
Task-Embedded Control Networks
for Few-Shot Imitation Learning

Stephen James
Dyson Robotics Lab

Imperial College London
slj12@imperial.ac.uk

Michael Bloesch
Dyson Robotics Lab

Imperial College London
m.bloesch@imperial.ac.uk

Andrew J. Davison
Dyson Robotics Lab

Imperial College London
a.davison@imperial.ac.uk

Abstract: Much like humans, robots should have the ability to leverage knowl-
edge from previously learned tasks in order to learn new tasks quickly in new
and unfamiliar environments. Despite this, most robot learning approaches have
focused on learning a single task, from scratch, with a limited notion of generalisa-
tion, and no way of leveraging the knowledge to learn other tasks more efficiently.
One possible solution is meta-learning, but many of the related approaches are
limited in their ability to scale to a large number of tasks and to learn further
tasks without forgetting previously learned ones. With this in mind, we introduce
Task-Embedded Control Networks, which employ ideas from metric learning in
order to create a task embedding that can be used by a robot to learn new tasks
from one or more demonstrations. In the area of visually-guided manipulation,
we present simulation results in which we surpass the performance of a state-
of-the-art method when using only visual information from each demonstration.
Additionally, we demonstrate that our approach can also be used in conjunction
with domain randomisation to train our few-shot learning ability in simulation and
then deploy in the real world without any additional training. Once deployed, the
robot can learn new tasks from a single real-world demonstration.

Keywords: Manipulation, Few-shot Learning, Sim-to-Real

1 Introduction

Figure 1: The robot gains its few-
shot learning ability in simulation,
and can then learn a new task
from a single demonstration.

Humans and animals are capable of learning new information
rapidly from very few examples, and apparently improve their
ability to ‘learn how to learn’ throughout their lives [1]. Endow-
ing robots with a similar ability would allow for a large range of
skills to be acquired efficiently, and for existing knowledge to
be adapted to new environments and tasks. An emerging trend
in robotics is to learn control directly from raw sensor data in
an end-to-end manner. Such approaches have the potential to
be general enough to learn a wide range of tasks, and they have
been shown to be capable of performing tasks that traditional
methods in robotics have found difficult, such as when close
and complicated coordination is required between vision and
control [2], or in tasks with dynamic environments [3]. How-
ever, these solutions often learn their skills from scratch and
need a large amount of training data [3, 4, 5]. A significant
goal in the community is to develop methods that can reuse
past experiences in order to improve the data efficiency of these
methods.

To that end, one significant approach is Meta-Imitation Learn-
ing (MIL) [6], in which a policy is learned that can be quickly
adapted, via one or few gradient steps at test time, in order to
solve a new task given one or more demonstrations. The under-

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.

Figure 2: Task-Embedded Control Networks (TecNets) allow tasks to be learned from single or
multiple demonstrations. Images of demonstrations are embedded into a compact representation of
a task, which can be combined to create a sentence. This sentence is then expanded and concatenated
(channel-wise) to the most recent observation from a new configuration of that task before being sent
through the control network in a closed-loop manner. Both the task-embedding net and control net
are jointly optimised to produce a rich embedding.

lying algorithm, Model-Agnostic Meta-Learning (MAML) [7] can be very general, but lacks some
of the properties that we might hope for in a robotic system. For one, once the policy is trained, it
cannot accomplish any of the tasks seen during training unless it is given an example again at test
time. Also, once a specific task is learned, the method can lose its ability to meta-learn and be stuck
with a set of weights that can only be used for that one task. One way around this is to make a copy
of the weights needed for each task, but this raises scalability concerns.

Our new approach, Task-Embedded Control Networks (TecNets), is centred around the idea that
there is an embedding of tasks, where tasks that are similar (in terms of visual appearance) should
be close together in space, whilst ones that are different should be far away from one another. Having
such an expressive space would not only allow for few-shot learning, but also opens the possibility
of inferring information from new and unfamiliar tasks in a zero-shot fashion, such as how similar a
new task may be to a previously seen one.

