
Adaptable replanning with compressed linear action
models for learning from demonstrations

Clement Gehring Leslie Pack Kaelbling Tomas Lozano-Perez
Department of Electrical Engineering and Computer Sciences

Massachusetts Institute of Technology
{gehring,lpk,tlp}@csail.mit.edu

Abstract: We propose an adaptable and efficient model-based reinforcement
learning approach well suited for continuous domains with sparse samples, a set-
ting often encountered when learning from demonstrations. The flexibility of our
method originates from the approximate transition models, estimated from data,
and the online replanning approach proposed. Together, these components allow
for immediate adaptation to a new task, given in the form of a reward function. The
efficiency of our method comes from two approximations. First, rather than rep-
resenting a complete distribution over the results of taking an action, which is dif-
ficult in continuous state spaces, it learns a linear model of the expected transition
for each action. Second, it uses a novel strategy for compressing these linear ac-
tion models, which significantly reduces space and time for learning models, and
supports efficient online generation of open-loop plans. The effectiveness of these
methods is demonstrated in a simulated driving domain with a 20-dimensional
continuous input space.

Keywords: Reinforcement learning, learning from demonstration, model predic-
tive control, model-based

1 Introduction

In many robotics problems, there is opportunity to gather data off-line that characterizes the tran-
sition dynamics of a domain, but the reward function is not determined until the robot is deployed
in the world. For example, in self-driving cars, it is possible to gather dynamics data off-line, on
a test-track, but detailed choices about target speeds, closeness to nearby vehicles, destination, and
even rules of the road will vary considerably during the deployment of the car.

We address such problems in this paper by proposing a general replanning approach for MDPs, in
which a transition model is estimated off-line from sampled transitions from an unknown policy,
and then using them online to generate local plans based on the current state and objective.

In this context, we assume that the robot plans only with the provided data with no opportunities
for learning later. During evaluation, the robot is expected to quickly compute next actions while
adapting to new objectives with minimal delay. We assume the current objective is made available
to the robot and takes the form of a reward function which can be evaluated at any time.

In contrast with the typical reinforcement learning setting, our method does not seek an optimal
global reactive policy π : S → A directly, but, instead, seek a series of approximately optimal
local open-loop plans. This strategy reduces the expressiveness required of the policy or value
representation while also making each individual planning problem easier. To solve an MDP, we
define an agent’s behaviour by following a model predictive control (MPC) approach, where a new
local plan is generated at every time step to compensate for the local nature of our planning approach.
We summarize the high-level structure of our replanning agent in Algorithm 1.

Our contributions are two-fold. First, we present an efficient method for fitting linear action mod-
els, a composable model for estimating expected outcomes. Our method uses a novel compressed,
factored form of such models which allow for a previously intractable number of features. This
opens up the possibility of using powerful but large feature sets approximating reproducing kernel

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.

Input: sample transitions D
// off-line processing of data to generate a model
m← FIT(D)
// evaluation under potentially changing objectives
while not finished do

s← GET-CURRENT-STATE()
R← GET-REWARD-FN() // where R : S ×A → R
π ← PLAN(s,R,m)
EXECUTE(π(0))

end
Algorithm 1: A high-level summary of our replanning from learned models approach.

Hilbert space methods, something which had been impractical up to now. Second, we formulate
a novel stochastic trajectory optimization problem. We offer an efficient algorithm that exploits
both the compositionality and the factored form of our models which results in a fast and practical
optimization algorithm for open-loop plans.

We validate our approach by first showing that using our models to estimate state values results in
performance similar to that of a model-free temporal difference learning algorithm [1], despite the
approximations used. Then, we show our planning approach performs better in a high dimensional
continuous racetrack domain when compared to both an analogous model-based, closed-loop value
iteration approach using the same model and a model-free approach, batch Q-Learning [2], while
seamlessly handling changing reward functions and generating over 6 plans per second.

