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Abstract: What is the right object representation for manipulation? We would like
robots to visually perceive scenes and learn an understanding of the objects in them that
(i) is task-agnostic and can be used as a building block for a variety of manipulation tasks,
(ii) is generally applicable to both rigid and non-rigid objects, (iii) takes advantage of the
strong priors provided by 3D vision, and (iv) is entirely learned from self-supervision.
This is hard to achieve with previous methods: much recent work in grasping does
not extend to grasping specific objects or other tasks, whereas task-specific learning
may require many trials to generalize well across object configurations or other tasks.
In this paper we present Dense Object Nets, which build on recent developments in
self-supervised dense descriptor learning, as a consistent object representation for
visual understanding and manipulation. We demonstrate they can be trained quickly
(approximately 20 minutes) for a wide variety of previously unseen and potentially
non-rigid objects. We additionally present novel contributions to enable multi-object
descriptor learning, and show that by modifying our training procedure, we can either
acquire descriptors which generalize across classes of objects, or descriptors that are
distinct for each object instance. Finally, we demonstrate the novel application of
learned dense descriptors to robotic manipulation. We demonstrate grasping of specific
points on an object across potentially deformed object configurations, and demonstrate
using class general descriptors to transfer specific grasps across objects in a class.
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1 Introduction

What is the right object representation for manipulation? While task-specific reinforcement learning can
achieve impressively dexterous skills for a given specific task [1], it is unclear which is the best route to
efficiently achieving many different tasks. Other recent work [2, 3] can provide very general grasping
functionality but does not address specificity. Achieving specificity, the ability to accomplish specific
tasks with specific objects, may require solving the data association problem. At a coarse level the task
of identifying individual objects to manipulate can be solved by instance segmentation, as demonstrated
in the Amazon Robotics Challenge (ARC) [4, 5] or [6]. Whole-object-level segmentation, however, does
not provide any information on the rich structure of the objects themselves, and hence may not be an
appropriate representation for solving more complex tasks. While not previously applied to the robotic
manipulation domain, recent work has demonstrated advances in learning dense pixel level data association
[7, 8], including self-supervision from raw RGBD data [8], which inspired our present work.

In this paper, we propose and demonstrate using dense visual description as a representation for robotic
manipulation. We demonstrate the first autonomous system that can entirely self-supervise to learn
consistent dense visual representations of objects, and the first system we know of that is capable of
performing the manipulation demonstrations we provide. Specifically, with no human supervision during
training, our system can grasp specific locations on deformable objects, grasp semantically corresponding
locations on instances in a class, and grasp specific locations on specific instances in clutter. Towards
this goal, we also provide practical contributions to dense visual descriptor learning with general computer
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vision applications outside of robotic manipulation. We call our visual representations Dense Object Nets,
which are deep neural networks trained to provide dense (pixelwise) description of objects.

Contributions. We believe our largest contribution is that we introduce dense descriptors as a representa-
tion useful for robotic manipulation. We’ve also shown that self-supervised dense visual descriptor learning
can be applied to a wide variety of potentially non-rigid objects and classes (47 objects so far, including
3 distinct classes), can be learned quickly (approximately 20 minutes), and can enable new manipulation
tasks. In example tasks we grasp specific points on objects across potentially deformed configurations,
do so with object instance-specificity in clutter, or transfer specific grasps across objects in a class. We also
contribute novel techniques to enable multi-object distinct dense descriptors, and show that by modifying
the loss function and sampling procedure, we can either acquire descriptors which generalize across classes
of objects, or descriptors that are distinct for each object instance. Finally, we contribute general training
techniques for dense descriptors which we found to be critical to achieving good performance in practice.

Paper Organization. In Section 2 we describe related work. As preliminary in Section 3.1 we describe the
general technique for self-supervising dense visual descriptor learning, which is from [8] but reproduced
here for clarity. We then describe additional techniques we’ve developed for object-centric visual
descriptors in Section 3.2, and Section 3.3 describes techniques for distinct multi-object descriptors.
Section 4 describes our experimental setup for our autonomous system, and Section 5 describes our results:
our learned visual descriptors for a wide variety of objects (Section 5.1) multi-object descriptors and
selective class generalization (Sections 5.2 and 5.3), and robotic manipulation demonstrations (Section 5.4).

2 Related Work

We review three main areas of related work: learned descriptors, self-supervised visual learning for robots,
and robot learning for specific tasks. The task of correspondence estimation from multiple views of the
same scene is fundamental in computer vision, whereas dense semantic correspondence across different
scenes was popularized by [9]. Recent advances have been made by introducing a pixel-wise variant of
contrastive loss [10] combined with deep convolutional networks, as in Choy et al. [7] and Schmidt et
al. [8]. For cross-instance semantic correspondence, [7] relies on human annotations, while [8] learns these
unsupervised, as we do here. Other work [11] uses image warping to learn descriptors, and most require
manually annotated labels [13, 14, 15]. Zeng et al. [12] also uses dense 3D reconstruction to provide
automated labeling, but for descriptors of 3D volume patches. Some of these works [8, 11, 15], like ours,
learn descriptors for specific object instances or classes, while others [12] learn descriptors for establishing
correspondence of arbitrary data. None of these prior works in dense visual learning involve robots.