TecNets, which are summarised in Figure 2, are composed of a task-embedding network and a
control network that are jointly trained to output actions (e.g. motor velocities) for a new variation
of an unseen task, given a single or multiple demonstrations. The task-embedding network has the
responsibility of learning a compact representation of a task, which we call a sentence. The control
network then takes this (static) sentence along with current observations of the world to output
actions. TecNets do not have a strict restriction on the number of tasks that can be learned, and
do not easily forget previously learned tasks during training, or after. The setup only expects the
observations (e.g. visual) from the demonstrator during test time, which makes it very applicable
for learning from human demonstrations.

To evaluate our approach, we present simulation results from two experimental domains proposed in
MIL [6], and demonstrate that we can train our meta-learning ability in simulation and then deploy
in the real world without any additional training. We believe this to be a desirable property given
that large amounts of data are needed to end-to-end solutions. Despite being trained to meta-learn
in simulation, the robot can learn new tasks from a single demonstration in the real world.

Our contributions in this work are threefold. We demonstrate the ability to one-shot and few-shot
learn visuomotor control through the use of TecNets in a selection of visually-guided manipulation
tasks. Secondly, we show that TecNets are able to achieve higher success rates compared to MIL [6]
when using only visual information from each demonstration. Finally, we demonstrate the first
successful method of a few-shot learning approach trained in simulation and transferred to the real
world, which we believe is an important direction for allowing large-scale generalisation.

2 Related Work

Our work lies at the intersection of imitation learning [8, 9] and meta-learning [10, 11]. Imita-
tion learning aims to learn tasks by observing a demonstrator. One focus within imitation learning
is behavioural cloning, in which the agent learns a mapping from observations to actions given
demonstrations, in a supervised learning manner [12, 13]. Another focus is inverse reinforcement

2

learning [14], where an agent attempts to estimate a reward function that describes the given demon-
strations [15, 16]. In our work, we focus on behavioural cloning in the context of learning motor
control directly from pixels. A common issue in behavioural cloning is the large amount of data
needed to train such systems [3], as well as the fact that tasks are often learned independently, where
learning one task does not accelerate the learning of another. Recently, there has been encouraging
work to address this problem [6], and our approach provides a further advance.

One-shot and few-shot learning is the paradigm of learning from a small number of examples at
test time, and has been widely studied in the image recognition community [17, 18, 19, 20, 21, 22].
Many one-shot and few-shot learning methods in image recognition are a form of meta-learning,
where the algorithms are tested on their ability to learn new tasks, rather than the usual machine
learning paradigm of training on a single task and testing on held out examples of that task. Common
forms of meta-learning include recurrence [19], learning an optimiser [20], and more recently Model
Agnostic Meta-Learning (MAML) [7]. Many works in metric learning, including ours, can be seen
as forms of meta-learning [17, 22], in the sense that they produce embeddings dynamically from
new examples during test time; the difference to other more common meta-learning approaches is
that the embedding generation is fixed after training.

The success of our new approach comes from learning a metric space, and there has been an abun-
dance of work in metric learning for image classification [23, 24], from which we will summarise the
most relevant. Matching Networks [17] use an attention mechanism over a learned embedding space
which produces a weighted nearest neighbour classifier given labelled examples (support set) and
unlabelled examples (query set). Prototypical Networks [22] are similar, but differ in that they rep-
resent each class by the mean of its examples (the prototype) and use a squared Euclidean distance
rather than the cosine distance. In the case of one-shot learning, matching networks and prototypical
networks become equivalent. Our approach is similar in that our sentence (prototype) is created by
averaging over the support set, but differs in the way we couple the learned embedding space with
the control network. These metric learning methods have all been developed for image classifica-
tion, and in the visuomotor control domain of our method, we do not explicitly classify sentences,
but instead jointly optimise them with a control network.

