
Bayesian RL for Goal-Only Rewards

Philippe Morere
The University of Sydney & Data61

Sydney, Australia
philippe.morere@sydney.edu.au

Fabio Ramos
The University of Sydney

Sydney, Australia
fabio.ramos@sydney.edu.au

Abstract: We address the challenging problem of reinforcement learning under
goal-only rewards [1], where rewards are only non-zero when the goal is achieved.
This reward definition alleviates the need for cumbersome reward engineering,
making the reward formulation trivial. Classic exploration heuristics such as Boltz-
mann or ε-greedy exploration are highly inefficient in domains with goal-only
rewards. We solve this problem by leveraging value function posterior variance
information to direct exploration where uncertainty is higher. The proposed al-
gorithm (EMU-Q) achieves data-efficient exploration, and balances exploration
and exploitation explicitly at a policy level granting users more control over the
learning process. We introduce general features approximating kernels, allowing to
greatly reduce the algorithm complexity from O(N3) in the number of transitions
to O(M2) in the number of features. We demonstrate EMU-Q is competitive with
other exploration techniques on a variety of continuous control tasks and on a
robotic manipulator.
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1 Introduction

In robotics, learning to perform tasks from no prior knowledge and little interaction is a hard challenge.
Reinforcement Learning (RL) provides a framework for learning policies based on robot interaction
with the real world. However, its application to robotics is not trivial: much overhead work is needed
to design reward functions leading to efficient policy learning; many data are often required before
the desired policy is learned.

Efficient RL exploration is paramount to robots succeeding in finding high rewards. Exploration
success is directly dependent upon reward formulation, which is often engineered to guide robots
towards unexplored states. This greatly hinders the applicability of RL to robotics as reward expert
knowledge is needed. It appears more natural to reward robots only when reaching a goal, termed
goal-only rewards, which becomes trivial to define [1]. Goal-only rewards, defined as unit reward
for reaching a goal and zero elsewhere, cause classic exploration techniques based on random-walk
such as ε-greedy and control input noise [2], or optimistic initialization to become highly inefficient.
For example, Boltzmann exploration [3] requires a training time exponential in the number of
states [4]. Such data requirement is unacceptable in robotics. Most solutions to this problem rely
on redesigning rewards to avoid dealing with the problem of exploration. Reward shaping helps
learning [5], and translating rewards to negative values triggers optimism in the face of uncertainty
[6, 7, 8]. This approach suffers from two shortcomings: proper reward design is difficult and requires
expert knowledge; improper reward design often degenerates to unexpected learned behaviour.

Intrinsic motivation [9] proposes a different approach to exploration by defining an additive guiding
reward. Building on this idea, we investigate the elegant solution of leveraging model uncertainty
to direct exploration where uncertainty is higher. Understanding where uncertainty comes from is
crucial to achieve efficient exploration. Uncertainty in state-action value originates from three sources:
(i) stochastic transitions and/or rewards; (ii) non-stationary and/or stochastic policies; (iii) unexplored
state-action pairs. Our method takes advantage of this decomposition to enhance exploration.
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1.1 Related Work

Intrinsic motivation has recently received much attention. Extensive work has focused on simple
or discrete spaces, defining intrinsic rewards based on information theory [10], state visit count
[11, 12, 13, 14] or approximate value function variance [15]. Exploration values are also mentioned as
an alternative to additive rewards [13, 14]. Model prediction error [16, 17] proved to be successful in
model-based RL, while prohibitively expensive in complex domains and often introducing unrealistic
assumptions. Little work attempted to extend intrinsic exploration to continuous action spaces, as
was proposed in [18] for policy gradient RL. However, these methods typically suffer from high data
requirements. To the best of our knowledge, there is no data-efficient solution to the exploration
problem in fully continuous domains with goal-only rewards.

Modelling state-action values using a probabilistic model enables reasoning about the whole distri-
bution instead of just its expectation. Bayesian Q-learning [19] was first proposed to provide value
function posterior information in the fully discrete case, then extended to more complicated domains
by using Gaussian processes to model the state-action function [20]. Distribution over returns were
proposed to design risk-sensitive algorithms [21], and approximated to enhance RL stability in [22].
However, no strategy can take advantage of posterior information for exploration.