In the area of self-supervised visual robot learning, while some recent work has sought to understand
‘how will the world change given the robot’s action?” [16, 17] in this work we instead ask “what is the
current visual state of the robot’s world?”. We address this question with a dense description that is
consistent across viewpoints, object configurations and (if desired) object classes. At the coarse level of
semantic segmentation several works from the Amazon Robotics Challenge used robots to automate the
data collection and annotation process through image-level background subtraction [18, 5, 4]. In contrast
this work uses 3D reconstruction-based change detection and dense pixelwise correspondences, which
provides a much richer supervisory signal for use during training.

In the area of robot learning for a specific task there have been impressive works on end-to-end
reinforcement learning [1, 19]. In these papers the goal is to learn a specific task, encoded with a reward
function, whereas we learn a general task agnostic visual representation. There have also been several
works focusing on grasping from RGB or depth images [3, 18, 2, 20]. These papers focus on successfully
grasping any item out of a pile, and are effectively looking for graspable features. They have no consistent
object representation or specific location on that object, and thus the robotic manipulation tasks we
demonstrate in Section 5.4, e.g. grasping specific points on an object across potentially deformed object
configurations, are out of scope for these works.

3 Methodology

3.1 Preliminary: Self-Supervised Pixelwise Contrastive Loss

We use self-supervised pixelwise contrastive loss, as developed in [7, 8]. This learns a dense visual descriptor
mapping which maps a full-resolution RGB image, RW×H×3 to a dense descriptor space, RW×H×D,
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where for each pixel we have a D-dimensional descriptor vector. Training is performed in a Siamese
fashion, where a pair of RGB images, Ia and Ib are sampled from one RGBD video, and many pixel
matches and non-matches are generated from the pair of images. A pixel ua∈R2 from image Ia is a match
with pixel ub from image Ib if they correspond to the same vertex of the dense 3D reconstruction (Figure
1 (c-f)). The dense descriptor mapping is trained via pixelwise contrastive loss. The loss function aims
to minimize the distance between descriptors corresponding to a match, while descriptors corresponding to
a non-match should be at least a distance M apart, where M is a margin parameter. The dense descriptor
mapping f(·) is used to map an image I∈RW×H×3 to descriptor space f(I)∈RW×H×D. Given a pixel
u we use f(I)(u) to denote the descriptor corresponding to pixel u in image I. We simply round the
real-valued pixel u∈R2 to the closest discrete pixel value u∈N2, but any continuously-differentiable
interpolation can be used for sub-pixel resolution. We denoteD(·) as theL2 distance between a pair of pixel
descriptors: D(Ia,ua,Ib,ub), ||f(Ia)(ua)−f(Ib)(ub)||2. At each iteration of training, a large number (on
the order of 1 million total) of matches Nmatches and non-matches Nnon-matches are generated between images
Ia and Ib. The images are mapped to corresponding descriptor images via f(·) and the loss function is

Lmatches(Ia,Ib)=
1

Nmatches

∑
Nmatches

D(Ia,ua,Ib,ub)
2 (1)

Lnon-matches(Ia,Ib)=
1

Nnon-matches

∑
Nnon-matches

max(0,M−D(Ia,ua,Ib,ub))
2 (2)

L(Ia,Ib)=Lmatches(Ia,Ib)+Lnon-matches(Ia,Ib) (3)

3.2 Training Procedures for Object-Centric Descriptors

Prior work [8] has used dynamic reconstruction [21] of raw RGBD data for only within-scene data asso-
ciation and remarkably showed that even without cross-scene data association, descriptors could be learned
that were consistent across many dynamic scenes of the upper body of a human subject. While dynamic
reconstruction is powerful, the challenges of topology changes [22] and difficulties of occlusion make it dif-
ficult to reliably deploy for an autonomous system. Schmidt et al. [8] also used data associations from static
scene reconstructions for the task of relocalization in the same static environment. In contrast we sought
to use only static reconstruction but seek consistency for dynamic objects. Other work [11] obtains dense
descriptor consistency for a curated dataset of celebrity faces using only image warping for data association.

