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Abstract: In this paper we propose a real-time, calibration-agnostic and effective
localization system for self-driving cars. Our method learns to embed the online
LiDAR sweeps and intensity map into a joint deep embedding space. Localiza-
tion is then conducted through an efficient convolutional matching between the
embeddings. Our full system can operate in real-time at 15Hz while achieving
centimeter level accuracy across different LiDAR sensors and environments. Our
experiments illustrate the performance of the proposed approach over a large-scale
dataset consisting of over 4000km of driving.
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1 Introduction

One of the fundamental problems in autonomous driving is to be able to accurately localize the
vehicle in real time. Different precision requirements exist depending on the intended use of the
localization system. For routing the self-driving vehicle from point A to point B, precision of a few
meters is sufficient. However, centimeter-level localization becomes necessary in order to exploit
high definition (HD) maps as priors for robust perception, prediction, and safe motion planning.

Despite many decades of research, reliable and accurate localization remains an open problem, es-
pecially when very low latency is required. Geometric methods, such as those based on the iterative
closest-point algorithm (ICP) [1, 2] can lead to high-precision localization, but remain vulnerable in
the presence of geometrically non-distinctive or repetitive environments, such as tunnels, highways,
or bridges. Image-based methods [3, 4, 5, 6] are also capable of robust localization, but are still
behind geometric ones in terms of outdoor localization precision. Furthermore, they often require
capturing the environment in different seasons and times of the day as the appearance might change
dramatically.

A promising alternative to these methods is to leverage LiDAR intensity maps [7, 8], which encode
information about the appearance and semantics of the scene. However, the intensity of commercial
LiDARs is inconsistent across different beams and manufacturers, and prone to changes due to envi-
ronmental factors such as temperature. Therefore, intensity based localization methods rely heavily
on having very accurate intensity calibration of each LiDAR beam. This requires careful fine-tuning
of each vehicle to achieve good performance, sometimes even on a daily basis. Calibration can be
a very laborious process, limiting the scalability of this approach. Online calibration is a promising
solution, but current approaches fail to deliver the desirable accuracy. Furthermore, maps have to be
re-captured each time we change the sensor, e.g., to exploit a new generation of LiDAR.

In this paper, we address the aforementioned problems by learning to perform intensity based lo-
calization. Towards this goal, we design a deep network that embeds both LiDAR intensity maps
and online LiDAR sweeps in a common space where calibration is not required. Localization is
then simply done by searching exhaustively over 3-DoF poses (2D position on the map manifold
plus rotation), where the score of each pose can be computed by the cross-correlation between the
embeddings. This allows us to perform localization in a few milliseconds on the GPU.

We demonstrate the effectiveness of our approach in both highway and urban environments over
4000km of roads. Our experiments showcase the advantages of our approach over traditional meth-
ods, such as the ability to work with uncalibrated data and the ability to generalize across different
LiDAR sensors.
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Figure 1: An example of a bird’s eye view (BEV) LiDAR intensity map used by our system. It
encodes rich information on both appearance and geometry structure information for localization.
The orange square highlights an example of geometric structure captured by the BEV images, while
the green one highlights an example of intensity structure.

2 Related Work

Simultaneous Localization and Mapping: Given a sequence of sensory inputs (e.g., LiDAR
point clouds, color and/or depth images) simultaneous localization and mapping (SLAM) ap-
proaches [9, 10, 11] reconstruct a map of the environment and estimate the relative poses between
each input and the map. Unfortunately, since the estimation error is usually biased, accumulated
errors cause gradual estimation drift as the robot moves, resulting in large errors. Loop closure has
been largely used to fix this issue. However, in many scenarios such as highways, it is unlikely
that trajectories are closed. GPS measurements can help reduce the drift issue through fusion but
commercial GPS sensors are not able to achieve centimeter-level accuracy.

Localization Using Light-weight Maps: Light-weight maps, such as Google maps and Open-
StreetMap, draw attention for developing affordable localization efforts. While only requiring small
amounts of storage, they encode both the topological structure of the road network, as well as its
semantics. Recent approaches incorporated them to compensate for large drift [12, 13] and keep the
vehicle associated with the road. However, these methods are still not yet able to achieve centimeter-
level accuracy.