Recently, Hausman et al. [25] proposed learning a skill embedding space via reinforcement learning
that led to speed-ups during training time. Although impressive, that method does not focus on
few-shot learning, and the experiments are run within simulation with low dimensional state spaces.
Another piece of work that uses embedding spaces is [26], where a multimodal embedding is learned
for point-clouds, language and trajectories. This work involves pre-training the parts of the network,
and also relies on accurate models of the world. Our approach has the benefit that we map directly
from images to motor actions and train jointly embedding and control networks, with no pre-training.

In terms of setup, the closest related work to ours is MIL [6], where they apply MAML [7] and
behaviour cloning to learn new tasks, end-to-end from one visual demonstration. The underlying
algorithm, MAML, learns a set of weights that can be quickly adapted to new tasks. If we were to
use this approach to retain information we had previously learnt, we would need to hold copies of
weights for each task. In comparison, our method relies on storing a compact sentence for every
task we want to remember.

3 Task-Embedded Control Networks

We now formally summarise the notation for our method. A policy π for task T maps observations
o to actions a, and we assume to have expert policies π∗ for multiple different tasks. Corresponding
example trajectories consist of a series of observations and actions: τ = [(o1,a1), . . . , (oT ,aT)]
and we define each task to be a set of such examples, T = {τ1, · · · , τK}. TecNets aim to learn a
universal policy π(o, s) that can be modulated by a sentence s, where s is a learned description of
a task T. The resulting universal policy π(o, s) should emulate the expert policy π∗ for task T.

3.1 Task Embedding

We now introduce our task embedding, which can be used independently in other fields, such as
image classification, and so we keep this section general. Assume we are given a small set of K
examples of a task Tj . Our task embedding network fθ : RD → RN computes a normalised N -

3

Figure 3: A visualisation of how the embedding is learned. Imagine a simple case where we have 2
tasks (or classes): llamas and dogs. We have a support set of 4 examples, which are then embedded
and averaged in order to get a sentence for each task. The hinge rank loss drives the dot product of
the query image (sjk) with the difference between the actual sentence and the negative sentences (δ)
to be at least a factor of margin away (M in the Figure above). In other words, sjk should point in
the opposite direction to δ by at least a factor of margin.

dimensional vector sjk ∈ RN for each example τ jk ∈ Tj . A combined sentence sj ∈ RN is then
computed for that task by taking the normalised mean of the example vectors:

sj =

[
1

K

∑
τj
k∈Tj

fθ(τ
j
k)

]∧
, (1)

where v∧ = v
‖v‖ . We then need to define a loss function that can be used to learn an ideal embed-

ding. We use a combination of the cosine distance between points and the hinge rank loss (inspired
by [27]). The loss for a task Tj is defined as:

Lemb =
∑
τj
k∈Tj

∑
Ti 6=Tj

max[0,margin− sjk · s
j + sjk · s

i] , (2)

which trains the model to produce a higher dot-product similarity between a task’s example vectors
sjk and its sentence sj than to sentences from other tasks si. We illustrate the intuition behind this
loss in Figure 3.

Additionally, we pick two disjoint sets of examples for every task Tj : a support set TjU and a query
set TjQ. In the above embedding loss, the support set is used to compute the task sentences, si and
sj , and only the examples picked from the query set are used as example vectors, sjk. Given that
each of the sampled tasks in a training batch are unique, the negatives Ti can be chosen to be all
the other tasks in the batch. Therefore, for each task within a batch, we also compare to every other
task. Further details are given in Algorithm 1.

In all of our experiments, we set margin = 0.1, though in practice we found a wide range of
values between 0.01 ≤ margin ≤ 1.0 that would work. Although not used, we can treat this
embedding as a classification of tasks, whose accuracy we can estimate by computing the sentence
sk of an example and then performing a nearest neighbour search in the embedding space over all
task sentences sj . In addition to the dot-product similarity and hinge rank loss, we also tried other
distances and losses. One such distance and loss was the squared Euclidean distance used in [22],
but we found that this did not work as well for our case.