Recent RL successes often focus on leveraging more data to learn policies, which widens the
applicability gap between RL and robotics. Bayesian Optimization [23] (BO) provides a data-
efficient approach for finding the optimum of an unknown objective. Exploration is achieved by
building a probabilistic model and exploiting its posterior variance. BO was applied to direct policy
search [24, 25], although operating at a policy level is less data-efficient and recently acquired step
information is not used to improve exploration. Also, using BO to optimize policy parameters greatly
restricts parameter dimensionality, hence typically requires few expressive and hand-crafted features.

1.2 Contributions

We propose to leverage BO to achieve data-efficient exploration in the goal-only reward setting.
Building a probabilistic model of the value function, BO is performed over the action space, generally
of low dimension. Operating at a transition level enhances data-efficiency, while not paying the
price of increased complexity typically associated with model-based RL. Our contributions are
threefold: (i) We formulate a framework combining ideas from BO and model-free RL, in which
the balance between exploration and exploitation is made explicit and brought to a policy level; (ii)
We propose a data-efficient Bayesian model-free RL method for domains with goal-only rewards,
guiding exploration toward regions of higher value function uncertainty; (iii) We propose to use
Random Fourier features to approximate shift-invariant kernels, reducing underlying probabilistic RL
model complexity from O(N3) in the number of transitions to O(M2) in the number of features.

2 Preliminaries

2.1 Goal-only Reward MDPs

A MDP is defined by the tuple < S,A, T,R, γ >. S and A are spaces of states s and actions a
respectively. The transition function T : S ×A×S → [0, 1] is the probability to transition to state s′
when executing action a in state s, i.e. T (s, a, s′) = p(s′|s, a). The reward distribution R of support
S ×A× S defines the reward r associated with transition (s, a, s′). In the simplest case, goal-only
rewards are deterministic and unit rewards are given for absorbing goal states, potential negative unit
rewards are given for penalized absorbing states, and zero-reward is given elsewhere. γ ∈ [0, 1) is a
discount factor. Solving a MDP is equivalent to finding the optimal policy π∗ starting from s0:

π∗ = argmax
π

E[
∞∑
i=0

γiri], (1)

with ai ∼ π(si), si+1 ∼ T (si, ai, ·), and ri ∼ R(si, ai, si+1). Following a policy for a fixed number
of steps or to an absorbing state constitutes an episode. Model-free RL learns an action-value function
Q, which encodes the expected long-term discounted value of a state-action pair

Q(s, a) = E[
∞∑
i=0

γiri]. (2)
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Equation 2 can be rewritten recursively, also known as the Bellman equation
Q(s, a) = R(s, a, s′) + γEs′,a′|s,a[Q(s′, a′)], (3)

s′ ∼ p(s′|s, a), a′ ∼ π(s′), where we dropped the expectation over deterministic rewards.

2.2 Leveraging Uncertainty for Exploration

An naive way to leverage posterior variance for exploration is to augment rewards with an exploration
bonus, as presented in the intrinsic RL literature [9], yielding reward rtotal for transition (s, a, r, s′):

rtotal = r + ξV[Q(s, a, s′)], (4)
where ξ is a parameter balancing exploration and exploitation, and V is the variance operator. The
second term encourages agents to select state-action pairs for which their model on Q is uncertain.
While this formulation could help exploration in simple scenarios, it suffers from multiple limitations:
(i) The posterior variance of a state-action pair reflects model uncertainty at a specific time of the
learning process. It is initially high and decreases after transitions are experienced, making it a
non-stationary target for Q and resulting in higher data requirements. (ii) The exploration bonus
given for reaching new areas of the state-action space persists in the estimate of Q. As a consequence,
agents tend to over explore and may be stuck oscillating between neighbouring states. (iii) There is
no dynamic control over the exploration-exploitation balance, as changing parameter ξ only affects
future total rewards. Furthermore, it would be desirable to control generating trajectories for pure
exploration or exploitation, as these two quantities may conflict. The next section presents a method
for enhancing exploration using posterior variance, which does not suffer from these limitations.