The idea of using local planning for reinforcement learning has been successfully applied to various
reinforcement learning domains [3, 4], but required a simulator to sample results of taking actions
in desired states. To our knowledge, this approach has never been applied to learned models.

Our choice of learning expected transitions is motivated by previous work on linear action models
(LAM) in which their expressivity, efficiency of learning and efficiency of inference have been lever-
aged. They have successfully been used in the context of approximate policy iteration (API) [5], ap-
proximate value iteration (AVI) [6] and composing modelled meta-actions [7]. We extend previous
work by providing a novel low-dimensional approach for estimating linear action models, leveraging
the low-rank structure of the state space.

This structure has been previously found and successfully learned in different areas of reinforcement
learning, such as in the least-square temporal difference (LSTD) learning algorithm [8] and a second-
order temporal difference learning algorithm [9], resulting in significant savings in memory and
computation. Finally, low-rank structure was exploited in the parameter matrix of the successor
representations, leading to an efficient temporal difference like algorithm [10]. Previous work on
this idea enabled sub-quadratic algorithms, opening up previously impractical cases.

2 Background

Framework and Notation We consider the problem of solving an unknown discounted Markov
decision process (MDP) M = {S,A,P,R, q0, γ}, where S is the set of states, A is the set of
actions, P(s, a, s′) defines the probability of transition from state s to s′ given action a, R(s, a) is
the reward received for executing action a in state s, q0 is a probability distribution over start states
and γ ∈ [0, 1) is the discount factor. We limit ourselves to MDPs where planning is done over
discrete actions, all of which can be executed in any given state. We use the notation St, At, Rt to
describe the random variables defining the state, the action and the reward, respectively, at time t.
Additionally, we use a colon notation as subscript to signify all indices in an interval, inclusively,
e.g., A1:t represents A1, A2, . . . , At. We also use the short hand notation E [· | a1:t, s0] in place of
E [· | A1:t = a1:t, S0 = s0].

2

Given an open-loop plan π and a start state s0, we define a time dependent Q-value function, Q, and
its corresponding value function, V , in the following way:

Q(t, a;π, s0) = E

[
H−1∑
τ=t

γτ−tRτ

∣∣∣∣∣ A0 = a, s0, π

]
V (t;π, s0) = E [Q(t, a;π, s0) | s0, π] ,

that is, the expected discounted returns from time t, where action a is executed, to some time horizon
H where all other time steps follow plan π and the robot starts in some state s0 at time step 0. From
here, we define an optimal plan from some state s as being a plan π∗ which maximizes V (0;π, s).

Action Models In order to model the environment, we consider linear functions of non-linear
features of states, φ : S → Rn, where distributions over next states are encoded as expectations over
the value these features. Formally, we have

Fatφ(st) = E [φ(St+1) | at, st] ,
where Fat ∈ Rn×n models the transitions of the MDP under action at. Similarly, we model
the reward function as a linear function of the same non-linear features, giving us w>a φ(s) =
R(s, a),where wa is the set of linear coefficients encoding R(·, a). We refer to a pair (wa,Fa)
as a linear action model (LAM).

At first glance, taking a linear approach might appear overly restrictive but with appropriate features,
rich families of functions can be encoded. It was shown that, following the reproducing kernel
Hilbert space (RKHS) formulation, linear action models can effectively be applied to a wide range
of inference and reinforcement learning problems [11, 12, 13]. The idea that expectations over linear
features can encode probability distribution is at the core of these approaches. In this work, we use
randomly sampled Fourier basis [14] to approximate an RKHS approach with Gaussian kernels.