Localization Using High-definition Maps: Exploiting high-definition maps (HD maps) has
gained attention in recent years on both indoor and outdoor localization [4, 7, 8, 14, 15, 16, 17, 18].
The general idea is to build an accurate map of the environment offline through aligning multiple
sensor passes over the same area. In the online stage the system is able to achieve sub-meter level
accuracy by matching the sensory input against the HD-map. In their pioneering work, Levinson
et al. [7] built a LiDAR intensity map offline using Graph-SLAM [19] and used particle filtering and
Pearson product-moment correlation to localize against it. In a similar fashion, Wan et al. [18] use
BEV LiDAR intensity images in conjunction with differential GPS and an IMU to robustly localize
against a pre-built map, using a Kalman filter to track the uncertainty of the fused measurements over
time. Uncertainty in intensity changes can be handled through online calibration and by building
probabilistic map priors [8]. However, these methods require accurate calibration (online or offline)
which is difficult to achieve. Yoneda et al. [17] proposed to align online LiDAR sweeps against an
existing 3D prior map using ICP. However, this approach suffers in the presence of repetitive geo-
metric structures, such as highways and bridges. The work of Wolcott and Eustice [20] combines
height and intensity information against a GMM-represented height-encoded map and accelerates
registration using branch and bound. Unfortunately, the inference speed cannot satisfy the real-time
requirements of self-driving. Visual cues from a camera can also be utilized to match against 3D
prior maps [3, 4, 15]. However, these approaches either require computationally demanding on-
line 3D map rendering [15] or lack robustness to visual apperance changes due to the time of day,
weather, and seasons [3, 4]. Semantic cues such as lane markings can also be used to build a prior
map and exploited for localization [16]. However, the effectiveness of such methods depends on
perception performance and does not work for regions where such cues are absent.

Matching Networks: Convolutional matching networks that compute similarity between local
patches have been exploited for tasks such as stereo [21, 22, 23], flow estimation [24, 25], global
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Figure 2: The full end-to-end architecture of our proposed deep localization network.

feature correspondence [26], and 3D voxel matching [27]. In this paper, we extend this line of work
for the task of localizing in a known map.

Learning to Localize: Training machine learning models to conduct self-localization is an emerg-
ing field in robotics. The pioneering work of Shotton et al. [28] trained random forest to detect
corresponding local features between a single depth image and a pre-scanned indoor 3d map. [29]
utilized CNNs to detect text from large shopping malls to conduct indoor localization. Kendall et al.
[30] proposed to directly regress a 6-DoF pose from a single image. Neural networks have also
been used to learn representations for place recognition in outdoor scenes, achieve state-of-the-art
performance in localization-by-retrieval [5]. Several algorithms utilize deep learning for end-to-end
visual odometry [31, 32], showing promising results but still remaining behind traditional SLAM
approaches in terms of performance.

Very recently, Bloesch et al. [33] learn a CNN-based feature representation from intensity images to
encode depth, which is used to conduct incremental structure-from-motion inference. At the same
time, the methods of Brachmann and Rother [34] and Radwan et al. [35] push the state of the art in
learning-based localization to impressive new levels, reaching centimeter-level accuracy in indoor
scenarios, such as those in the 7Scenes dataset, but not outdoor ones.

3 Robust Localization Using LiDAR Data

In this section, we discuss our LiDAR intensity localization system. We first formulate localization
as deep recursive Bayesian estimation problem and discuss each probabilistic term. We then present
our real-time inference algorithm followed by a description of how our model is trained.

3.1 LiDAR Localization as a Deep Recursive Bayesian Inference

We perform high-precision localization against pre-built LiDAR intensity maps. The maps are
constructed from multiple passes through the same area, which allows us to perform additional
post-processing steps, such as dynamic object removal. The accumulation of multiple passes also
produces maps which are much denser than individual LiDAR sweeps. The maps are encoded as
orthographic bird’s eye view (BEV) images of the ground. We refer the reader to Fig. 1 for a sample
fragment of the maps used by our system.