Using our robot mounted camera we are able to reliably collect high quality dense reconstructions for
static scenes. Initially we applied only static-scene reconstruction to learn descriptors for specific objects,
but we found that the learned object descriptors were not naturally consistent for challenging datasets
with objects in significantly different configurations. Subsequently we developed techniques that leverage
3D reconstruction change detection, data augmentation, and loss function balancing to reliably produce
consistent object representations with only static-scene data association for the wide variety of objects we
have tested. These techniques also improve the precision of correspondences, as is discussed in Section 5.1.
While we have tried many other ideas (see Appendix D.2), these are the techniques that were empirically
found to significantly improve performance.

(a) Robot-Automated Data Collection (b) 3D Reconstruction based 
Change Detection and 

Masked Sampling 

(d) Cross Object Loss (e) Direct Multi Object (f) Synthetic Multi Object (c) Background Randomization 

Figure 1: Overview of the data collection and training procedure. (a) automated collection with a robot arm. (b)
change detection using the dense 3D reconstruction. (c)-(f) matches depicted in green, non-matches depicted in red.

Object masking via 3D change detection. Since we are trying to learn descriptors of objects that take
up only a fraction of a full image, we observe significant improvements if the representational power of the
models are focused on the objects rather than the backgrounds. A 640×480 image contains 307,200 pixels
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but an image in our dataset may have as few as 1,000 to 10,000 of those pixels, or .3%-3%, that correspond
to the object of interest. Initial testing with human-labeled object masks [23] showed that if matches for
data associations were sampled only on the object (while non-matches were sampled from the full image)
then correspondence performance was significantly improved. In order to provide autonomous object
masking without any human input, we leverage our 3D reconstructions and results from the literature
on 3D change detection [24] to recover the object-only part of the reconstruction (Figure 1b). Projecting
this geometry into each camera frame yields object masks for each image. We want to emphasize that
automatic object masking enables many other techniques in this paper, including: background domain
randomization, cross-object loss, and synthetic multi-object scenes.

Background domain randomization. A strategy to encourage cross-scene consistency is to enforce that
the learned descriptors are not reliant on the background. Since we have autonomously acquired object
masks, we can domain randomize [25] the background (Figure 1c top) to encourage consistency – rather
than memorizing the background (i.e. by describing the object by where it is relative to a table edge),
the descriptors are forced to be representative of only the object.

Hard-negative scaling. Although as in [8] we originally normalized Lmatches and Lnon-matches by Nmatches
and Nnon-matches, respectively, we found that what we call the “hard-negative rate”, i.e. the percentage
of sampled non-matches for which M−D(Ia,ua,Ib,ub)>0 would quickly drop well below 1% during
training. While not precisely hard-negative mining [26], we empirically measure improved performance
if rather than scaling Lnon-matches by Nnon-matches, we adaptively scale by the number of hard negatives in
the non-match sampling, Nhard-negatives, where 1 is the indicator function:

Nhard-negatives =
∑

Nnon-matches

1(M−D(Ia,ua,Ib,ub)>0) (4)

Lnon-matches(Ia,Ib)=
1

Nhard-negatives

∑
Nnon-matches

max(0,M−D(Ia,ua,Ib,ub))
2 (5)

Data augmentation and normalization. While we collect only a modest number of scenes (4-10) per
object or class, we ensure they are diverse in orientations, crops, and lighting conditions. We also applied
synthetic 180-degree rotations randomly to our images. Additionally we find gains in performance by
projecting all features to the unit sphere, i.e. f(I)(u)← f(I)(u)

||f(I)(u)|| when using high-dimensional descriptors
spaces (i.e., more than D=4). This is explained further in Appendix D.1.

3.3 Multi-Object Dense Descriptors

We of course would like robots to have dense visual models of more than just one object. When we began
this work it wasn’t obvious to us what scale of changes to our training procedure or model architecture
would be required in order to simultaneously (a) achieve individual single-object performance comparable
to a single-object-only model, while also (b) learn dense visual descriptors for objects that are globally
distinct – i.e., the bill of a hat would occupy a different place in descriptor space than the handle of a mug.
To achieve distinctness, we introduce three strategies:

i. Cross-object loss. The most direct way to ensure that different objects occupy different subsets of
descriptor space is to directly impose cross-object loss (Figure 1d). Between two different objects, we
know that each and every pair of pixels between them is a non-match. Accordingly we randomly select
two images of two different objects, randomly sample many pixels from each object (enabled by object
masking), and apply non-match loss (with hard-negative scaling) to all of these pixel pairs.

ii. Direct training on multi-object scenes. A nice property of pixelwise contrastive loss, with data
associations provided by 3D geometry, is that we can directly train on multi-object, cluttered scenes
without any individual object masks (Figure 1e). This is in contrast with training pixelwise semantic
segmentation, which requires labels for each individual object in clutter that may be difficult to attain,
i.e. through human labeling. With pixel-level data associations provided instead by 3D geometry, the
sampling of matches and the loss function still makes sense, even in clutter.