In addition to being computationally convenient, linear action models allow predictions about future
states to be composed together while still accounting for stochastic transitions. Doing so allows
us to efficiently evaluate the expected states given a sequence of actions. Formally, given a set of
LAM, {Fa : a ∈ A}, and primitive actions a and b, we can can compute the LAM for executing a
followed by b as the matrix product Fab = FbFa. More generally, we can compose transitions on
the expected features as follows:

E [φ(St+1) | a1:t, s0] = Fat E [φ(St) | a1:t−1, s0] = Fa1:tφ(s0),

where we use Fa1:t to describe the matrix product FatFat−1
. . .Fa1 . We exploit this property to

evaluate the value of a given plan π by observing

V (0;π, s0) =

H−1∑
t=0

γt E [Rt | π, s0] = E

[
H−1∑
t=0

γtw>at
FA0:Atφ(s0)

∣∣∣∣∣ π
]
, (1)

where the expectation in Eq. 1 is over the actions, allowing random action choices. Note that this
equation can be re-written recursively, a property which will be exploited later.

3 Fitting Linear Action Models

In this work, we minimize our model’s one-step squared prediction error on the training data. To
leverage similarities between actions, we opt for a locally weighted approach rather than keeping
transitions of different actions separate. To do so, given a kernel function k defining the similarity
between two actions, we define our fitted LAM (ŵa, F̂a), a ∈ A as:

ŵa = arg min
w

∑
(st,at,rt,st+1)∈D

k(a, at)
(
rt −w>φ(st)

)2
(2)

F̂a = arg min
F

∑
(st,at,rt,st+1)∈D

k(a, at) ‖ φ(st+1)− Fφ(st) ‖22, (3)

where D is a set of sampled transition and we define φ(s) = 0 when s is a terminal state.

The question of what defines a good cost function for model fitting in model-based reinforcement
learning is still an open question. However, the one-step prediction error, in the linear case, has a
proven relation to the error in value function estimates where small prediction error will result in
small Bellman error in the value function [15]. This, combined with our empirical results, lead us to
believe that the one-step prediction error is sufficient for our setting.

3

4 Compressed Linear Action Models (CLAM)

We propose a novel method to fit and store linear action models which we leverage to efficiently
find good plans. We consider a compressed, approximate version of LAMs, offering savings in
computational time and memory for both the fitting and evaluation.

We derive our approach by relating the data to a locally weighted least-squares approximation of the
corresponding LAMs. Given transition tuples (st, at, rt, s

′
t), we define Φ and Ψ to be the matrices

with the predecessor and the successor states organized row-wise, respectively, and the vectors A
and r to be the actions and the sampled rewards, i.e.,

Φ =

φ(s0)>

φ(s1)>

...

 ,Ψ =

φ(s′0)>

φ(s′1)>

...

 ,A =

a0a1...
 , r =

r0r1...
 .

We avoid the O(n2) complexity inherent in LAMs through a low-rank approximation. This is done
by finding an embedding of the predecessor states. We do this efficiently by incrementally build-
ing a truncated singular value decomposition (SVD) of Φ, following the approach introduced by
Brand (2006). The result is an orthogonal embedding for the states in which it is computationally
convenient to evaluate expected transitions and their corresponding rewards.

As defined currently, the compressed states, Φ ≈ UΣV>, would allow us to efficiently perform re-
gression over all states, but additional work is required to generate action specific models. We do so
by generating an action specific embedding, UaΣaV

>
a , incorporating the kernel value between each

sampled action and some action a by rediagonalizing the row-wise scaled matrix, diag(K(A, a))Φ.
The procedure used can be found in the supplementary material. This approach is significantly more
efficient than recomputing the whole embedding from scratch and allows models for new actions to
be generated at when needed.

The new embedding allows us to quickly solve the locally weighted regression problem defined in
Eq. 2 and 3. Given an action a, this is done with the following equations:

F̂a = Ψ>diag(K(A, a))UaΣ−1
a V>a

ŵa = r>diag(K(A, a))UaΣ−1
a V>a .

Additionally, in this work, we modify the inverse Σ−1 in order to achieve an L2-norm regularization
of the LAMs. This is done by replacing the inverse singular value σ−1i by σi/(σ2

i + λ), where
λ ∈ [0,∞) is the regularization parameter used to adjust the weight on the L2 penalty.