Let x be the pose of the self-driving vehicle (SDV). We assume that our sensors are calibrated and
neglect the effects of suspension, unbalanced tires, and vibration. This enables us to simplify the
vehicle’s 6-DoF pose to only 3-DoF, namely a 2D translation and a heading angle, i.e., x = {x, y, θ},
where x, y ∈ R and θ ∈ (−π, π]. At each time step t, our LiDAR localizer takes as input the
previous pose most likely estimate x∗t−1 and uncertainty Belt−1(x), the vehicle dynamics ẋt, the
online LiDAR image It, and the pre-built LiDAR intensity mapM. In order to generate I(t), we
aggregate the k most recent LiDAR sweeps using the IMU and wheel odometry. This produces
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(a) Online LiDAR Image. (b) Online embedding. (c) Intensity map. (d) Map embedding.

Figure 3: One example of the input and map embeddings.

denser online LiDAR images than just using the most recent sweep, helping localization. Since k is
small, drift is not an issue.

We then formulate the localization problem as deep recursive bayesian inference problem. We
encode the fact that the online LiDAR sweep should be consistent with the map at the vehicle’s
location, consistent with GPS readings and that the belief updates should be consistent with the
motion model. Thus

Belt(x) = η · PLiDAR(It|x;w)PGPS(Gt|x)Belt|t−1(x|Xt) (1)
where w is a set of learnable parameters, It, Gt and Xt are the LiDAR, GPS, and vehicle dynamics
observation respectively. Bel(xt) is the posterior distribution of the vehicle pose at time t given
all the sensor observations until step t; η is a normalization factor. We do not need to calculate it
explicitly because we discretize the belief space, so normalization is trivial.

LiDAR Matching Model: Given a candidate pose x, our LiDAR matching probability PLiDAR
encodes the agreement between the current online LiDAR observation and the map indexed at the
hypothesized pose x. To compute the probability, we first project both the mapM and the online
LiDAR intensity image I into an embedding space using two deep neural networks. We then warp
the online embedding according to each pose hypothesis, and compute the cross-correlation between
the warped online embedding and the map embedding. Formally, this can be written as:

PLiDAR ∝ s (π (f(I;wO),x) , g(M;wM)) , (2)
where f(I;wO) and g(M;wM) are the deep embedding networks of the online LiDAR image and
the map, respectively, and wo and wm are the networks’ parameters. π represents a 2D rigid warp-
ing function meant to transform the online LiDAR’s embedding into the map’s coordinate frame
according to the given pose hypothesis x. Finally, s represents a cross-correlation operation.

Our embedding functions f( · ;wO) and g( · ;wM) are customized fully convolutional neural net-
works. The first branch f( · ;wO) takes as input the bird’s eye view (BEV) rasterized image of the
k most recent LiDAR sweeps (compensated by ego-motion) and produces a dense representation at
the same resolution as the input. The second branch g( · ;wM) takes as input a section of the LiDAR
intensity map, and produces an embedding with the same number of channels as the first one, and
the spatial resolution of the map.

GPS Observation Model: The GPS observation model encodes the likelihood of GPS observation
given a location proposal. We approximate uncertainty of GPS sensory observation using a Gaussian
distribution:

PGPS ∝ exp

(
− (gx − x)2 + (gy − y)2

σ2
GPS

)
(3)

where gx and gy is the GPS observation converted from Universal Transverse Mercator (UTM)
coordinate to map coordinate.

Vehicle Motion Model: Our motion model encodes the fact that the inferred vehicle velocity
should agree with the vehicle dynamics, given previous time’s belief. In particular, wheel odometry
and IMU are used as input to an extended Kalman filter to generate an estimate of the velocity of
the vehicle. We then define the motion model to be

Belt|t−1(x|Xt) =
∑

xt−1∈Rt−1

P (x|Xt,xt−1)Belt−1(xt−1) (4)
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where
P (x|Xt,xt−1) ∝ ρ (x	 (xt−1 ⊕Xt)) , (5)

with ρ = exp
(
−zTΣ−1z

)
is a Gaussian error function. Σ is the covariance matrix andRt−1 is our

three-dimensional search range centered at previous step’s x∗t−1. ⊕, 	 are the 2D pose composition
operator and inverse pose composition operator respectively, which, following Kümmerle et al. [36]
are defined as

a⊕b =

[
xa + xb · cos θa − yb · sin θa
ya + xb · sin θa + yb · cos θa

θa + θb

]
,a	b =

[
(xa − xb) · cos θb + (xb − yb) · sin θb
−(xa − xb) · sin θb + (xb − yb) · cos θb

θa − θb

]
.