3 Methodology

3.1 Overview

We propose making the trade-off between exploration and exploitation explicit, by bringing this
balance to a policy level. Policies need to make use of information from two separate models Q and
U , representing exploitation and exploration respectively. While exploitation value function Q is
learned from external rewards, exploration value function U is modelled using exploration rewards.
Exploration rewards, presented in Subsection 3.2, translate reductions in uncertainty of a probabilistic
model on Q. Learning probabilistic models for Q and U is described in Section 3.3.

Aiming to define policies which combine exploration and exploitation, we draw inspiration from
Bayesian Optimization [24], which seeks to find the maximum of a function using very few samples.
It relies on an acquisition function to determine the most promising locations to sample next. The
Upper-Confidence Bounds (UCB) acquisition function [26] is popular for its explicit balance between
exploitation and exploration controlled by κ ∈ [0,∞). Adapting UCB to our setting leads to:

π(s) = argmax
a

Q(s, a) + κU(s, a). (5)

Contrary to most intrinsic RL approaches, this formulation keeps the exploration-exploitation trade-
off at a policy level, as in traditional RL. This allows for adapting the exploration-exploitation balance
while learning without sacrificing data-efficiency. Also, policy level balance can be used to control
agent learning, e.g. stop exploration after a budget is reached, or encourage more exploration if the
agent converged to a sub-optimal solution; see supplementary. Lastly, generating trajectories from
exploration or exploration only grants experimenters insight over the learning process.

3.2 Modelling Discounted Exploration Returns

We define the discounted exploration return Gexp similarly to the classic discounted return. Gexp
represents the discounted sum of future exploration rewards, following the current policy thereafter:

Gexp =

∞∑
i=0

ηirexpi , and rexpi ∼ Rexp(·|si, ai, si+1), (6)

where rexp is an exploration reward generated by Rexp and η ∈ [0, 1) a discount factor. Exploration
behaviour is achieved by maximizing the expected discounted exploration return U :

U(s, a) = E[
∞∑
i=0

ηirexpi ], (7)
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where the expectation is over the whole MDP. Note that, as we will define shortly, rexp depends on
Q, and so U is a function of Q. For clarity, we omit this dependency in notations. Similarly to Q, the
exploration value of a state-action is encoded in U(s, a), and we derive a recursive definition for U :

U(s, a) = Es′,a′,r|s,a[rexp + ηU(s′, a′)], (8)
which is similar to that of Q in Equation 3. Learning both U and Q can be seen as combining two
agents to solve separate MPDs for goal reaching and exploration. This formulation is general in that
any reinforcement learning algorithm can be used to learn U .

We are now left with the task of defining rexp to guide exploration towards parts of the state-action
space where the variance of Q is high. We define rexp to be proportional to the variance of Q
evaluated at the resulting state s′ of a transition, to favour transitions that result in discovery:

rexp =

∫
V[Q(s′, a)]da− Vmax, (9)

where the variance is integrated over all possible actions, and Vmax = argmaxaV[Q(s′, a)] ensures
rexp is always negative. By combining an optimistic model for U to negative rewards, optimism in
the face of uncertainty guarantees efficient exploration. The resulting model creates a gradient of U
values, encoding trajectories to reach unexplored areas of the state-action space.

With continuous actions, Equation 9 might not have a closed form solution and the integral can be
estimated with approximate integration techniques. In domains with discrete actions however, the
integral is replaced by a sum over all possible actions.

Note that goal-only rewards are deterministic by definition, and because our framework handles
exploration in a deterministic way, we focus on deterministic policies. Although state-action values are
non-stationary (because π is non-stationary), their remaining stochasticity originates from transitions
only. We assume transition variance is uniform over the state-action space, which we claim is
a relatively mild assumption for the control problems we are interested in. Thus, fluctuations in
state-action value posterior variance only result from state-action visits and can be used to guide
exploration.

3.3 Bayesian Linear Regression for Q-Learning

We now seek to obtain a model-free RL algorithm able to explore with few environment interactions,
and providing a full predictive distribution on state-action values. Kernel-based method GPTD [20]
and Least-Squares TD [27] are among the most data-efficient model-free techniques. While the
former suffers from prohibitive computation requirements, the latter offers an appealing trade-off
between data-efficiency and complexity. We now derive a Bayesian RL algorithm that combines the
strengths of both kernel methods and LSTD.

