot.

We implemented four such environments in the MuJoCo simulator [30] by modifying OpenAI Gym
tasks [3]. Two of these are set up in a two-dimensional space and two in a three-dimensional space.
The environments are illustrated in Figure 4. All tasks terminate after 250 time steps.

• 2D Catcher. A 2-link 2D robotic arm is fixed in the center of the field as in the standard
reacher environment. The target is a ball moving from the top of the screen towards the
bottom, reflecting from two walls like in billiard. The aim is to “catch” the target by
making the end effector of the arm overlap with the target. After the ball is caught a new
target appears from the top.

• 2D Chaser. A 2-link 2D robotic arm is fixed in the center of the field as in the previous
task, but the target now reflects from the four borders. The aim is to keep the end effector
of the robotic arm as close to the target as possible while the target keeps moving.

• 3D Catcher. A 3-link 3D robotic arm is fixed on a base. Moving targets follow randomized
parabolic trajectories in the vicinity of the arm. The aim is to “catch” the target with the
end effector of the arm.

• 3D KeepUp. A 3-link 3D robotic arm is fixed on a base and has a square pad fixed on
its end effector. A ball falls down from the top under the effect of gravity. The aim is to
reflect the ball with the pad and keep reflecting it every time it falls, by moving the arm and
rotating the pad.

Like in the standard MuJoCo control tasks, each reward function also contains a motion penalty term
to reduce unnecessary movement of the robot arm. Further details are provided in the sections below.
Environment configuration files, reward parameters, implementations, and a video showing the tasks
and qualitative results will be made available on the project page: https://lmb.informatik.
uni-freiburg.de/projects/flowrl/.

2D environments. In 2D environments the robots are controlled by applying torque at the joints.
In both tasks the agent receives a dense shaping reward depending on the distance to the target. In
addition, it receives a sparse scoring reward when the distance between the end effector and the
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Figure 5: Performance on the four tasks that involve moving objects. The agent that uses optical
flow consistently performs much better than all baselines, including LSTM and an agent provided
with a stack of recent frames.

target falls below a fixed threshold (corresponding to overlap of the end effector with the target). In
case of the 2D Catcher, this counts as a catch and a new ball is spawn, while in case of 2D Chaser
the ball keeps moving.

The achieved scores are shown in Figure 5 (top). On both tasks, the use of optical flow clearly
improved the performance of the agent. Alternative strategies that would allow the agent to use
motion information, such as LSTM units or the image stack, hardly improved over the use of a
single image. On the 2D Catcher task, they even performed slightly worse, likely due to the extra
capacity needed to process the multiple frames but without the benefit of using true motion features.
On the 2D Chaser, the agent using LSTM units learned a suboptimal “lazy” policy, which focuses
on the shaping reward, but is not able to discover efficient behaviors leading to progress with regard
to the sparse scoring reward.

Providing the segmentation mask of the moving ball also did not reach the same performance as
providing the optical flow. This shows that the optical flow is not just used for localizing the moving
object, but also for predicting its future position. This is particularly important for the 2D Catcher
task, where the agent easily misses the ball without a good prediction of the future ball position. The
arm is not fast enough to catch up with the falling ball when it was missed.

Varying the target speed. The faster the motion in the environment relative to the robot’s speed,
the more important is the ability to plan ahead and, in order to do so, to estimate the motion of the
objects. We performed an experiment to verify this hypothesis empirically. We varied the speed of
the target in the 2D Catcher task and measured the scores of all methods.

Figure 6 shows the relative performance of all agents to the flow-based agent as a function
of the speed of the target. As expected, the slower the target, the closer the performance
of all methods. However, even for slow targets the flow-based agent has a small advantage.
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Figure 6: Results on the 2D Catcher
task when varying the speed of the tar-
get. We plot the score relative to an agent
equipped with optical flow.

This might be because even for slow targets motion in-
formation helps catching them slightly faster, or, alter-
natively, because optical flow is not only useful for pre-
dicting the future trajectory of objects, but also for de-
tecting moving objects which is useful even if the ob-
jects are slow.