3.2 Control

In contrast to metric learning systems for classification, which would use some sort of nearest neigh-
bour test to find the matching class, here the embedding is relayed to the control network and both
networks are trained jointly. Given a sentence sjU , computed from the support set TjU , as well as

4

Algorithm 1 Training loss computation for one batch. B is the batch size, KU andKQ are the num-
ber of examples from the support and query set respectively, and RandomSample(S,N) selects N
elements uniformly at random from the set S.

1: procedure TRAINING ITERATION
2: B = RandomSample({T1, · · · ,TN},B)
3: for Tj ∈ B do
4: TjU = RandomSample(Tj ,KU)

5: TjQ = RandomSample(Tj\TjU ,KQ)

6: sjU =
[

1
KU

∑
τ∈Tj

U
fθ(τ)

]∧
7: sjq = fθ(τq) ∀τq ∈ TjQ

Lemb = LUctr = L
Q
ctr = 0

8: for Tj ∈ B do
9: Lemb +=

∑
q

∑
i6=jmax[0,margin− sjq · s

j
U + sjq · siU]

10: LUctr +=
∑
τ∈Tj

U

∑
(o,a)∈τ ‖π(o, s

j
U)− a‖22

11: LQctr +=
∑
τ∈Tj

Q

∑
(o,a)∈τ ‖π(o, s

j
U)− a‖22

12: Ltec = λembLemb + λUctrLUctr + λQctrL
Q
ctr

13: return Ltec

Algorithm 2 How TecNets operate during test time. D is the set of demonstrations for a task, Env
is the environment in which to act.

1: procedure TEST(D,Env)

2: s =
[

1
|D|
∑
τ∈D fθ(τ)

]∧
3: while task not complete do
4: o = Env.GetObservation()
5: a = π(o, s)
6: Env.Act(a)

examples from the query set TjQ we can compute the following loss for the policy π:

Lctr =
∑
τj
q∈Tj

Q

∑
(o,a)∈τj

q

‖π(o, sjU)− a‖22 . (3)

This allows the embedding not only to be learned from the embedding loss Lemb, but also from the
control loss, which can lead to a more meaningful embedding for the control network than if they
were trained independently. Though appropriate weightings must be selected, as the control network
needs the embedding in order to know which task to perform, but the embedding network may have
to wait for a reasonable control output before being able to enrich its structure.

We found it helpful for the control network to also predict the action for the examples in the support
set TjU . This has the advantage that it makes the task of learning LQctr easier, as learning LUctr can
be seen as an easier version of minimising the former (since example dependent information can be
passed through the embedding space). Thus, the final loss is:

LTec =
∑
T

λembLemb + λUctrLUctr + λQctrL
Q
ctr (4)

Input to the task-embedding network consists of (width, height, 3 × |τ |), where 3 represents the
RGB channels. For all of our experiments, we found that we only need to take the first and last frame
of an example trajectory τ for computing the task embedding and so discarded intermediate frames,
resulting in an input of (width, height, 6). The sentence from the task-embedding network is then
tiled and concatenated channel-wise to the input of the control network (as shown in Figure 2),
resulting in an input image of (width, height, 3+N), where N represents the length of the vector.
Pseudocode for both the training and testing is provided in Algorithms 1 and 2 respectively.

5

Figure 4: Here we show the first and last timestep of a single example (i.e. one-shot) from the support
and query set for each of the 3 experimental domains. The support examples are used to describe
the task, whilst the query set examples test the networks ability to perform a modified version of the
task. We now highlight each of the tasks in the support set. Left: the simulated reaching experiment,
where the robot must reach a specified colour. Centre: the simulated pushing experiment, where the
robot must push a specified object to the red target. Right: the real world placing experiment, where
the robot must place an item into a specified container.

4 Experiments

In this section, we aim to answer the following: (1) Is it possible to learn a task embedding that can
directly be used for visuomotor control? (2) Does our metric loss lead to a better embedding rather
than allowing the control network to have free rein on the embedding? (3) How do we compare to a
state-of-the-art one-shot imitation learning method? (4) How is our performance affected as we go
from one-shot to many-shot? (5) Does this method apply to sim-to-real?

