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Abstract: Online movement generation in tasks involving real humanoid robots
interacting with fast-moving targets is extremely difficult. This paper approaches
this problem via imitation and reinforcement learning using phase variables. Im-
itation learning is used to acquire primitive trajectories of the demonstrator in-
teracting with the target. The temporal progress of the robot is represented as a
function of the target’s phase. Using a phase oscillator formulation, reinforce-
ment learning optimizes a temporal policy such that the robot can quickly react
to large/unexpected changes in the target movement. The phase representation
decouples the temporal and spatial problems allowing the use of fast online solu-
tions. The methodology is applicable in both cyclic and single-stroke movements.
We applied the proposed method on a real bi-manual humanoid upper body with
14 degrees-of-freedom where the robot had to repeatedly push a ball hanging in
front of it. In simulation, we show a human-robot interaction scenario where the
robot changed its role from giver to receiver as a function of the interaction re-
ward.
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1 Introduction

Programming robots to achieve highly adaptive motor skills such as the ones required to interact
with a fast-moving object presents a number of challenges. The required computational time to gen-
erate and adapt the robot’s trajectories is one of the biggest problems. Humanoid robots that mimic
the human kinematics present many degrees-of-freedom (DoFs) which makes online generation of
the required trajectories extremely difficult. For example, Bäuml et al. [1] reports a humanoid on a
mobile base used for catching flying balls which required a dedicated cluster with 32 cores to solve
trajectory generation routines at a frequency of 25 Hz. Early works in fast dynamic manipulation
[2, 3] recurred to strong assumptions on the path described by the target to simplify computations.
While recent works have explored approaches such as fast visual processing [4], careful parame-
terization of trajectories, and modeling of object dynamics [5]; the online nature of the task is still
computationally challenging and requires great engineering effort.

Movement primitives have proven extremely successful in fast, dynamic tasks. Primitives not only
decrease the dimensionality of the movement representation but also facilitate their generalization
to new situations. Compared to optimal trajectory generation, primitives can be learned by imitation
making them easy to program and apply in a variety of tasks. In robotics, Dynamical Movement
Primitives (DMPs) [6] are perhaps the most popular formulation of movement primitives. They
have been successfully used in a variety of highly dynamical manipulation tasks [7, 8, 9], but only
indirectly connected to the target evolution. As an example, in [7], the time and velocity of the
hitting point of a ball were first computed using flight model predictions whose values were then fed
as parameters to adapt the DMPs. In this paper, we present a solution where fast reactive skills are
achieved by primitives that can be directly driven by an observed target.

One approach to enforce a tighter connection between the target and robot movements is to use the
phase of the former to govern the progress of the latter. The phase is an indicator of the progress of
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Figure 1: The main components of the method for a periodic task. Observations yobs are used
to estimate the phase of the target φtarget. The oscillator computes the robot’s phase φrobot as a
function of φtarget. The phase is used to select the corresponding spatial model to retrieve appropriate
robot joint angles q. Reinforcement learning plays a fundamental role during training in order
to adapt/refine the relationship between the phases. A properly specified reward and successful
optimization can lead to complex and robust temporal interactions beyond the reach of a manually
tuned oscillator. Note that the oscillator can advance φrobot with respect to φtarget for predictive robot
actions.

an agent/object on a task as a function of its state rather than time. By leveraging on demonstrations
and models learned by imitation, it is possible to estimate the phase trajectory of the target such that
the robot can anticipate actions ahead of the current state of the task.

Movement primitives indexed by phase variables have been widely used in locomotion [10, 11,
12, 13]. In particular, phase oscillators have been used to add structure and suitably constrain the
temporal freedom of multi-DoF systems. They have shown useful, for example, to speed up the
learning of a walking pattern in a humanoid [12]. While in locomotion it is common to use an
internal phase source to provide an inner clock for multiple joints, a less explored idea is to use the
phase of an external source to govern the progress of the robot (e.g., to juggle a ball [14]). Here,
we will leverage on the external clock insight to solve highly dynamical manipulation tasks in both
rhythmic and discrete movements.