For computational and memory efficiency, the n × n matrix F̂a is never explicitly computed,
and is instead kept in a partially factored form, where Ûa = Ψ>diag(K(A, a))Ua and r̂a =
r>diag(K(A, a))Ua are pre-computed. The final CLAMs consist of two n × k matrices and a
vector of inverse singular values of size k.

5 Planning with CLAMs

5.1 Stochastic Plan Optimization (SPOPT)

We propose an optimization formulation for finding good open-loop plans. That is, given a fixed
horizon H , for a state s, we seek a plan π∗ such that

π∗ = arg max
π

V (0;π, s).

Performing this optimization over sequences of actions presents a difficult search problem. To sim-
plify the problem, we formulate a differentiable V by considering a probabilistic description of
plans, allowing first-order derivatives to guide the search. This means we define a stochastic open-
loop plan as a set of probability distributions over actions, one for each time step up to a horizon
H . That is, for a plan π and some time 0 ≤ t < H , we define π(t, ·) to be a proper probability
distribution over actions. This makes the expected outcomes a differentiable function of π, which
can be easily locally optimized.

Finally, in order to make the optimization problem unconstrained, we avoid a tabular parametrization
of π, and, instead, opt for a soft max encoding of the probabilities. Formally, for parameters η ∈

4

RH×|A|, we have π(t, a) = exp(ηt,a)/
∑
b∈A exp(ηt,b). This insures that, for all possible values of

η, the corresponding π is a proper stochastic plan.

We solve the planning problem with a normalized gradient ascent of V (0;π, s), leveraging the fact
that the gradient with respect to π(t, ·) can easily be computed if Q(t, ·;π, s) is known. Therefore,
the main computational cost of computing gradients lies in estimating Q. As such, we focus our
efforts in doing so efficiently, proposing a novel dynamic programming approach.

Estimating Q with LAMs To understand the derivation of our estimation algorithm, it will
be helpful to first consider the non-compressed LAM version of our approach. Given LAMs
{Fa : a ∈ A} and {wa : a ∈ A}, features φ : S → Rn, and start state s0 ∈ S , we outline the
recursive nature of the time dependent Q-values as defined earlier by defining two new sets of im-
portant variables, φ̂t ∈ Rn and αt ∈ Rn, for 0 ≤ t < H . Here, φ̂t represents the expected features at
time t following some plan π and αt represents the remaining expected discounted value attributed
to each feature at time t. Both are recursively defined with

φ̂0 = φ(s0); φ̂t =
∑
a

π(t− 1, a)F̂aφ̂t−1,

α>H = 0; α>t =
∑
a

w>a + γπ(t, a)α>t+1F̂a,

where the φ’s represent the expected features moving forward, and, the α’s represent the future
values of each features propagating backwards. Given this structure, one could follow a dynamic
programming approach to compute these quantities efficiently. The result can be used to evaluate
the Q-values given some time step t with the following equation:

Q̂(t, a;π, s0) =
(
w>a + γα>t+1F̂a

)
φ̂t.

Planning in a Low-Rank Embedding Using the fact that CLAMs are factored and low-
dimensional, we can derive a new, mathematically equivalent algorithm for computing the time
dependent Q-values. We do this by defining new intermediate quantities, αa,t, βa,t ∈ Rk, where
k is the rank of the approximations. Similar to before, the vectors αa,t represent the value of fea-
tures in the low-rank embedding for action a while βa,t can be seen as representing the value of
the expected features in the embedding for action a at time t. For clarity, we assume each CLAM
has the same rank, though this is not necessary. More formally, given the action specific SVDs
{(Ua,Σa,Va) : a ∈ A}, we relate αa,t, βa,t to αt, φ̂t:

βa,t = V>a φ̂t; αa,tV
>
a = w>a + γα>t+1Fa

This allows us to reparameterize the LAMs such that all necessary operations can be performed in
the size of the low-rank embedding. Our new models are represented by {Ka,b : (a, b) ∈ A × A}
and {θa : a ∈ A} and relate to the previous form as

θa = r>a diag(K(A, a))Ua

Ka,b = V>a Ψ>diag(K(A, a))>Ub.