We begin by presenting results from two simulated experimental domains that were put forward
for MIL [6]. We then continue to present results for our own experiment where we perform a
placing task using a real-world robot arm, similar to that of MIL’s third experimental domain. All
3 experiments are shown in Figure 4. For all experiments, we ensure that our control network
follows a similar architecture to MIL [6] in order to allow fair comparison. All networks are trained
using the ADAM [28] optimiser with a learning rate of 5 × 10−4, and a batch-size of 64. Further
network architecture details are defined in Appendix A. Our approach only uses visual information
for the demonstrations whilst MIL reports results where the input demonstrations are given with and
without actions and robot arm state. For completeness, we have reported all of MIL’s results, but our
aim is to compare against the results where only visual information is used for input demonstrations.
Qualitative results for our approach can be seen in the video1.

4.1 Simulated Reaching

Figure 5: How the percentage of success changes
as the size of the embedding varies for the simu-
lated reaching domain.

The aim of this first experimental domain is to
reach a target of a particular colour in the pres-
ence of two distractors with different colours.
Input to the control network consist of the (cur-
rent) arm joint angles, end-effector position,
and the 80 × 64 RGB image, whilst the task-
embedding network receives only images (first
and last). For details regarding data collection,
we point the reader to the Appendix of [6]. Our
results (presented in Table 1) show that we out-
perform MIL by a large margin, as well as other
variations of our approach. The results show
that the embedding loss is vital for the high suc-
cess rate, with the exclusion leading to a drop
in success of over 70%. In addition to the em-
bedding loss, the inclusion of the support loss
heavily assists the network in learning the task.

1https://sites.google.com/view/task-embedded-control

6

https://sites.google.com/view/task-embedded-control

Method Success (%)
1-

Sh
ot

MIL (vision+state+action) 93.00
MIL (vision) 29.36*
Ours (vision) 86.31
Ours (λUctr = 0) 25.68
Ours (λemb = 0) 10.48
Ours (s = ~0) 20.30
Ours (contextual) 19.17

(a) Simulated Reaching Results

Method Success (%)

1-
Sh

ot

MIL (vision+state+action) 85.81
MIL (vision+state) 72.52
MIL (vision) 66.44
Ours (vision) 77.25
Ours (λUctr = 0) 70.72
Ours (λemb = 0) 58.56
Ours (s = ~0) 02.49
Ours (contextual) 37.61

5-
Sh

ot

MIL (vision+state+action) 88.75
MIL (vision+state) 78.15
MIL (vision) 70.50
Ours (vision) 80.86
Ours (λUctr = 0) 72.07
Ours(λemb = 0) 67.12
Ours (s = ~0) -
Ours (contextual) -

(b) Simulated Pushing Results

Table 1: The result for both simulated reaching (a) and simulated pushing (b), for both our full
solution, and a series of ablations. In the tables, λUctr = 0 refers to excluding the support loss,
λemb = 0 refers to excluding the embedding loss, s = ~0 refers to ignoring the output of the
embedding, and instead passing in a zero sentence, and ‘contextual’ refers to ignoring the output of
the embedding, and passing in one of the support example’s images directly to the control network.
There is no entry for the final 2 rows of Table (b) as these are equivalent to their 1-shot counterpart.
*Note that in Table (a), the results reported here for MIL were not reported in the paper, and so the
results here are reported from running their publicly available code.

Note that it is possible to achieve 33% on this task by randomly choosing one target to reach for. We
believe this is an important note, as it appears that MIL is not capable of learning from one visual
demonstration alone on this task, resulting in a policy that randomly selects a colour to reach for. As
with MIL, only 1-shot capabilities were explored for this domain.