The use of phase indexes solves a great part of the control problem as it temporally locates the
robot progress with respect to a target. However, at each of these indexes, appropriate robot poses
still need to be computed as a function of the target’s spatial location. This brings the problem of
designing spatial models. In tasks such as bi-manual manipulation of a ball, computing robot poses
online can be difficult due to the unknown interaction forces and the geometry of the contact points.
Thus, we use expert demonstrations to record the Cartesian trajectories of a demonstrator’s hands
and the target as he/she manipulates it. Using a retargeting procedure, the extracted relative positions
of the hands and the object provide a deterministic backbone from which spatial correlations can be
added during training. In physical human-robot interaction, the same arguments hold if the target is,
for example, the position of another person’s hand.

The principal contribution of this paper is an online algorithm for fast temporal and spatial adaptation
to a moving target by modulating the behavior of a phase oscillator. We introduce policy search RL
as a means to automatically adapt the phase oscillator parameters and investigate how to efficiently
design spatial models that work in concert with the phase formulation. Due to the low computational
load, the method is scalable and can be used in both cyclic and single-stroke movements. We tested
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the method on a real humanoid upper body with 14 DoFs manipulating a fast-moving ball, and
addressed in simulation a scenario of physical human-robot interaction.

2 Learning Spatial and Temporal Coordination for Fast Adaptation

Figure 1 schematically shows the overall methodology. To provide a concrete application, consider
a robot that must block an incoming ball and immediately strike it as far as possible. The ball
is returned after each strike by another player or because it could be attached to the ceiling by a
rope. At each control cycle, the current position of the target is observed yobs, from which a target
phase φtarget is computed. Given the rhythmic nature of this particular example, one can interpret the
phenomena generating the phase as a metronome. A phase oscillator couples the target’s metronome
with the robot’s metronome via feedback. The output of the oscillator is the robot phase φrobot, which
is used to index a sequence of K pre-trained spatial models P (q,y)1:K . By using a probabilistic
formulation, these models can be conditioned on the target position to output robot joint angles.

Reinforcement learning (RL) is used to modulate the nonlinear policy that connects the two
metronomes. For example, a reward that penalizes the robot for not moving the ball will enforce
the robot to put the ball on a limit cycle. Conversely, a reward that penalizes the ball movement
will make the robot to stop the ball without a subsequent push. Optimizing phase policies under
different rewards opens the possibility to train the robot for a variety of behaviors whose governing
characteristic is temporal rather than spatial. For example, simulations in Section 3.1 show that the
robot can behave either as a giver or receiver in handover tasks. Also, RL allows us to refine the
temporal coordination between the robot and the moving target. For single-stroke movements, the
only difference in the formulation is that the phase is defined in a non-repetitive interval (e.g. [0,
1800]); back to our analogy, the needles of the metronomes move only once from left to right and
stop. As shall be clear by the end of this section, computing the phase φrobot and the joint angles q at
each time step basically involves integrating a differential equation (5), and multiplying matrices of
dimensions no larger than the number of robot joints (4). As such, these operations can be carried
out online at high frequencies.

2.1 Phase-Indexed Spatial Models

The whole sequence of phase-indexed spatial models in Figure 1 constitutes a movement primitive.
Each model is a joint distribution of the form

P (q,y)k with k ∈ 1, ...,K, (1)

where k is the robot phase index, q = (q1, q2, ...qJ)>k , j ∈ {1, ..., J} is a vector containing reference
positions for each of the joints of the robot, and y = (x, y, z)>k ∈ R3 are the observed Cartesian
coordinates of the target at the k-th index. Note that on a cyclic (rhythmic) task, the sequence (1)
must form a closed path.

During training, for each phase index k, assume N pairs of target positions and corresponding robot
joint angles are provided; that is, (qn,yn)k ∈ R(J+3) is one of the N training samples as a vector
formed by the concatenation of the joint angles of the robot with the corresponding target location.
Under a normal distribution

µq,y = mean([(q1,y1)k, ...(qN ,yN )k]>) = [µq, µy]>k , (2)

Σq,y = cov([(q1,y1)k, ...(qN ,yN )k]>) =

[
Σqq Σqy

Σyq Σyy

]
k

. (3)

The primitive is then a sequence P (q,y)1:K = N (µq,y,Σq,y)1:K .

At a given phase index k, the conditional distribution P (q|yobs)k = N (µq|y,Σq|y)k is used to infer
robot joint angles given the target observation. The conditional is computed in closed form

µq|y = µq + ΣqyΣ
−1
yy (yobs − µy)

Σq|y = Σqq −ΣqyΣ
−1
yyΣyq.

(4)
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Note that except for the innovation yobs − µy , all other terms can be pre-computed and stored in
advance.