iii. Synthetic multi-object scenes. We can also synthetically create multi-object scenes by layering object
masks [4]. To use dense data associations through synthetic image merging, we prune matches that become
occluded during layering (Figure 1f). A benefit of this procedure is that we can create a combinatorial
number of “multi-object” scenes from only single object-scenes, and can cover a wide range of occlusion
types without collecting physical scenes for each.
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4 Experimental

Data Collection and Pre-Processing. The minimum requirement for raw data is to collect an RGBD
video of an object or objects. Figure 1 shows our experimental setup; we utilize a 7-DOF robot arm (Kuka
IIWA LBR) with an RGBD sensor (Primesense Carmine 1.09) mounted at the end-effector. With the robot
arm, data collection can be highly automated, and we can achieve reliable camera poses by using forward
kinematics along with knowledge of the camera extrinsic calibration. For dense reconstruction we use
TSDF fusion [27] of the depth images with camera poses provided by forward kinematics. An alternative
route to collecting data which does not require a calibrated robot is to use a dense SLAM method (for
example, [28, 29]). In between collecting RGBD videos, the object of interest should be moved to a variety
of configurations, and the lighting can be changed if desired. While for many of our data collections a
human moved the object between configurations, we have also implemented and demonstrated (see our
video) the robot autonomously rearranging the objects, which highly automates the object learning process.
We employ a Schunk two-finger gripper and plan grasps directly on the object point cloud (Appendix
C). If multiple different objects are used, currently the human must still switch the objects for the robot
and indicate which scenes correspond to which object, but even this information could be automated by
the robot picking objects from an auxiliary bin.

Training Dense Descriptors. For training, at each iteration we randomly sample between some subset of
specified image comparison types (Single Object Within Scene, Different Object Across Scene, Multi Ob-
ject Within Scene, Synthetic Multi Object), and then sample some set of matches and non-matches for each.
In this work, we use only static-scene reconstructions, so pixel matches between images can be easily found
by raycasting and reprojecting against the dense 3D reconstruction model, and appropriately checking for oc-
clusions and field-of-view constraints. For the dense descriptor mapping we train a 34-layer, stride-8 ResNet
pretrained on ImageNet, but we expect any fully-convolutional network (FCN) that has shown effectiveness
on semantic segmentation tasks to work well. Additional training details are contained in Appendix D.

5 Results

  

Objects used 
•  47 objects total 
•  275 scenes 
8 hats 
 
 
 
 

15 shoes 
 
 
 
 

15 mugs 
 
   
 
 

9 additional objects 

Figure 2: Learned object descriptors can be consistent across significant deformation (a) and, if desired, across object
classes (b-d). Shown for each (a) and (b-d) are RGB frames (top) and corresponding descriptor images (bottom) that
are the direct output of a feed-forward pass through a trained network. (e)-(f) shows that we can learn descriptors for
low texture objects, with the descriptors masked for clear visualization. Our object set is also summarized (right).

5.1 Single-Object Dense Descriptors

We observe that with our training procedures described in Section 3.2, for a wide variety of objects we
can acquire dense descriptors that are invariant to viewpoint, configuration, and deformation. The variety
of objects includes moderately deformable objects such as soft plush toys, shoes, mugs, and hats, and can
include very low-texture objects (Figure 2). Many of these objects were just grabbed from around the lab
(including the authors’ and labmates’ shoes and hats), and dense visual models can be reliably trained with
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single	or	
mul,	
object	
dataset	

masked		
match	
sampling	

scale	by	
hard	
nega,ves	

cross-
object	
loss	

standard-SO	 single	

no-masking	 single	

no-hard-neg	 single	

Schmidt	 single	

consistent	 mul*	

specific	 mul*	

(a) (b) (c) 

Figure 3: (a) table describing the network training procedures referenced in experiments. (standard-SO = “standard
single object”. standard-SO-P is detailed in Appendix D.1). (b) Plots the cdf of the L2 pixel distance (normalized by
image diagonal, 800 for a 640 x 480 image) between the best match ûb and the true match u∗

b , e.g. for standard-SO in
93% of image pairs the normalized pixel distance between u∗

b and ûb is less than 13%. All networks were trained on the
same dataset. (c) Plots the cdf of the fraction of pixels ub of the object pixels with D(Ia,u

∗
a,Ib,ub)<D(Ia,u

∗
a,Ib,u

∗
b),

i.e. they are closer in descriptor space to u∗
a than the true match u∗

b .