We also use this experimental domain to see how the embedding size effects the performance, and we
show the results in Figure 5. By increasing the embedding size, we are increasing the dimensionality
of our vector space, allowing a greater number of tasks to be learned. But as Figure 5 shows,
increasing the dimensionality can lead to poor performance. We hypothesise that increasing the
embedding size too much can lead to a trivial embedding that does not look for similarities and will
thus generalise poorly when encountering new tasks. A balance must be struck between the capacity
of the embedding and the risk of overfitting. Although this is an extra hyperparameter to optimise
for, Figure 5 encouragingly suggest that this can take on a wide range of values.

4.2 Simulated Pushing

The second experimental domain from [6] involves a simulated robot in a 3D environment, where
the action space is 7-DoF torque control. The goal is to push a randomly positioned object to the red
target in the presence of another randomly positioned distractor, where the objects have a range of
shapes, sizes, textures, frictions, and masses. The control network input consists of a 125×125 RGB
image and the robot joint angles, joint velocities, and end-effector pose, whilst the task-embedding
network again receives images only. For details regarding data collection, we point the reader to
the Appendix of [6]. In both the 1-shot and 5-shot case, our method surpasses MIL when using its
few-shot ability on visual data alone. Unlike the previous experiment, excluding the support loss is
less detrimental and leads to better results than MIL in both the 1-shot and 5-shot case.

7

4.3 Real-world Placing via Sim-to-Real

The final experiment tests how well our method works when applied to a real robot. Not only that,
but we also look at the potential of our method to be used in a sim-to-real context; where the goal is
to learn policies within simulation and then transfer these to the real world with little or no additional
training (we focus on the latter). This is an attractive idea, as data collection in the real world is often
cumbersome and time consuming.

Figure 6: The real world test set for
the placing domain. Holding objects on
the left and placing objects (consisting
of bowls, plates, cups, and pots) on the
right.

We run a robotic placing experiment much like the one
proposed in MIL, where a robot arm is given the task
of placing a held object into a specified container whilst
avoiding 2 distractors. The key difference is that our data
is collected in simulation rather than real world. As sum-
marised in Figure 1, our TecNet is trained in simulation
with a dataset of 1000 tasks with 12 examples per task.
Our containers consist of a selection of 178 bowls from
the ShapeNet database [29]. To enable transfer, we use
domain randomisation; a method that is increasingly be-
ing used transfer learned polices from simulation to the
real world [3, 30, 31]. We record RGB images of size
160 × 140 from an external camera positioned above the
robot arm, joint angles, and velocities along a planned
linear path for each example. During domain randomisation, we vary the lighting location, camera
position, table texture, target object textures and target object sizes, and create procedurally gener-
ated holding objects. An example of the randomisation can be seen in Figure 1.

Once the network has been trained, we randomly select one holding object and 3 placing targets
from our test set of real-world objects (shown in Figure 6); these objects have not been seen before in
either simulation or real world. The robot is shown a single demonstration via human teleoperation
using the HTC Vive controller. During demo collection, only RGB images and joint angles are
collected. A trial is successful if the held object lands in or on the target container after the gripper
ihas opened.

One-shot success rates in the real-world is 72.97%, and is based on 18 tasks with 4 examples each
(72 trials total), showing that we are able to successfully cross the reality-gap and perform one-shot
imitation learning. The majority of our failure cases appeared when the target objects were cups or
plates, rather than bowls. We imagine this is due to the fact that our training set only consisted of
bowls. Results for the real world evaluation can be seen in the video2, and a visualisation of the
learnt embedding can be seen in Appendix B.

5 Conclusion

We have presented TecNets, a powerful few-shot learning approach for end-to-end few-shot imi-
tation learning. The method works by learning a compact description of a task via an embedding
network, that can be used to condition a control network to predict action for a different example of
the same task. Our approach is able to surpass the performance of MIL [6] for few-shot imitation
learning in two experimental domains when only visual information is available. Unlike many other
meta-learning approaches, our method is capable of continually learning new tasks without forget-
ting old ones, and without losing its few-shot ability. Moreover, we demonstrate that the few-shot
ability can be trained in simulation and then deployed in the real world. Once deployed, the robot
can continue to learn new tasks from single or multiple demonstrations.