The process of collecting training data, that is, theN pairs (q1:N ,y1:N )k at each of the k steps along
a trajectory differs from task to task. As in many probabilistic approaches to trajectory modeling,
this process usually involves multiple expert demonstrations of paired robot-target trajectories (e.g.
by kinesthetic teaching). These demonstrations are then time-aligned, and for the case of the method
here presented, discretized in K time slices. In the Appendix, we describe a heuristic for sampling
numerous target positions and robot poses using a single demonstration and a kinematic model of
the scene.

2.2 Modulating Phase Oscillators via Policy Search

So far we have K trained joint probability distributions P (q,y)1:K where the index k is given
by the robot phase φrobot. Cyclic tasks are defined by a one-to-one mapping between the indexes
k = {1, ...,K} and the phase φ = {−1800, ..., 1800}. For single-stroke cases, the phase is defined
to be a sequence φ = {00, ..., 1800}. The proposed method couples the phase of the robot to the
phase of the target with an oscillator of form [14, 10]

φ̇robot = ω +K sin(φtarget(y, ẏ)− φrobot + α), (5)
where the first term ω is the natural frequency of the robot movement and paces the rhythm of its
cycle if no corrections are made. The second term is a correction that attempts to lock φrobot with
φtarget with an offset α = φtarget − φrobot, thus similar to a phase impedance. The feedback gain K
defines how aggressively the tracking of the phase lock is made. The phase of the external target is
computed as in [15] as

φtarget = − arctan

(
ẏ

y

)
, (6)

where y, ẏ are the position and velocity of the target, respectively.

Reinforcement learning is used to tune the nonlinear impedance of the oscillator via policy search.
Assuming the impedance is governed by the state of the external variable, we define the stiffness
between phases and the phase difference as a function of the target phase, K(φtarget(y, ẏ)) and
α(φtarget(y, ẏ)) such that (5) becomes

φ̇robot = ω +K(φtarget(y, ẏ)) sin[φtarget(y, ẏ)− φrobot + α(φtarget(y, ẏ))], (7)

As usual in policy search, the functions K(φtarget(y, ẏ)) and α(φtarget(y, ẏ)) are first parameterized
via linear regression on radial-basis functions. Thus, the search is done in the parameters space,
which has a lower dimensionality and produces smooth policies. We define the vector of parameters

θ = [θK , θα] (8)
where,

θK =
(
Φ>KΦK

)−1
Φ>KK(φtarget) and θα =

(
Φ>αΦα

)−1
Φ>αα(φtarget), (9)

and Φ(·) are design matrices with radial-basis functions with centers evenly spread over the phase
interval. A policy search philosophy is attractive due to its sampling efficiency in real robotic tasks
[16]. Here, we use updates based on reward re-weighting as in PoWER[17], Pi2[18] and PiBB [19]
in an episodic setting

θnew ← θ +

M∑
m=1

[P (τm)εm], (10)

where M is the number of rollouts obtained by adding noise εm from a pre-defined distribution to
produce exploratory policies τm. The cost S(τm) of each rollout is used to score the perturbation
εm with a weight given by a soft-max distribution [18, 19]

P (τm) =
exp[−λ−1S(τm)]∑M

m′=1 exp[−λ−1S(τm)]
, (11)

where the scalar λ is a user-defined temperature. The method here proposed is not linked to a
particular policy search implementation. In this paper we used a general black-box formulation
based on PiBB [19] but, in principle, other policy search methods such as the ones reviewed in
[19, 16] are also applicable.
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Figure 2: Single-stroke (non-cyclic/discrete) phase coordination in a handover task. The figures on
the left illustrate a sequence of snapshots and the respective phases of the human partner and the
robot. In this particular example, the robot hand arrives at the handover location before the hand of
the partner. The figure on the right shows two cases where the robot acts as a giver and receiver roles
w.r.t. the fixed trajectory of the human. These two robot behaviors are the result of a simple change
in sign of the reward.

3 Experiments with a Humanoid Robot

This section reports experimental and simulated results using the upper body of a human-sized
hydraulic humanoid robot [20] in both single-stroke and cyclic cases.