Image #1 (cropped) (i) Without orientation and    
background randomization 

Image #2 (cropped) 

(ii) standard-SO 

inconsistent consistent 

(a) (b) 

Figure 4: (a), with same axes as Figure 3b, compares standard-SO with without-DR, for which the only difference
is that without-DR used no background domain randomization during training. The dataset used for (a) is of three
objects, 4 scenes each. (b) shows that for a dataset containing 10 scenes of a drill, learned descriptors are inconsistent
without background and orientation randomization during training (middle), but consistent with them (right).

the same network architecture and training parameters. The techniques in Section 3.2 provide significant
improvement in both (a) qualitative consistency over a wide variety of viewpoints, and (b) quantitative preci-
sion in correspondences. As with other works that learn pairwise mappings to some descriptor space [30], in
practice performance can widely vary based on specific sampling of data associations and non-associations
used during training. One way to quantitatively evaluate correspondence precision is with human-labeled
(used only for evaluation; never for training) correspondences across two images of an object in different
configurations. Given two images Ia,Ib containing the same object and pixel locations u∗a∈Ia,u∗b∈Ib cor-
responding to the same physical point on the object, we can use our dense descriptors to estimate u∗b as ûb:

ûb,argmin
ub∈Ib

D(Ia,u
∗
a,Ib,ub) (6)

Figure 3 (b-c) shows a quantitative comparison of ablative experiments, for four different training procedures
described in Figure 3a. Our new standard single-object training procedure (standard-SO) performs signif-
icantly better than our implementation of prior work’s training procedures (Schmidt), and we isolate and
measure significant improvement in correspondence precision for both object-masking and hard-negative
scaling. We also find that for some low-texture objects, orientation randomization and background domain
randomization are critical for attaining consistent object descriptors. Otherwise the model may learn to mem-
orize which side of the object is closest the table, rather than a consistent object model (Figure 4b). Back-
ground domain randomization is most beneficial for smaller datasets, where it can significantly reduce over-
fitting and encourage consistency (Figure 4a); it is less critical for high-texture objects and larger datasets.

5.2 Multi-Object Dense Descriptors

An early observation during experimentation was that overlap in descriptor space naturally occurs if the
same model is trained simultaneously on different singulated objects, where sampling of matches and non-
matches was only performed within scene. Since there is no component of the loss function that requires dif-
ferent objects to occupy different subsets of descriptor space, the model maps them to an overlapping subset
of descriptor space, distinct from the background but not each other (Figure 5a). Accordingly we sought to
answer the question of whether or not we could separate these objects into unique parts of descriptor space.
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without cross-object loss with cross-object loss 

(a) (b) (c) 

Figure 5: Comparison of training without any distinct object loss (a) vs. using cross-object loss (b). In (b), 50% of
training iterations applied cross-object loss and 50% applied single-object within-scene loss, whereas (a) is 100%
single-object within-scene loss. The plots show a scatter of the descriptors for 10,000 randomly-selected pixels for
each of three distinct objects. Networks were trained with D=2 to allow direct cluster visualization. (c) Same axes as
Figure 3 (a). All networks were trained on the same 3 object dataset. Networks with a number label were trained with
cross object loss and the number denotes the descriptor dimension. no-cross-object is a network trained without cross
object loss.

By applying cross-object loss (Section 3.3.i, training mode specific in Figure 3a), we can convincingly sep-
arate multiple objects such that they each occupy distinct subsets of descriptor space (Figure 5b). Note that
cross-object loss is an extension of sampling across scene as opposed to only within scene. Given that we
can separate objects in descriptor space, we next investigate: does the introduction of object distinctness sig-
nificantly limit the ability of the models to achieve correspondence precision for each individual object? For
multi-object datasets, we observe that there is a measurable decrease in correspondence precision for small-
dimensional descriptor spaces when the cross-object loss is introduced, but we can recover correspondence
precision by training slightly larger-dimensional descriptor spaces (Figure 5c). For the most part, 3-
dimensional descriptor spaces were sufficient to achieve saturated (did not improve with higher-dimension)
correspondence precision for single objects, yet this is often not the case for distinct multi-object networks.

5.3 Selective Class Generalization or Instance Specificity

Surprisingly we find that when trained simultaneously on similar items of a class using training mode
consistent, the learned descriptors naturally generalize well across sufficiently similar instances of the
class. This result of converging descriptors across a class is similar to the surprising generalization observed
for human datasets in [8, 11]. Here we show that we can obtain class consistent dense descriptors for
3 different classes of objects (hats, shoes, and mugs) trained with only static-scene data association. We
observe that the descriptors are consistent despite considerable differences in color, texture, deformation,
and even to some extent underlying shape. The training requirements are reasonably modest – only 6
instances of hats were used for training yet the descriptors generalize well to unseen hats, including a blue
hat, a color never observed during training. The generalization extends to instances that a priori we thought
would be failure modes: we expected the boot (Figure 6h) to be a failure mode but there is still reasonable
consistency with other shoes. Sufficiently different objects are not well generalized, however – for example
Baymax and Starbot (Figure 2e,f) are both anthropomorphic toys but we do not attain general descriptors
for them. While initially we proposed research into further encouraging consistency within classes, for
example by training a Dense Object Net to fool an instance-discriminator, the level of consistency that
naturally emerges is remarkable and was sufficient for our desired levels of precision and applications.