Similar to other meta-learning approaches, we expect the approach to perform poorly when the new
task to learn is drastically different from the training domain; for example, a TecNet trained to place
items in containers would not be expected to learn few-shot pushing. Having said that, if the training
set were to include a wide range of tasks, generalising to a broad range of tasks may be possible,
and so this is something that should be looked at further. Parallel work has shown extensions to
MIL that infer policies from human demonstration [32]. As our method inherently only uses visual
information, we are also keen to investigate the inclusion of human demonstrations to our approach.

2https://sites.google.com/view/task-embedded-control

8

https://sites.google.com/view/task-embedded-control

Acknowledgments

Research presented in this paper has been supported by Dyson Technology Ltd. We thank the
reviewers for their valuable feedback.

References
[1] H. F. Harlow. The formation of learning sets. Psychological review, 1949.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 2016.

[3] S. James, A. J. Davison, and E. Johns. Transferring end-to-end visuomotor control from sim-
ulation to real world for a multi-stage task. Conference on Robot Learning, 2017.

[4] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel. Deep imitation learning
for complex manipulation tasks from virtual reality teleoperation. International Conference on
Robotics and Automation, 2018.

[5] S. James and E. Johns. 3d simulation for robot arm control with deep q-learning. NIPS
Workshop (Deep Learning for Action and Interaction), 2016.

[6] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. Conference on Robot Learning, 2017.

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. International Conference on Machine Learning, 2017.

[8] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences,
1999.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 2009.

[10] S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media, 2012.

[11] C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey of trends and technologies.
Artificial Intelligence Review, 2015.

[12] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
Neural Information Processing Systems, 1989.

[13] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. International Conference on Artificial Intelligence and Statistics,
2011.

[14] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. International
Conference on Machine Learning, 2000.

[15] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. Interna-
tional Conference on Machine learning, 2004.

[16] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. International Conference on Machine Learning, 2016.

[17] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot
learning. Advances in Neural Information Processing Systems, 2016.

[18] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recog-
nition. ICML Deep Learning Workshop, 2015.

[19] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. International Conference on Machine Learning, 2016.

9

[20] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. International
Conference on Learning Representations, 2017.

[21] E. Triantafillou, R. Zemel, and R. Urtasun. Few-shot learning through an information retrieval
lens. Advances in Neural Information Processing Systems, 2017.

[22] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. Advances in
Neural Information Processing Systems, 2017.

[23] B. Kulis et al. Metric learning: A survey. Foundations and Trends in Machine Learning, 2012.

[24] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature vectors and
structured data. arXiv preprint arXiv:1306.6709, 2013.

[25] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an embed-
ding space for transferable robot skills. International Conference on Learning Representations,
2018.

[26] J. Sung, I. Lenz, and A. Saxena. Deep multimodal embedding: Manipulating novel objects
with point-clouds, language and trajectories. 2017.

[27] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep
visual-semantic embedding model. Advances in Neural Information Processing Systems, 2013.

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Confer-
ence on Learning Representation, 2015.

[29] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[30] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on, 2017.

[31] J. Matas, S. James, and A. J. Davison. Sim-to-real reinforcement learning for deformable
object manipulation. Conference on Robot Learning, 2018.

[32] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine. One-shot imitation from
observing humans via domain-adaptive meta-learning. Robotics: Science and Systems, 2018.

[33] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[34] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). International Conference on Learning Representation, 2016.

[35] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. International Conference on Medical image computing and computer-assisted
intervention, 2015.

[36] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 2008.

10

A Experimental Details

In this section we provide additional experiment details, network architecture, and hyperparameters.
In all cases the task-embedding network and control network use a convolutional neural network
(CNN), where each layer is followed by layer normalisation [33] and an elu activation function [34],
except for the final layer, where the output is linear for both the task-embedding and control network.
Optimisation was performed with Adam [28] with a learning rate of 5 × 10−4, and lambdas were
set as follows: λemb = 1.0, λUctr = 0.1, λQctr = 0.1.