3.1 Policy Search in Simulation

Human-Robot Interaction. In simulation, we first evaluated the non-cyclic human-robot handover
task to verify the method’s capability to change the temporal behavior of the robot. The phase
indexes were constrained within the interval [0, 1800] such that at φ = 00 both agents are at their
initial positions (as shown in Figure 2(a) snapshot 1). The simulated robot has the same kinematics
of the hydraulic humanoid used for the real ball pushing experiments. The simulated human partner
is a kinematic model provided by the simulation environment [21]. The hand’s trajectories were
obtained via demonstration of a two-person handover. We retargeted the two demonstrators, one
to each agent in the scene and fixed the trajectory of the simulated human partner (the blue curve
in Figure 2(b)). The moving target is defined to be the hand of the simulated human. Since this
simulation is concerned with the evaluation of the temporal coordination only, the trajectories of the
simulated agents are deterministic such that the probabilistic spatial models of Section 2.1 contain
only the mean1.

The reward was defined as having a single component where we measured the time each of the
agents took to reach φ(·) = 1800, which corresponds to the moment they reach the end of their
respective trajectories (snapshot 4 in Figure 2). Thus, by defining

T(·) = t(φ(·) = 1800)

as the final time, we can, for example, enforce the difference ∆T = Ttarget − Tr to be zero such that
both hands arrive at their final location at the same time as in a handshake. If ∆T is positive, the
human takes longer than the robot to arrive at the handover location, such that the robot acts as a
giver. If ∆T is negative, the roles are reversed.

The blue curve in Figure 2(b) shows the progress of the fixed human movement as a function of
time, which is a direct reproduction of one of the demonstrators. The solid red curve shows the
phase evolution of the robot as a giver, by specifying a cost as S = |∆T − 0.3| such that the robot is
enforced to arrived 0.3 seconds before the human. This means that once the robot started observing
the human motion, it moved slightly faster than her, offering the robot the opportunity to impose
where to handover the object. The dashed red curve shows the phase of the robot for the same
human movement, but now with a cost S = |∆T + 0.3|, which is suitable when the robot is the
receiver. Note that these non-trivial changes of robot behavior become straightforward with the use
of phases.

1We are currently investigating how to obtain samples for the handover task without relying on extensive
demonstrations so that the spatial coordination problem can be addressed in later work.
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Figure 3: Cost and policy improvements in reinforcement learning. The top row shows the initial
learning using the simulator. The bottom row shows the learning using the real robot which started
with the results from the simulator. From (c) and (f) it is noted that the final phase difference
did not change significantly, however, the gain difference between (b) and (e) increased after the
optimization on the real system.

Pre-training an Initial Policy for Ball Pushing Skills. In the cyclic ball pushing task the two arms
of the robot are used, totaling 14 DoFs to be controlled. The ball was attached to the ceiling by a
rope of 1.5 meters and its position was captured at a frequency of 30 Hz by a Kinect2 camera2. As
it was motivated in Figure 1, the goal of this task was to make the robot generate a limit cycle for
the ball. Our initial attempts to use fixed hand-tuned parameters on the oscillator were unsuccessful;
the robot either became good at receiving the ball, or good at pushing it, but never good at both
at the same time. Also, softly decelerating the incoming ball to avoid bouncing suggests a smooth
phase tracking of the ball. Conversely, to forcefully push the ball away, the robot must aggressively
attempt a phase lock, which demands high gains. Simultaneously tuning these functions to have the
required nonlinear profiles by hand proved impractical.

Recurring to RL to optimize the oscillator, we defined an immediate cost for the i-th time step of a
rollout as

si = 10 MS(q̈1:14) + 5 |ygoal − yball| − 20(0.5|yleft − yball|+ 0.5|yright − yball|) (12)

such that a rollout with N time steps has a cost S =
∑N
i=1 si/N . The first term in (12) is the mean

squared of all joint accelerations (7 for each arm) in rad/s2. The second term is a cost that enforces
the robot to push the ball far away from its origin, in this case by a distance of ygoal = 3 meters.
The third term is an average of the left and right hands’ rewards that is maximized by keeping the
distance between the robot’s left and right paddles (yleft, yright, respectively) away from the current
ball position.