Refactoring the recursive equations used to compute Q̂(t, a;π, s0), we get

α>a,t =

(∑
b

π(t+ 1, b)α>b,t+1Kb,a + θ>a

)
Σ−1

a

α>a,H−1 = θ>a Σ−1
a

βa,t =
∑
b

π(t− 1, b)Ka,bΣ
−1
b βb,t−1

βa,0 = V>a φ(s0).

Finally, to evaluate our estimate, we use Q̂(t, a;π, s0) = α>t,aβt,a.

It is important to note that the resulting equations always remain in the dimension of the embed-
dings. The final runtimes for evaluating a plan are O(Hk2|A|2 +nk) for the embeddings approach,
O(Hnk|A|) for using the CLAMs without planning in the embedding, and O(Hn2|A|) for the full
LAM approach. Since, in practice, k � n, the compressed models and the corresponding planning
algorithm see considerable speed ups. It is important to note that planning in the embedding results
in an algorithm which is quadratic in the number of possible actions so this approach is not suited to
problems with very large action sets.

5

(a) (b)

Figure 1: (a) The root means squared error of the estimated values. The standard deviation is
reported as the shaded area. (b) The car domain and the observations used.

Determinization of Plans Given the soft max parametrization of π, the gradient ascent of V risks
wasting a significant amount of time collapsing the probability distributions to ones and zeros. We
note that the value of a stochastic plan π can be improved, or, in the case of a tie, made no worse, by
greedily forcing π(t, a∗) = 1 at some time step t, where a∗ = arg maxa∈AQ(t, a;π, s0). If done
sequentially with respect to t, the intermediate quantities βt,a and αt,a can be updated efficiently,
keeping the Q̂ estimates valid and allowing this step to be repeated. To accelerate planning, we
employ a rather aggressive termination condition and compensate by determinizing the plans. The
exact procedure used is provided in the supplementary material.

6 Experiments

Mountain Car We first validate our compressed models by examining the estimated values de-
rived by CLAMs in a policy evaluation setting. That is, in the case where only one LAM is generated,
corresponding to the expected transition under a fixed policy. For this purpose, we consider the well
studied Mountain Car domain [17]. The state consists of a two-dimensional vector, the position
and speed of the car. The agent can applying a force either in the positive or negative direction, or
staying idle, and must escape a valley. For training, we consider trajectories obtained by following a
ε-random energy-pumping policy, executing a random action with probability ε = 0.2 and otherwise
applying a force in the direction the car is moving.

We compare our approach to a batch implementation of the temporal difference learning algorithm
(TD) which was run until convergence, reusing provided samples repeatedly. For both methods, we
used 4000 random Fourier features and meta-parameters were optimized following a coarse grid-
search and used a discount γ = 0.99. Additional details can be found in the supplementary material.

Both methods performed comparably on the value estimation problem. Note that the error is not
expected to reach zero given the feature approximation. Figure 1a visualizes the error as more data
is provided to each method. The results were averaged over 30 runs. Both methods shared the same
seeds in order to ensure the same features and data were used.

Continuous Race Track We further explore the validity of our approach on a more complex car
environment with LIDAR-like observations. In this domain, an agent is tasked with driving on a
track. Driving off the track causes the episode to terminate, removing the opportunity for future
rewards. Training trajectories are generated by having a human control the car. The car dynamics
follow that of [18][Sec. 13.1.2.1] with the exception that our agent controls acceleration rather than
speed directly. See the supplementary material for more details on the dynamics. Additionally, the
environment is made stochastic by the addition of Gaussian noiseN (0, diag([0.1, 0.15π/4])) to the
agent’s actions. The agent is given 9 discrete actions corresponding to cross-product of the max,
min and idle throttle and the max, min, and idle steering inputs.