Network Architectures: The f and g functions are computed via multi-layer fully convolutional
neural networks. We experiment with a 6-layer network based on the patch matching architecture
used by Luo et al. [22] and with LinkNet by Chaurasia and Culurciello [37]. We use instance
normalization [38] after each convolutional layer instead of batch norm, due to its capability of
reducing instance-specific mean and covariance shift. Our embedding output has the same resolution
as the input image, with a (potentially) multi-dimensional embedding per pixel. The dimension is
chosen based on the trade-off between performance and runtime. We refer the reader to Fig. 3 for
an illustration of a single-channel embedding. All our experiments use single-channel embeddings
for both online LiDAR, as well as the maps, unless otherwise stated.

3.2 Online Localization

Estimating the pose of the vehicle at each time step t requires solving the maximum a posteriori
problem:

x∗t = arg max
x

Belt(x) = arg max
x

η · PLiDAR(It|x;w)PGPS(gt|x)Belt|t−1(x). (6)

This is a complex inference over the continuous variable x, which is non-convex and requires in-
tractable integration. These types of problems are typically solved with sampling approaches such
as particle filters, which can easily fall into local minima. Moreover, most particle solvers have
non-deterministic run times, which is problematic for safety-critical real-time applications like self-
driving cars.

Instead, we follow the histogram filter approach to compute x∗t through a search-based method
which is much more efficient, given the characteristics of the problem. To this end, we discretize
the 3D search space over x = {x, y, θ} as a grid, and compute the term Belt(x) for every cell
of our search space. We center the search space at the so-called dead reckoning pose ẋt|t−1 =
arg maxx Belt|t−1(x), which represents the pose of the vehicle at time t estimated using IMU and
wheel encoders. Inference happens in the vehicle coordinate frame, with x being the longitudinal
offset along the car’s trajectory, y, the latitudinal offset, and θ the heading offset. The search range is
selected in order to find a compromise between the computational cost and the capability of handling
large drift.

In order to do inference in real-time, we need to compute each term efficiently. The GPS term
PGPS(gt|x) is a simple Gaussian kernel. The motion Belt|t−1(x) computation is quadratic w. r. t.
the number of discretized states. Given the fact that it is a small neighborhood around the dead
reckoning pose, the computation is very fast in practice. The most computationally demanding
component of our model is the fact that we need to enumerate all possible locations in our search
range to compute the LiDAR matching term PLiDAR(It|x;w). However, we observe that computing
the inner product scores between two 2D deep embeddings across all translational positions in our
(x, y) search range is equivalent to convolving the map embedding with the online embedding as
a kernel. This makes the search over x and y much faster to compute. As a result, the entire
optimization of PLiDAR(It|x;w) can be performed using nθ convolutions, where nθ is the number
of discretization cells in the rotation (θ) dimension.

State-of-the-art GEMM/Winograd based (spatial) GPU convolution implementations are often op-
timized for small convolutional kernels. Using these for the GPU-based convolutional matching
implementation is still too slow for our real-time operation goal. This is due to the fact that our
“convolution kernel” (i.e., the online embedding) is very large in practice (in our experiments the
size of our online LiDAR embedding is 600×480, the same size as the online LiDAR image). In or-
der to speed this up, we perform this operation in the Fourier domain, as opposed to the spatial one,
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Error vs Traveling Dist Lateral Histogram Longitudinal Histogram

Figure 4: Quantitative Analysis. From left to right: localization error vs traveling distance; lateral
error histogram per each timestamp, longitudinal histogram per each step.
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Figure 5: Cumulative error curve. From left to right: lateral, longitudinal, total translational error.

according to convolution theorem: f ∗g = F−1(F(f)�F(g)), where “�” denotes an element-wise
product. This reduces the theoretical complexity from O(N2) to O(N logN), which translates to
massive improvements in terms of run time, as we will show in Section 4.