For other applications, however, instance-specificity is desired. For example, what if you would like your
robot to recognize a certain point on hat A as distinct from the comparable point on hat B? Although we
could separate very distinct objects in multi-object settings as discussed in the previous section, it wasn’t
obvious to us if we could satisfactorily separate objects of the same class. We observe, however, that
by applying the multi-object techniques (specific in Figure 3) previously discussed, we can indeed learn
distinct descriptors even for very similar objects in a class (Figure 6iv).

5.4 Example Applications to Robotic Manipulation: Grasping Specific Points

Here we demonstrate a variety of manipulation applications in grasping specific points on objects, where
the point of interest is specified in a reference image. We emphasize there could be many other applications,
as mentioned in the Conclusion. In our demonstrations, a user clicks on just one pixel u∗a in one reference
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image. Now the robot has the ability to autonomously identify the corresponding point in new scenes via
Equation 6. Akin to other works with similarity learning in metric spaces [30], we set a simple threshold
to determine whether a valid match exists. If a match is identified in the new scene we can instruct the
robot to autonomously grasp this point by looking up the corresponding location in the point cloud and
using simple geometric grasping techniques (details in Appendix C).

The particular novel components of these manipulation demonstrations are in grasping the visual corre-
sponding points for arbitrary pixels that are either in different (potentially deformed) configurations (Fig.
6i-ii), general across instances of classes (Fig. 6iii), or instance-specific in clutter (Fig. 6iv). Our video1
best displays these tasks. Note that only a dense (as opposed to sparse) method can easily accommodate
the arbitrary selection of interaction points, and class-generalization is out of scope for hand-designed
descriptors such as SIFT. This is also out of scope for general grasp planners like [3, 18, 2, 20] which
lack any visual object representation, and for segmentation based methods [18, 5, 4] since the visual
representation provided by segmentation doesn’t capture any information beyond the object mask.

(a) (b) (c) 

Grasp Best Descriptor Match 
in Different Configurations 

Location: Tail 
Trained: standard-SO  
 

(d) (e) (f) 

Reference Image (ii) 

Reference Image (i) 

Grasp Best Descriptor Match 
in Different Configurations 

Location: Right ear 
Trained: standard-SO  
 

(g) (h) (i) 

Grasp Best Descriptor Match 
for Class-General Position 

Location: Tongue 
Trained: consistent  
 

Reference Image (iii) 

(j) (k) (l) 

Reference Image (iv) Location: Heel 
Trained: specific 
 

Grasp Best Descriptor Match 
for Instance-Specific Position 

Figure 6: Depiction of “grasp specific point” demonstrations. For each the user specifies a pixel in a single reference
image, and the robot automatically grasps the best match in test configurations. For single-object demonstrations, two
different points for the caterpillar object are shown: tail (i) and right ear (ii). Note that the “right-ear” demonstration is
an example of the ability to break symmetry on reasonably symmetrical objects. For class generalization (iii), trained
with consistent, the robot grasps the class-general point on a variety of instances. This was trained on only 4 shoes and
extends to unseen instances of the shoe class, for example (iii-i). For instance-specificity (iv) trained with specific and
augmented with synthetic multi object scenes (3.3.iii), the robot grasps this point on the specific instance even in clutter.

6 Conclusion

This work introduces Dense Object Nets as visual object representations which are useful for robotic
manipulation and can be acquired with only robot self-supervision. Building on prior work on learning
pixel-level data associations we develop new techniques for object-centricness, multi-object distinct
descriptors, and learning dense descriptors by and for robotic manipulation. Without these object centric
techniques we found that data associations from static-scene reconstructions were not sufficient to achieve
consistent object descriptors. Our approach has enabled automated and reliable descriptor learning at scale
for a wide variety of objects (47 objects, and 3 classes). We also show how learned dense descriptors can
be extended to the multi object setting. With new contrastive techniques we are able to train Dense Object
Nets that map different objects to different parts of descriptor space. Quantitative experiments show we can
train these multi object networks while still retaining the performance of networks that do not distinguish
objects. We also can learn class-general descriptors which generalize across different object instances,
and demonstrated this result for three classes: shoes, hats, and mugs. Using class-general descriptors we
demonstrate a robot transferring grasps across different instances of a class. Finally we demonstrate that
our distinct-object techniques work even for objects which belong to the same class. This is demonstrated
by the robot grasping a specific point on a target shoe in a cluttered pile of shoes. We believe Dense Object
Nets can enable many new approaches to robotic manipulation, and are a novel object representation that
addresses goals (i-iv) stated in the abstract. In future work we are interested to explore new approaches
to solving manipulation problems that exploit the dense visual information that learned dense descriptors
provide, and how these dense descriptors can benefit other types of robot learning, e.g. learning how to
grasp, manipulate and place a set of objects of interest.