As an added difficulty, the agent does not receive the state of the car, but, instead, receives obser-
vations from a simulated 2D LIDAR. The LIDAR has 10 beams uniformly distributed in front of
the car, covering the front 180◦. A beam reports the distance to the closest point on the track which
intersects the beam, up to some max distance 1.0. Additionally, each beam reports the relative speed

6

(a) Track 1 (b) Track 2 (c) Track 3 (d) Track 4 (e) Track 5

Figure 2: Visualization of the tracks and training trajectories.

(a) Track 1 (b) Track 2

Figure 3: Examples of SPOPT’s trajectory with repeated lane switches. Blue dot represents the
reward switching side, starting from the left.

along the beam at the point it touches or at the max distance, which ever is closest. The result is a
20 dimensional domain with partial observability. Figure 1b provides a visualization of the domain.
A total of 12000 random Fourier features were used in these experiments. Additional details can be
found in the supplementary material.

To evaluate our approach under changing objectives, we define two reward functions, both requiring
the car to move forward in the track. The left/right reward function requires that the car be on the
left/right side of the track, receiving a reward of max(−1,min(1, v)) when doing so, otherwise
receiving max(−1,min(0, v)). As a consequence, the reward is bounded in [−1, 1] and is only
negative if the car reverses and can only be > 0 if moving forward on the correct side. Finally,
exiting the track results in a reward of zero and termination of the episode.

We first investigate the value of SPOPT as a planning procedure by comparing its performance to
an approximate value iteration (AVI) algorithm, an analogous model-based approach using the same
CLAM. We also compare with a batched version of linear Q-Learning, updating on all samples
at once until convergence. Both comparison algorithms are run until convergence using the same
random features as SPOPT. For Q-Learning, several values for the learning rate are tried and the
best solution is reported. It is important to note that all three methods use the same features and
choose actions by maximizing over linear Q-values. As a consequence, any differences between
these approaches are strictly due to the planning procedure (i.e., gradient optimized local plans,
dynamic programming optimized global plan, model-free Q-Learning.)

Track # # samples SPOPT AVI Q-Learning
1 1785 1040.4± 1.8 678.1± 115.8 0.9± 1.3
2 1038 1020.4± 20.2 845.3± 101.7 22.3± 36.6
3 1789 934.6± 128.9 720.9± 124.7 0.0± 0.1
4 646 512.2± 143.5 907.2± 9.0 700.0± 178.7
5 2637 85.6± 32.0 153.7± 69.9 3.6± 2.9
1 all samples 722.3± 131.5 245.4± 86.8 −0.1± 0.0
2 all samples 1001.2± 14.6 277.2± 80.5 −0.1± 0.0
3 all samples 687.1± 100.4 219.2± 76.1 −0.1± 0.0
4 all samples 1043.2± 4.3 233.0± 69.6 −0.1± 0.0
5 all samples 216.3± 108.9 56.9± 29.9 −0.1± 0.0

Table 1: Comparison of each planning method, across tracks, of the total reward accrued over 60
seconds or until a crash. The reported values correspond to the total reward accrued over 60 seconds
or until a crash. The interval reported corresponds to the 0.95 confidence interval.

7

We compare the quality of the final policies executing them for up to 60 seconds. Figure 2 visualizes
the tracks and demonstrations used. Additionally, given the similarities of the domain across tracks,
we consider a the case where all five datasets are concatenated. Table 1 provides the total reward
obtained while using the left reward function.

Overall, SPOPT demonstrates a notable edge over both AVI and Q-Learning. SPOPT appears to be
capable of handling the concatenation of the datasets while AVI and Q-Learning fail. We observe
a slight decrease in SPOPT’s performance in three of the five tracks and an increase in the other
two. We conjecture that this difference in behaviour between the planning methods, when compar-
ing the aggregate dataset case and the track specific one, to be due to the local-planning nature of
SPOPT. The intuition is that only nearby (expected) states are considered by SPOPT, making it is
less vulnerable to ‘bad’ states from other tracks that would otherwise lead to sub-optimal decisions
propagating through the whole global policy.