Therefore, we only need to run the embedding networks once, rotate the computed online LiDAR
embedding nθ times, and convolve each rotation with the map embedding to get the probability for
all the pose hypotheses in the form of a score map S. Our solution is therefore globally optimal over
our discretized search space including both rotation and translation. In practice, the rotation of our
online LiDAR embedding is implemented using a spatial transformer module [39], and generating
all rotations takes 5ms in total (we use nθ = 5 in all our experiments).

In order to handle robustness to observation noise and bring smooth localization results to avoid
sudden jumps, we exploit a soft version of the argmax [8], which is a trade-off between center of
mass and argmax:

x∗t =

∑
x Belt(x)α · x∑
x Belt(x)α

(7)

where α is a temperature hyper-parameter larger than 1. This gives us an estimation that takes the
uncertainty of the prediction into account at time t.

3.3 Learning

The localization system is end-to-end differentiable, enabling us to learn all parameters jointly
using back-propagation. We find that a simple cross-entropy loss is sufficient to train the sys-
tem, without requiring any additional, potentially expensive terms, such as a reconstruction loss.
We define the cross-entropy loss between the ground-truth position and the inferred score map as
L = −

∑
i pi,gt logpi, where the labels pi,gt are represented as one-hot encodings of the ground

truth position, i.e., a tensor with the same shape as the score map S, with a 1 at the correct pose.

4 Experimental Results

Dataset: We collected a new dataset comprising over 4,000km of driving through a variety of
urban and highway environments in multiple cities/states in North America, collected with two types
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Lidar Type BLidar Type A

Figure 6: A comparison between the two LiDAR sensors: left: the different intensity profiles of
their sweeps over the same location; right: the color-mapped intensity image.

Table 1: Localization Performance on Highway-LidarA Dataset (Per Sequence)

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total ≤ 100m ≤ 500m ≤ End

Dynamics Yes No 439.21 863.68 1216.01 0.46 98.14 100.00
Raw LiDAR Yes No 1245.13 590.43 1514.42 1.84 81.02 92.49

ICP Yes No 1.52 5.04 5.44 3.50 5.03 7.14

Ours (LinkNet) No No 3.87 4.99 7.76 0.35 0.35 0.72
Ours (LinkNet) Yes No 3.68 5.03 7.64 0.00 0.71 1.08
Ours (LinkNet) Yes Yes 3.19 4.86 7.09 0.00 0.00 0.35

of LiDAR sensors. According to the scenarios we split our dataset into Highway-LidarA and Misc-
LidarB, where Highway-LidarA contains over 400 sequences for a total of over 3,000km of driving
for training and validation. We select a representative and challenging subset of 282km of driving
for testing, ensuring that there is no geographic overlap between the splits. All these sequences are
collected by a LiDAR type A. Misc-LidarB contains 79 sequences with 200km of driving over a mix
of highway and city collected by a different LiDAR type B in a different state. LiDARs A and B
differ substantially in their intensity output profiles, as shown in Fig. 6.

Experimental Setup: We randomly extracted 230k training samples from the training sequences.
For each training sample, we aggregate the five most recent online LiDAR sweeps to generate the
BEV intensity image using vehicle dynamics, corresponding to 0.5 seconds of LiDAR scan. In
such a short time drift is negligible. Our ground-truth poses are acquired through an expensive high
precision offline matching procedure with up to several centimeter uncertainty. We rasterize the
aggregated LiDAR points to create a LiDAR intensity image. Both the online intensity image and
the intensity map are discretized at a spatial resolution of 5cm covering a 30m×24m region. During
matching, we use the same spatial resolution, plus a rotational resolution of 0.5◦, with a total search
range of 1m × 1m × 2.5◦around the dead reckoning pose. We report the median error as well as
the failure rate. The median error reflects how accurate the localization is in the majority of cases
while the failure rates reflect the worst case performance In particular, we define “failure” if there is
at least a frame with localization error over 1m. In addition to these per-sequence metrics, we also
plot the per-frame cumulative localization error curve in Fig. 5.