1See video (https://youtu.be/L5UW1VapKNE) for extensive videos of the different types of robot picking.
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(a) (b)

Figure 7: (a) Kuka IIWA LRB robot arm. (b) Schunk WSG 50 gripper with Primesense Carmine 1.09 attached

Appendix A Experimental Hardware

All of our data was collected using an RGBD camera mounted on the end effector of a 7 DOF robot
arm (see Figure 7). We used a Kuka IIWA LBR robot with a Schunk WSG 50 parallel jaw gripper. A
Primesense Carmine 1.09 RGBD sensor was mounted to the Schunk gripper and precisely calibrated for
both intrinsics and extrinsics.

Appendix B Experimental Setup: Data Collection and Pre-Processing

As discussed in the paper all of our data consists of 3D dense reconstructions of a static scene. To collect
data for a single scene we place an object (or set of objects) on a table in front of the robot. We then perform
a scanning pattern with the robot which allows the camera to capture many different viewpoints of the static
scene. This procedure takes about 70 seconds during which approximately 2100 RGBD frames are captured
(the sensor outputs at 30Hz). Using the forward kinematics of the robot, together with our camera extrinsic
calibration, we also record the precise camera pose corresponding to each image. Since we have the camera
poses corresponding to each depth image we use TSDF fusion [27] to obtain a dense 3D reconstruction.
Although we use our robot’s forward kinematics to produce the dense 3D reconstruction together with
camera pose tracking, any dense SLAM method (such as [28]) could be used instead. In practice we
found that using the robot’s forward kinematics to obtain camera pose estimates produces very reliable 3D
reconstructions which are robust to lack of geometric or RGB texture, varying lighting conditions, etc. Next
we obtain new depth images for each recorded camera frame by rendering against the 3D reconstruction
using our camera pose estimates. This step produces depth images which are globally consistent and
free of artifacts (i.e. missing depth values, noise etc.). This keeps the process of finding correspondences
across RGB images as a simple operation between poses and depth images. To enable the specific training
techniques discussed in the paper we also need to know which parts of the scene correspond to the objects of
interest. To do this we implemented the change detection technique of [24]. In practice since all of our data
was collected on a tabletop, and our reconstructions can be easily globally aligned (due to the fact that we
know the global camera poses from the robot’s forward kinematics) we can simply crop the reconstruction to
the area above the table. Once we have isolated the part of the reconstruction corresponding to the objects of
interest, we can easily render binary masks via the same procedure as was used to generate the depth images.

Our RGBD sensor captures images at 30Hz, so we downsample the images to avoid having images which
are too visually similar. Specifically we downsample images so that the camera poses are sufficiently
different (at least 5cm of translation, or 10 degrees of rotation). After downsampling we are left with
approximately 315 images per scene.

In between collecting RGBD videos, the object of interest should be moved to a variety of configurations,
and the lighting can be changed if desired. While for many of our data collections a human moved the
object between configurations, we have also implemented and demonstrated (see our video) the robot
autonomously rearranging the objects, which highly automates the object learning process. We employ a
Schunk two-finger gripper and plan grasps directly on the object point cloud (see Appendix C). If multiple
different objects are used, currently the human must still switch the objects for the robot and indicate which
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scenes correspond to which object, but even this information could be automated by the robot picking
objects from an auxiliary bin and use continuity to simply identify which logs are of the same object.

Appendix C Grasping Pipeline

While our learned visual descriptors can help us determine where to grasp, they can’t be used during the
bootstrapping phase before visual learning has occurred, and they don’t constrain the 6DOF orientation
of the gripper. Accordingly to choose grasps our pipeline employs simple geometric point cloud based
techniques. There are two types of grasping that are performed in the paper. The first is performed
while grasping the object to automatically reorient it during data collection, during the visual learning
process. To achieve this we first use the depth images and camera poses to fuse a point cloud of the
scene. We then randomly sample many grasps on the point cloud and prune those that are in collision. The
remaining collision free grasps are then scored by a simple geometric criterion that evaluates the grasps
for antipodality. The highest scoring grasp is then chosen for execution. The second type of grasping
is, as in Section 5.4 of the paper, when we are attempting to grasp a specific point. In this case the robot
moves to a handful of pre-specified poses and records those RGBD images. The RGB images are used
to look up the best descriptor match and determine a pixel space location to grasp in one image, and the
corresponding depth image and camera pose are used to determine the 3D location of this point. The
handful of depth images are also fused into a point cloud, and the grasping procedure is almost the same
as the first type, with the slight modification that all the randomly sampled grasps are centered around the
target grasp point. Although there are a variety of learning based grasping algorithms [3, 2] that could have
been used, we found that our simple geometric based grasp planning was sufficient for the tasks at hand.