While AVI had a modest performance with the task specific trajectories, Q-Learning was not able to
converge to a good solution in either case and mostly found policies which either crashed immedi-
ately or remained mostly stationary. Q-Learning, as well as temporal difference learning in general,
are known to have convergence issues [19] when trained on off-policy data which could explain the
poor performance. Additionally, we ran the same experiment with a neural net implementation, i.e.,
DQN [20], and observed the same behaviour.

We note that tracks 4 and 5 have unique difficulties. Track 4 has significantly less data than the other
tracks, while track 5 has a self-intersection. Since the concatenated data greatly boosts SPOPT’s
performance on track 4, we believe that the low sample count is responsible for the initial poor
results. Additionally, across all three methods, track 5 has seen poor performance which is likely
caused by its unique 8-shape and ambiguous observations it produces.

Finally, we investigate qualitatively SPOPT’s behavior under changing reward functions. Since AVI
and Q-Learning both plan by incorporating the reward function, both require a full replanning step,
making them inflexible and ill-suited for this setting. Along with the source code1, we provide a short
video of an arbitrary track being generated, the demonstrations being collected and the resulting
SPOPT policy under changing rewards. Figure 3a and 3b provide visualizations of two additional
examples of SPOPT’s behaviour under successive changes in objective.

We’ve found SPOPT to be robust to the tracks and trajectory generated, successfully driving several
laps without exiting the track even under changing reward function. SPOPT was able to successfully
drive and lane switch despite having sub-optimal demonstrations and few examples. The occasional
observed failures, in the majority of cases, can be explained by the agent entering a state which
is vastly different from the provided data, e.g., the agent driving perpendicular to the track wall, a
situation human drivers typically avoid.

7 Conclusion

In this work, we have presented a novel replanning approach for tackling MDPs with unknown
dynamics aimed at a learning from demonstration setting. We show that our SPOPT approach out-
performs an analogous value iteration and model-free approach in the quality of the solutions learned
while offering superior flexibility with regard to changing objectives, allowing for near immediate
adaptation to changes in reward function.

Acknowledgments We gratefully acknowledge support from NSF grants 1420316, 1523767, and
1723381; from AFOSR grant FA9550-17-1-0165; from ONR grant N00014-18-1-2847; from Honda
Research; and from Draper Laboratory. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect the views of
our sponsors.

References
[1] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3

(1):9–44, 1988.

1https://github.mit.edu/gehring/CLAM-SPOPT

8

https://github.mit.edu/gehring/CLAM-SPOPT

[2] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[3] C. R. Mansley, A. Weinstein, and M. L. Littman. Sample-based planning for continuous action
markov decision processes. In ICAPS, 2011.

[4] A. Weinstein and M. L. Littman. Open-loop planning in large-scale stochastic domains. In
AAAI, 2013.

[5] H. Yao and C. Szepesvári. Approximate policy iteration with linear action models. In AAAI,
2012.

[6] H. Yao, C. Szepesvári, B. A. Pires, and X. Zhang. Pseudo-mdps and factored linear action
models. In Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), 2014
IEEE Symposium on, pages 1–9. IEEE, 2014.

[7] J. Sorg and S. Singh. Linear options. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 31–38. International
Foundation for Autonomous Agents and Multiagent Systems, 2010.

[8] C. Gehring, Y. Pan, and M. White. Incremental truncated lstd. In International Joint Confer-
ence on Artificial Intelligence, 2016.

[9] Y. Pan, A. M. White, and M. White. Accelerated gradient temporal difference learning. In
AAAI, pages 2464–2470, 2017.

[10] C. A. Gehring. Approximate linear successor representation. In Multidisciplinary Conference
on Reinforcement Learning and Decision Making (RLDM), 2015.

[11] S. Grunewalder, G. Lever, L. Baldassarre, M. Pontil, and A. Gretton. Modelling transition
dynamics in mdps with rkhs embeddings. ICML, 2012.