An intrinsic problem of using RL on real robots is that initial aggressive exploratory policies can
damage the robot but at the same time are often essential to find good final solutions. Thus, a sim-
ulator with the robot kinematics and ball dynamics was used to start the policy search. Figure 3(a)
shows the simulated cost reduction according to the number of updates. The bigger blue circles
represent the cost of the noiseless rollout of the current policy (i.e. εm = 0), and the gray markers
show the cost of each noisy rollouts (εm 6= 0). Figures 3(b-c) show the optimized robot policy for
the phase difference α and the coupling stiffness K. As indicated by the red curves, the initial phase

2The camera is the bottleneck of the frequency in which joint angles can be computed. The computation
time to generate new robot joint angles given a new ball measurement is usually one to two orders of magnitude
faster than the camera frequency.
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difference was set to 30o and the coupling gain to 27.5 over the whole phase range. The blue curves
indicate the final optimized policies and the gray curves represent the intermediate clean rollouts of
each intermediate updates. The simulation was comprised of 10 policy updates, where each update
required a set comprised of one clean and nine noisy rollouts. The equivalent duration of the training
process would be of 50 minutes on the real robot (not including the time to reset the ball and robot
positions after each iteration).

3.2 Policy Search on the Real Ball Pushing Scenario

Top view Side view

Figure 4: Experimental results using the optimized pol-
icy where the robot interacted with the ball for one
minute. The blue, red and black curves show the trajec-
tories of the left paddle, the right paddle, and the ball,
respectively. Note from the side view the arc-shaped
trajectory as the ball was attached to the ceiling by a
1.5 meter rope.

To refine the policy using the real robot,
the ball was set such that when resting it
was approximately 60 cm away from the
robot paddles, giving the ball plenty of
room to swing. Each rollout was set to
take 30 seconds. Since the cost (12) fa-
vors interactions in which the ball is far
from the paddles, good policies eventually
put the system on a regime of persistent
oscillation. Figure 3(d) shows the policy
costs using the real robot. In (e-f), the ini-
tial policy coarsely optimized in simula-
tion is shown in blue, and the final policy is
shown in black. Using the real robot, each
update comprised 5 rollouts and they were
run until the cost eventually increased, to-
taling 35 rollouts and 17 minutes of effec-
tive interaction with the ball. The cost of
the real case was lower than in simulation,
as the ball tended to move farther in the
real world.

Comparing Figures 3(b) and (e), note
that the coupling gain between phases in-
creased substantially when using the real
robot. This increase suggests that RL is
tuning the policy to compensate for the dynamics of the real robot, which has delays, tracking error,
and compliance—while in simulation a perfect kinematic robot with infinite bandwidth was used.
Also, note from (e) and (f) that the gains and phase differences tend to have higher values at the be-
ginning of the cycle. In fact, the pushing occurs around -1800 to -1300, and as expected, it requires a
large phase difference as it will put the motion of the robot ahead of the ball. The gain is high, which
improves the phase tracking at this stage. Around the middle of the cycle (when the ball phase is
zero) the ball is usually far away from the robot’s reach, so the gain and phases difference are of
less importance. As the ball returns to the robot (between 50-150 degrees), the phase difference
increases again such that the robot paddles return faster than the ball, and the difference decreases
at the end, an indication that the robot attempts to approximate its phase with the ball phase for a
synchronized deceleration.

3.3 Evaluating the Optimized Policy

Figure 4 shows real-robot results using the optimized policy where the robot pushed the ball for
an entire minute. The ball and robot hand trajectories are shown from the top and from the side.
The strongest pushes could move the ball more than 1.5 meters away. The swing of the ball barely
stayed on the sagittal plane (x = 0), rather creating elliptical paths 20 cm wide and forcing the
robot paddles to move sideways as they tracked the ball. In extended experiments, the robot could
maintain the ball on persistent oscillations for more than five minutes (more than 120 consecutive
pushes).

The top row in Figure 5 shows a sequence of snapshots where the robot receives the ball from a
person. On the same figure, the middle row shows the robot immediately pushing the ball back. An
advantage of coupled phases is to provide a simple adaptive mechanism for the robot to compensate
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Figure 5: Execution of the bi-manual trained policy on the upper humanoid body. The upper row
shows a sequence of snapshots where the robot receives the ball. The middle row shows the robot
returning the ball right after. At the bottom row, the robot interacts with a person and it must
be fast enough to handle situations in which the user grasps the ball and pretends a pass, but in-
stead moves the ball sideways before making the final pass. (Refer to the accompanying video in
http://www.cns.atr.jp/bri/en/robot/cb-i/ to see the whole experiment).

for temporal disturbances. As shown by the sequence of snapshots at the bottom row in Figure 5, the
trained policy allows the robot to react to the ball movements even when the human tried to deceive
it, by pretending to pass the ball, but actually moving it laterally. (See the accompanying video in
http://www.cns.atr.jp/bri/en/robot/cb-i/ for a better understanding of the experiment).