Appendix D Network Architecture and Training Details

For our network we use 34-layer, stride-8 ResNet (pretrained on ImageNet), and then bilinearly upsample
to produce a full resolution 640x480 image.

For training, at each iteration we randomly sample between some specified subset of specified image
comparison types (Single Object Within Scene, Different Object Across Scene, Multi Object Within Scene,
Synthetic Multi Object). The weighting between how often each type is chosen is done via specifying their
probabilities of being selected. Once the type has been sampled we then sample some set of matches and
non-matches for each (around 1 million in total). Each step of the optimizer uses a single pair of images.

All the networks were trained with the same optimizer settings. Networks were trained for 3500 steps
using an Adam optimizer with a weight decay of 1e−4. Training was performed on a single Nvidia
1080 Ti or Titan Xp, a single step takes approximately 0.22 seconds, i.e. approximately 13 minutes, and
so together with collecting a handful of scenes the entire training for a new object can take 20 minutes.
The learning rate was set to 1e−4 and dropped by 0.9 every 250 iterations. The networks trained with
procedure specific used a 50-50 split of within scene image pairs and across scene image pairs 50% of
the time. For the network used to grasp the heel of the red/brown shoe in Section 5.4 we sampled equally
the three data types (Single Object Within Scene, Different Object Across Scene, Synthetic Multi Object).

D.1 Descriptor Projection to Unit Sphere

There is one additional small feature we discovered prior to camera-ready submission that gives substantial
quantitative performance gains, although it was not used nor needed for most of the experiments including
all hardware experiments. As is standard in many metric learning works, for example [30], we can
add a simple parameterless normalization layer in which we project all features to the unit sphere,
f(I)(u)← f(I)(u)

||f(I)(u)|| . This is contrast to channel-wise normalization mentioned in [7]. Given that there
is a projection to the unit-sphere manifold, higher dimensions are needed in order to see improvements.
While without unit-sphere projection, we see saturation of performance at around D=3 for single-object
descriptors, with unit-sphere projection we see significant gains in going from D=4 to D=8 even for
single-object descriptors. Further work could investigate the effect of unit-sphere projection on descriptor
consistency across classes. The network marked as standard-SO-P in Figures 3b and 3c was trained
identically to standard-SO, but with the unit sphere projection, and with D=16.
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D.2 Additional Approaches Which Did not Improve Performance

During the course of our experimentation we found that the network architecture and training procedure
outlined in Section 3 gave the best performance. However we also tried a variety of other network
architectures and loss functions which did not improve performance. We discuss a few of them here.

Triplet loss [30] uses a triplet loss instead of the contrastive loss. We implemented a pixelwise version
of this triplet loss, but found that it actually reduced performance on our dataset.

Scaling loss by pixel distance Our loss function tries to ensure that non-matches have descriptors that
are at least a margin M apart. It can be hard, however, for the network to take two pixels that are next
to each other, and assign them significantly different descriptors. In an effort to try to less heavily penalize
non-matches that are close to the true match, we introduced an additional scaling term using the L2 pixel
distance. Following the notation from Section 3 let ua∈Ia,ub∈Ib correspond to a non-match. Additionally,
using the notation of Equation 6 let u∗b∈Ib correspond to the true match for ua. Define ∆(ub,u

∗
b)∈R to

be the L2 distance, measured in pixels, between ub and u∗b . The scaled non-match loss is now defined as

Lnon-matches(Ia,Ib)=
1

Nnon-matches

∑
Nnon-matches

1

Mp
min(∆(ub,u

∗
b),Mp)·max(0,M−D(Ia,ua,Ib,ub))

2 (7)

where Mp is the pixel distance at which this additional loss component saturates. Parameter sweeps on Mp,
where Mp=1 is the original un-scaled loss function, did not show significant differences in performance.
A potentially useful extension for future work would be to try scaling by the geodesic distance in the 3D
reconstructios.

Convolutional spatial transformer: We implemented a convolutional spatial transformer, as described
in [7]. The convolutional spatial transformer is meant to help the network achieve scale and rotation
invariance for each feature. We did not find any significant performance gains with our implementation
of such a convolutional spatial transformer. A hypothesis for why we did not see performance gains is that
our used network architecture (34-layer ResNet) was significantly deeper than the architecture used in [7],
and our data collection and augmentation provided significant variety in scale and rotation – accordingly,
our network must approximate scale and rotation invariance in order to fit the training data.

Ratios for sampling non-matches: Given a pixel ua corresponding to a point on an object, non-matches
ub can either be on the object, or on the background. Let Ib,object denote object pixels in image Ib, and
Ib,background denote background pixels. During training we experimented with varying the fraction of
non-matches ub which lie in Ib,object vs. Ib,background. In general we found performance was insensitive
to this ratio as long as the fraction of non-matches in Ib,object was between 25% to 75%.
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