Implementation Details: We manually chose the following hyper-parameters through validation,
namely the motion model variance Σ = diag([3.0, 3.0, 3.0]), GPS’s observation variance σgps =
10.0, temperature constant α = 2.0. We also conduct two ablation studies. Our first ablation verifies
whether the motion prior defined in Eq. (4) is helpful. We evaluate algorithm with and without
this term, denoted as Motion in Table 1. Our second ablation evaluates whether a probabilistic
MLE proposed in Eq. (7) helps improve performance, denoted as Prob. The none-probabilistic
is achieved through changing the soft-argmax in Eq. (7) to a hard argmax. We implement our full
inference algorithm in PyTorch 0.4. The networks are trained using Adam over four NVIDIA 1080Ti
GPUs with initial learning rate at 0.001.
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Table 2: Localization Performance on Misc-LidarB trained on Highway-LidarA (Per Sequence)
Median Error (cm) Failure Rate (%)

Method Motion Prob Lat Lon Total ≤ 100m ≤ 500m ≤ End
Dynamics Only Yes No 195.73 322.31 468.53 6.13 68.66 84.26

ICP Yes No 2.57 15.29 16.42 0.46 28.43 37.53
Ours (Transfer) Yes No 6.95 6.38 11.73 0.00 0.71 1.95

Comparison to Other Methods: We compare our algorithm against several baselines. The raw
matching consists of performing the matching-based localization in a similar manner to our method
but only use the raw intensity BEV online and map images, instead of the learned embeddings.
The ICP baseline conducts point-to-plane ICP between the raw 3D LiDAR points against the 3D
pre-scanned localization prior at 10Hz, initialized in a similar manner as us using the previous
estimated location plus the vehicle dynamics. This ensures good quality of initialization, as required
by algorithms from ICP family.

Localization Performance: As shown in Table 1, our approach achieves the best performance
among all the competing algorithms in terms of failure rate. Both probabilistic inference and motion
prior further improves the robustness of our method. Our ICP baseline is competitive in terms of
median error, especially along lateral direction, but the failure rate is significantly higher. It is also
more computationally demanding and requires 3D maps. Both dynamics-only and raw intensity
matching result in large drift. Moreover, we have observed that deeper architectures and the proba-
bilistic inference are generally helpful. Fig. 4 shows the localization error as a function of the travel
distance aggregated across all sequences from the Highway-LidarA test set. The solid line denotes
the median and the shaded region denotes the 95% area, together with the distribution of lateral and
longitudinal errors per frame. Fig. 5 compares our approach to ICP in terms of cumulative errors
with 95%-percentile error reported. From this we can see our method significantly outperforms ICP
in terms of the worst-case behavior.

Domain Shift: In order to show that our approach generalize well across LiDAR sensors, we
conduct a second experiment, where we train our network on Highway-LidarA, which is purely
highway, collected using LiDAR A, and test on the test set of Misc-LidarB which is highway + city,
collected by a different LiDAR (type B) in a different state. In order to better highlight the difference,
in Fig. 6 we show two LiDARs intensity value distributions and their raw intensity images, collected
at the same location. Table 2 showcases the results of this experiment. From the table we can see
our neural network is able to generalize both across LiDAR models and across environment types.

Runtime Analysis: We conduct a runtime analysis over both embedding networks and matching.
Our LinkNet based embedding networks take less than 10ms each for a forward pass over both
online and map images. We also compare the cuDNN implementation of FFT-conv and standard
spatial convolution. FFT reduces the run time of the matching by an order of magnitude bringing it
down from 27ms to 1.4ms for a single-channel embedding. This enables us to run the localization
algorithm at 15 Hz, thereby achieving our real-time operation goal.