[12] L. Song, K. Fukumizu, and A. Gretton. Kernel embeddings of conditional distributions: A
unified kernel framework for nonparametric inference in graphical models. IEEE Signal Pro-
cessing Magazine, 30(4):98–111, 2013.

[13] G. Lever, J. Shawe-Taylor, R. Stafford, and C. Szepesvári. Compressed conditional mean
embeddings for model-based reinforcement learning. In AAAI, pages 1779–1787, 2016.

[14] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

[15] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman. An analysis of linear
models, linear value-function approximation, and feature selection for reinforcement learning.
In Proceedings of the 25th international conference on Machine learning, pages 752–759.
ACM, 2008.

[16] M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear alge-
bra and its applications, 415(1):20–30, 2006.

[17] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[18] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[19] L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Ma-
chine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

9

8 Appendix

Function GetActionSVD(action kernel K, sampled actions A, svd of predecessor states
Φ = UΣV>, an action a)
w ← K(A, a)
Q,R← qr(diag(w)U)

U ′,Σ′, V ′
> ← svd(RΣ)

Ua ← U ′Q
Σa ← Σ′

V >a ← V ′
>
V>

return Ua,Σa, V >a
Algorithm 2: SVD algorithms for finding action specific embeddings.

while π not converged do
for t = 0 to H − 1 do

a∗ = arg maxa Q̂(t, a;π, s0)
force π(t, a) = 1 if a = a∗, else π(t, a) = 0

update β̂t+1,b∀b ∈ A
end
for t = H − 1 to 0 do

a∗ = arg maxa Q̂(t, a;π, s0)
force π(t, a) = 1 if a = a∗, else π(t, a) = 0
update α̂t−1,b∀b ∈ A

end
end

Algorithm 3: An efficient determinzation algorithm.

10

8.1 Parameters for mountaincar

Our implementation of CLAM used 4000 random Fourier bases sampled to approximate a Gaussian
kernel with a width of 0.2× (state-range) and used a Gaussian kernel on actions with a width of 0.5.
CLAMs were estimated with a maximum truncated rank k = 800 but further truncated the rank to
k = 100 when evaluating states. Additionally, the models were regularized with λ = 0.2.

8.2 The race track domain

The car’s state is a four dimensional vector defined by its 2D position, it’s orientation and speed.
The car has parameters L = 0.1,, defining its length, and ρ = 1.0, defining the damping of speed,
modelling friction. For a car in state q = [x y θ v]

> and given input u ∈ R2, the dynamics of
the system follow

q̇ =

v cos(θ)
v sin(θ)

v tan(u[1])

L
u[0]− ρv

 ,
where u[0] corresponds to the throttle and u[1] corresponds to the angle of the steering wheels with
limits u[0] ∈ [−1, 1] and u[1] ∈ [π/8, π/8]. The simulation was run at 20 Hz using odeint [?].
Control was also run at 20 Hz, requiring a new action every 0.05 seconds.

In this set of experiments, SPOPT used 12000 random Fourier bases approximating a Gaussian
kernel with width 0.5 for both LIDAR distance and relative speed measurements. The CLAMs used
λ = 0.6 with a max rank k = 400 and a Gaussian action kernel with width 0.5 times the action
range. The optimization was performed over a horizon H = 20 with the models further truncated
to rank k = 40. Plans were optimized with a gradient step size of 0.1 with termination when the
plan’s value improves less than 10−4 or if 20 gradient steps were done, which ever happens first.
The resulting plan is further improved by three determinization sweeps. Parameters were chosen
following a coarse grid search, balancing good, robust solution and fast planning.

11

	Introduction
	Background
	Fitting Linear Action Models
	Compressed Linear Action Models (CLAM)
	Planning with CLAMs
	Stochastic Plan Optimization (SPOPT)

	Experiments
	Conclusion
	Appendix
	Parameters for mountaincar
	The race track domain