A.1 Simulated Reaching

The CNN consists of 3 strided convolution layers, each with 40 (3× 3) filters, followed by 4 fully-
connected layers consisting of 200 neurons. Input consists of a 80 × 64 RGB image and the robot
proprioceptive data, including the arm joint angles and the end-effector position. The proprioceptive
is concatenated to the features extracted from the CNN layers of the control network, before being
sent through the fully-connected layers. The output of the embedding network is a vector of length
20. The output corresponds to torques applied to the two joints of the arm. The task is considered a
success if the end-effector comes within 0.05 meters of the goal within the last 10 timesteps. Further
information regarding this task can be accessed from Finn et al. [6].

A.2 Simulated Pushing

The CNN consists of 4 strided convolution layers, each with 16 (5× 5) filters, followed by 3 fully-
connected layers consisting of 200 neurons. Input consists of a 125 × 125 RGB image and the
robot proprioceptive data, including the joint angles, joint velocities, and end-effector pose. The
proprioceptive is concatenated to the features extracted from the CNN layers of the control network,
before being sent through the fully-connected layers. The output of the embedding network is a
vector of length 20. The output of the control network corresponds to torques applied to the 7 joints
of the arm. The task is considered a success if the robot pushes the centre of the target object into the
red target circle for at least 10 timesteps within 100-timestep episode. Further information regarding
this task can be accessed from Finn et al. [6].

A.3 Real-world Placing

The CNN consists of 4 strided convolution layers, each with 16 (5× 5) filters, followed by 4 fully-
connected layers consisting of 100 neurons. Input consists of a 125 × 125 RGB image and the
robot proprioceptive data, including just the joint angles. The proprioceptive is concatenated to the
features extracted from the CNN layers of the control network, before being sent through the fully-
connected layers. The output of the embedding network is a vector of length 20. The output of the
control network corresponds to torques applied to the 7 joints of a Kinova Mico 7-DoF arm. There
is also an additional auxiliary end-effector position output that is learned via an L2 distance between
the prediction and the ground truth during simulation training. The task is considered a success if
the robot drops the held object into the correct target container.

As a note, we also experimented with using a U-Net architecture [35] for the control network, where
the sentence is concatenated to the image features at the bottleneck, but our experiments showed that
channel-wise concatenation at the input layer of the control network worked just as well.

B Sim-to-Real Embedding Visualisation

In this section we show t-SNE [36] visualisation of the learnt embedding of the real-world placing
task of Section 4.3. Note that the TecNet was trained entirely in simulation without having seen
any real-world data. In order to visualise how the embedding looks on real-world data, we collect
a dataset of 164 tasks, each consisting of 5 demonstrations. Each demonstration consists of a series
of RGB images that were collected via human teleoperation using the HTC Vive controller. Each
demonstration in these visualisations are represented via the final frame of that demonstration.

11

Figure 7: A t-SNE visualisation of the individual sentences of each of the demonstrations learnt by
the task-embedding network. We embed 5 demonstrations (without averaging) across each of the
164 tasks. The aim of the visualisation is to illustrate how examples of the same task relate with
each other. The result shows that the task-embedding network does indeed learn to place examples
of the same tasks next to each other, whilst also placing other, visually similar, tasks nearby.

12

Figure 8: A t-SNE visualisation of the combined sentences learnt by the task-embedding network.
We embed 5 demonstrations and average to get the task sentence for each of the 164 tasks. Given
that we are only plotting the combined sentences, this can be seen as a more legible version of Figure
7, focusing on how tasks relate to other tasks, rather than how examples of the same task relate with
each other.

13

	Introduction
	Related Work
	Task-Embedded Control Networks
	Task Embedding
	Control

	Experiments
	Simulated Reaching
	Simulated Pushing
	Real-world Placing via Sim-to-Real

	Conclusion
	Experimental Details
	Simulated Reaching
	Simulated Pushing
	Real-world Placing

	Sim-to-Real Embedding Visualisation