5 Conclusion

We proposed a real-time, calibration-agnostic, effective localization method for self-driving cars.
Our method projects the online LiDAR sweeps and intensity map into a joint embedding space.
Localization is conducted through efficient convolutional matching between the embeddings. This
approaches allows our full system to operate in real-time at 15Hz while achieving centimeter-level
accuracy without intensity calibration. The method also generalizes well to different LiDAR types
without the need to re-train. The experiments illustrate the performance of the proposed approach
over two comprehensive test sets covering over 500km of driving in diverse conditions.
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A Supplementary Material

A.1 Additional Ablation Study Results

Embedding Dimensions: We also investigate the impact that the number of embedding channels
has on matching performance and the runtime of the system. Table 3 shows the performance. As
shown in this table, increasing the number of channels in the embeddings does not improve perfor-
mance by a significant amount, whereas reducing the number of channels could reduce the runtime
of matching by a large margin, which favors relative low-dimensionality in practice. Therefore,
using single-channel embeddings (just like the input intensity images) is adequate.

Network Architectures We experiment with two configurations of embedding networks. The
first one, denoted as FCN, uses the shallow network described in Section 3 for both online and map
branches. The second architecture uses a LinkNet [37] architecture for both the online and the map
branches. The results are reported in Table 4. From the table, we can see LinkNet achieves better
performance than FCN and the motion model consistently helps when using either architecture.

Reduced Training Dataset Size: Given that the matching task is conceptually straightforward,
requiring far less high-level reasoning capabilities compared to problems such as semantic seg-
mentation, we perform a series of experiments where we train our matching network using smaller
samples of our training dataset, and investigate the localization performance of our system in these
cases. These results are presented in Table 5.

Table 3: Localization performance under varying numbers of embedding channels, as measured on
an NVIDIA GeForce GTX 1080 Ti GPU running CUDA 9.2.88 and cuDNN 7.104 on driver version
396.26. The matching accuracy represents the percentage of predictions within one pixel of the
ground truth. Results averaged over 500 forward passes.

Method Matching Accuracy Inference Time (ms)

Backbones Matching (Slow) Matching (FFT)

Raw matching 13.95% n/A 26.66ms 1.43ms
1 channel 71.97% 19.34ms 26.66ms 1.43ms
2 channels 72.08% 17.16ms 55.03ms 6.60ms
4 channels 71.67% 16.70ms 110.46ms 11.18ms
8 channels 71.63% 18.08ms 168.96ms 21.64ms
12 channels 72.50% 18.73ms 330.75ms 32.93ms

Table 4: Localization performance using different backbone architectures on our Highway-LidarA
dataset.

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total ≤ 100m ≤ 500m ≤ End

Ours (FCN) No No 4.41 4.86 8.01 0.35 0.35 0.71
Ours (FCN) Yes Yes 5.50 6.00 9.52 1.06 1.42 2.52

Ours (LinkNet) No No 3.87 4.99 7.76 0.35 0.35 0.72
Ours (LinkNet) Yes Yes 3.19 4.86 7.09 0.00 0.00 0.35

A.2 Additional Qualitative Results

A.3 Qualitative Results

Fig. 7 qualitatively compares the localization accuracy of our method with those discussed in the
previous section. For further qualitative results, please refer to the video associated with this paper.
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Table 5: Localization performance using a matching network trained on less data on our Highway-
LidarA dataset.

Median Error (cm) Failure Rate (%)
Method Motion Prob Lat Lon Total ≤ 100m ≤ 500m ≤ End

LinkNet, 100% of data Yes Yes 3.19 4.86 7.09 0.00 0.00 0.35
LinkNet, 25% of data Yes Yes 2.92 5.33 7.24 0.00 0.00 1.08
LinkNet, 5% of data Yes Yes 3.95 6.76 9.25 1.06 1.06 2.52
LinkNet, 1% of data Yes Yes 4.66 8.70 11.40 0.71 2.14 3.60

(a) Repetitive geometric structures on a highway (challenging to localize longitudinally with a pure geometric
method).

(b) Changes in road markings (note the different pedestrian crossing markings in the map vs. the perceived
online LiDAR).

(c) Reverse parallel parking.

(d) A sharp turn into an intersection.

Figure 7: Qualitative examples of several interesting scenarios in which our system is able to localize
successfully. Here, just like in our video, the method labeled as “baseline” is the dynamics-only
baseline.
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