3D environments. In the 3D environments we pro-
vide two perpendicular camera views to the agent for
it to have sufficient perceptual information to act in 3D
space (shown in Figure S1). The agent must combine
the information from both views to control the end ef-
fector relative to the target in 3D space. The robots in
these environments are position controlled. In the case
of the 3D Catcher the action space is 3-dimensional and
includes the movement along the x, y, and z axis. The
shaping reward is the distance to the target future loca-
tion in the plane of the end effector. The agent scores for
each catch. In the 3D KeepUp task the shaping reward is the distance along the x-y plane between
the target and the middle of the square pad. The agent scores each time it successfully reflects the
target.

The results are shown in Figure 5 (bottom). In both cases, the flow-based agent learned effective
policies, while the agent provided with an image, an image stack, or a LSTM layer could not solve
the task. The agent with a motion segmentation mask outperformed other baselines on the 3D
Catcher task, but could not reach the score of the flow-based agent.

Analysis of motion representations. In order to better understand the effect of motion represen-
tations on learning, we experiment with providing the agent with a low-dimensional velocity vector
of the target instead of per-pixel optical flow. We compute the velocity vector from the optical flow
prediction and feed it to the RL agent as an additional vector input. We also measure the perfor-
mance of the RL agent with ground truth optical flow or velocity vector. The results are shown in
Figure S4. Overall, the agent with access to per-pixel optical flow outperforms the velocity vector
input. The agent with optical flow ground truth performs better in the 2d environments, indicating
that the TinyFlowNet results could potentially be improved by using a larger network with better
optical flow prediction.

4.3 Learning motion features with deep RL

The previous experiments show that availability of a pre-trained explicit optical flow estimator sub-
stantially improves the agent’s performance on dynamic tasks. The typical network architecture
used in most RL works, even when equipped with LSTM units, is not able to learn a good motion
representation just from the reward signals. Is this still true if we train RL from scratch with a more
powerful network?

We experiment with two larger network architectures. The first one is the one used in experiments
with pre-trained optical flow: a TinyFlowNet with a normal RL network on top, but trained end-
to-end from scratch. The second one is a residual network [13] with 8 convolutional layers and
approximately the same number of parameters as the combination of the TinyFlowNet with the
normal RL network (the exact architecture is shown in Table S2).

In addition to the four environments introduced above, here we experiment with more difficult ver-
sions of the 2D Chaser and 3D KeepUp tasks. In 2D Chaser with Multi-Texture, in each episode
the background of the environment is randomly selected out of four different backgrounds (shown
in Figure S2). This increases the perceptual complexity of the task. In 3D KeepUp with High Mo-
tion Penalty the motion penalty in the reward is increased, to further reduce the overall speed and
unnecessary movement of the robot.

The results on all six environments are shown in Figure 7. Surprisingly, and in contrast to the
architectures evaluated in the previous section, for both advanced architectures training from scratch
works very well in some of the environments. However, in the more complex tasks – 3D Catcher,
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Figure 7: Comparison of a fixed pre-trained TinyFlowNet, a TinyFlowNet trained from scratch
within the RL framework, and a deep residual RL network without the TinyFlowNet architecture.

2D Chaser with Multi-Texture, and 3D KeepUp with High Motion Penalty – training from scratch
does not yield a successful policy. In particular, in 3D KeepUp with High Motion Penalty training
from scratch gets stuck in a local optimum of not moving the robot arm, while the agent with pre-
trained TinyFlowNet is still able to solve the task. This illustrates that although in some cases a
larger architecture can learn the necessary motion features based only on the reward signal, the use
of a pre-trained optical flow estimator is still beneficial and allows for robust training on a wider
range of environments.

The two advanced architectures reach similar scores in all environments; however, the architecture
including TinyFlowNet has the advantage of being more interpretable, since it predicts an interme-
diate optical-flow-like two-channel representation. We show example outputs of an automatically
learned TinyFlowNet in Figure S3. To visualize the two-channel outputs of the network, we assign
them to two color channels of an RGB image: red and blue. Interestingly, the network learned to
represent the motion of the ball and largely ignore the motion of the robotic arm. The representation
of the motion generated by the network is different from the standard optical flow representation:
instead of encoding the (x,y) displacements in the two channels of the result, the network displaces
the content of the two channels spatially in the direction of the motion.