Figure 6 shows disruptions and recoveries of the cycle as trajectories of the robot’s left hand and the
ball. The amplitudes of the curves are normalized to facilitate comprehension. At around 29.5 sec-
onds, a person catches the ball and rocks it back and forth which leads the robot to react accordingly.
She then releases the ball back to the robot at 30 seconds. The robot starts to recover the cycle when
she jolts the ball towards the robot at around 33 seconds. Finally, the robot brings the ball back to a
stable cycle at around 34 seconds.

4 Conclusion
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Figure 6: The horizontal components of the ball
and the robot’s left paddle trajectories projected
on the sagittal plane of the robot. The spikes ob-
served between 29.5-30 seconds are due to a per-
son vigorously rocking the ball back and forth. At
33 seconds someone jolted the ball towards the
robot. Note that the ball returns to a cyclic pat-
tern whenever the disturbance is ceased.

This paper proposed a methodology to en-
dow a robot with fast reactions to large spatio-
temporal disturbances of a dynamic target. The
phase-based formulation allows the progress of
the robot to be directly driven by the moving
target. To attain this goal, we revisited phase
oscillators which have been mostly used in lo-
comotion and investigated how to modulate the
oscillator characteristics via policy search. To
address spatial coordination, the method trains
a sequence of joint distribution of robot poses
and target locations whose indexes are given
by the robot phase. The method was used on
a humanoid upper body with 14 degrees-of-
freedom interacting with a ball where the re-
ward was designed to create a limit cycle. At
times the ball was severely disturbed by some-
one reversing the ball trajectory and pretending
passes, and the robot could gracefully adjust its
phase and positions to recover and return the

ball to a stable regime (refer to the accompanying video in http://www.cns.atr.jp/bri/en/robot/cb-i/).

We briefly illustrated our method in a single-stroke (discrete) case in the context of physical human-
robot interaction. Our initial results in human-robot interaction showed that a reward that penalizes
the timing between the human and robot hands is sufficient to swap the robot role from giver to
receiver. Many exciting lines of future work are planned including locomotion where the moving
target can be framed as planned step locations.
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Appendix: Simulating Training Data for Building Ball Pushing Spatial
Models

(a) (b) (c)

Contact
IK target

Figure 7: Learning the sequence of joint distributions from demonstration.
The demonstration (a) mapped onto the robot kinematics was used to find
the contact points between the robot paddles and the ball (b). We used these
contact points as a heuristic to sample numerous ball positions along the
demonstrated trajectory. The heuristic allowed paddle targets to be attached
to the ball. As such, IK solutions could be computed for each sampled ball
position (c), allowing us to train a rich joint distribution P (q,yball) without
recurring to repeated human demonstrations.

As described in Sec-
tion 2.1, the proposed
movement primitive
requires a sequence
of joint distribu-
tions P (q,y)k =
N (µq,y,Σq,y)k and
thus numerous train-
ing data. Rather
than demonstrating
multiple times the
ball pushing task,
we used a single
human demonstration
to collect the mean
of the sequence of
distributions, and then
a heuristic to sample
different poses along
the mean demonstration. Figure 7(a) shows the demonstration where the demonstrator’s left
and right hand trajectories {xdemohuman}1:K together with the motion of the ball being manipulated
{xdemoball }1:K were recorded with a marker tracking system. Using the method in [22], we retargeted
the single expert demonstration onto the robot kinematics {xdemohuman}1:K → q1:K and assumed the
demonstration to be the mean of the distribution.

Next, we artificially sampled N = 50 new pairs of ball and hand positions (q,yball)n at each
phase k along the demonstrated mean. We assumed that in a bi-manual ball pushing task there is
a single, fixed ideal position of the hands on the surface of the ball at all times. As such, these
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positions become evident when the ball is within the hands’ reach, but it is only “virtually” main-
tained as the ball and hands depart from each other. Figure 7(b) shows the moment in which the
robot paddles contact the ball. At this exact moment, we attached “paddle targets” on the ball
surface at that specific position, and then sampled ball positions along the demonstrated trajectory
{y′ball ∼ N (µ = ydemoball , σ

2)}1:K . Since each ball sample has now the targets for the paddles, an IK
solver was used such that the n-th training pair (q′,y′ball)n could be obtained from q′ = IK(y′ball).
Figure 7(c) shows two such instances. Once the samples were obtained, the procedure described in
Section 2.1 was subsequently used.
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