5 Conclusion

In this work we showcased the importance of an explicit motion representation for control tasks
that involve dynamic objects. We presented the efficient integration of an optical flow network
into a reinforcement learning setup and showed that the use of optical flow consistently helped on
all tasks that involve dynamics. Interestingly, on several tasks, motion features were learned in an
unsupervised manner just from task-specific rewards and achieved the same high performance as the
network that was trained to predict optical flow in a supervised manner. On the more difficult tasks,
unsupervised learning was not successful and kickstarting the use of motion by supervised learning
of optical flow was necessary.

Our work opens up several opportunities for future research. First, it would be interesting to apply
similar methods to more complex environments and eventually to physical robotic systems. We
expect that pre-trained perception systems would be even more beneficial in these more complex
conditions, and, moreover, the use of the abstract optical flow representation may simplify the trans-
fer from simulation to the real world [5, 22]. Second, rather than pre-training optical flow using
supervised learning, one could use unsupervised methods based on frame prediction [10, 33]. Third,
learning of motion features just from rewards in several tasks is interesting by itself and only suc-
ceeded due to the deeper network architectures. How the use of suitable network architectures may
generally help improve representation learning in control setups is worth further investigation.
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Supplementary Material

Figure S1: Side and top view of the 3D Catcher (top) and 3D KeepUp (bottom) tasks which are
provided to the RL agent.

Figure S2: Four backgrounds of the 2D Multi-Texture Chaser task.
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Network architectures

Network part Input Channels Kernel Stride Layer type

Perception

Pixel input 32 8× 8 4
ConvolutionsPrevious layer 64 4× 4 2

Previous layer 64 3× 3 1
Previous layer Flatting

Middle part
Vector input 64 Fully connected
Perception output + Previous layer Concatenation
Previous layer 64 Fully connected

Policy Middle part output #actions Fully connected

Baseline Middle part output 1 Fully connected

Table S1: Reinforcement Learning network architecture. Each convolution uses no padding.

Input Output Channels Kernel Stride Padding Layer type

Pixel input 64 3× 3 1 - Convolutions
Previous layer skip 1 128 3× 3 2 -

Previous layer 128 3× 3 1 0-padding Convolutions
Previous layer 128 3× 3 1 0-padding
Previous layer, skip 1 Summation

Previous layer skip 2 128 3× 3 2 - Convolution

Previous layer 128 3× 3 1 0-padding Convolutions
Previous layer 128 3× 3 1 0-padding
Previous layer, skip 2 Summation

Previous layer 128 3× 3 2 - Convolution
Previous layer Perception output 110 Fully connected

Table S2: Deep Perception architecture with residual connections.

Input Output Channels Kernel Stride Layer type

Pixel input skip 1.0 64 3× 3 1

Convolutions
Previous layer 64 3× 3 2
Previous layer skip 0.5 128 3× 3 1
Previous layer 128 3× 3 2
Previous layer 128 3× 3 1
Previous layer 32 4× 4 2 Upconvolution
Previous layer, skip 0.5 tmp Concatenation

tmp half resolution flow 2 3× 3 1 Convolution
Previous layer upsampled flow 2 nearest neighbor Upsample

tmp 16 4× 4 2 Upconvolution
Previous layer, skip 1.0 Concatenation
Previous layer flow 2 3× 3 1 Convolution

Table S3: TinyFlowNet architecture. Each convolution and upconvolution uses zero padding.
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Image pair Prediction Difference img

Figure S3: Example outputs of a TinyFlowNet trained from scratch with RL on the 2D Chaser
task. Note how the moving object is clearly detected and the predicted values change depending on
the motion of the object. The two images on the right show the difference of the two frames. To
make the difference-images most similar to the prediction of the network, we subtract the grayscale
versions of the two frames and assign positive values of the result to the red channel and negative
values to the blue channel. In contrast to naive image difference, the network mostly ignores the
motion of the arm.
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Figure S4: Comparison between different motion representations. Image Flow uses the optical flow
as an additional pixel input. Vector Flow extracts the velocity vector of the target from the optical
flow by taking the average of the 6 largest flow values in each dimension. The velocity vector is
then used as an additional input to the agent. The Vector Flow approach is not easily applicable to
tasks with more complex structure of motion, such as standard MuJoCo control tasks. The dashed
lines show the performance of an RL agent that has been provided with ground truth optical flow
instead of the TinyFlowNet prediction. We calculated the pixel optical flow ground truth only for
the 2d environments. The ground truth velocity vectors are taken directly form the simulation.
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