The distribution of long-term discounted returns G can be defined recursively as
G(s, a) = R(s, a, s′) + γG(s′, a′), (10)

which is an equality in the distributions of the two sides of the equation. Let us decompose the
discounted return G into its mean Q and a random zero-mean residual q so that Q(s, a) = E[G(s, a)]:

R(s, a, s′) + γQ(s′, a′)︸ ︷︷ ︸
target t

= Q(s, a) + q(s, a)− γq(s′, a′)︸ ︷︷ ︸
noise ε

.

Assuming rewards from R are disturbed by zero-mean Gaussian noise implies the difference of
residuals ε is Gaussian with zero-mean and precision β. By modelling Q as a linear function of
a feature map φs,a so that Q(s, a) = wTφs,a, estimation of state-action values becomes a linear
regression problem of target t and noise ε. The likelihood function takes the form

p(t|x,w, β) =
N∏
i=1

N (ti|ri + γwTφs′i,a′i , β
−1), (11)

where independent transitions are denoted xi = (si, ai, ri, s
′
i, a
′
i). We now treat the weights as

random variables with Gaussian prior p(w) = N (w|0, α−1I). The weight posterior distribution is
p(w|t) = N (w|mQ,S) (12)

mQ = βSΦT
s,a(r + γQ′) (13)

S = (αI + βΦT
s,aΦs,a)

−1, (14)
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where Φs,a = {φsi,ai}Ni=1, Q′ = {Q(s′i, a
′
i)}Ni=1, and r = {ri}Ni=1. The predictive distribution

p(t|x, t, α, β) is also Gaussian, yielding

Q(s, a) = E[p(t|x, t, α, β)] = φTs,amQ, (15)

σ2(s, a) = V[p(t|x, t, α, β)] = β−1 + φTs,aSφs,a. (16)

The predictive variance σ2(s, a) encodes the uncertainty in Q(s, a), and is used to compute rexp. The
derivation for U is similar, replacing r with rexp. Note that because S does not depend on rewards, it
is shared by both models. Hence, with U ′ = {U(s′i, a

′
i)}Ni=1,

U(s, a) = φTs,amU , withmU = βSΦT
s,a(r

exp + ηU ′). (17)

This model gracefully adapts to iterative updates, by substituting the current prior with the previous
posterior. Furthermore, using the Sherman-Morrison equality to update matrix S saves the cost of
inverting a matrix at every step and hence reduces the complexity cost from O(M3) to O(M2) in the
number of features. See Algorithm 1 and supplementary code1 for an optimized implementation.

Algorithm 1 EMU-Q: Exploring by Minimizing Uncertainty of Q values

1: Input: initial state s, parameters α, β, κ. Output: Policy π paramatrized bymQ andmU .
2: S = α−1I , tQ = tU =mQ =mU = 0
3: for episode l = 1, 2, .. do
4: for step h = 1, 2, .. do
5: Let π(s) = argmaxa φs,amQ + κφs,amU .
6: Execute a = π(s), observe s′ and r, and store φs,a, r, s′ in D.

7: S = S − β (Sφs,a)(φ
T
s,aS)

1+βφT
s,aSφs,a

8: tQ = tQ + βφTs,a(r + γφs′,π(s′)mQ)

9: tU = tU + βφTs,a(r
exp + ηφs′,π(s′)mU ), with rexp from Equation 9 with s′.

10: mQ = StQ, andmU = StU
11: end for
12: From D, draw Φs,a, r, s

′, and compute Φs′,π(s′).
13: UpdatemQ = SβΦT

s,a(r + γΦs′,π(s′)mQ) until change inmQ < ε.
14: Compute rexp with Equation 9 and s′.
15: UpdatemU = SβΦT

s,a(r
exp + ηΦs′,π(s′)mU ) until change inmU < ε.

16: end for

End of episode updates for mQ and mU (line 13 onward) are analogous to policy iteration, and
although not mandatory, greatly improve convergence speed. Note that because rexp is a non-
stationary target, recomputing it after each episode with the updated posterior on Q provides the
model on U with more accurate targets, thereby improving learning speed.

3.4 Kernel Approximation Features for RL

We presented a simple method to learn Q an U as linear functions of state-action features. While
powerful when using a good feature map, linear models typically require experimenters to define
meaningful features for specific problems. In this section, we introduce random Fourier features
(RFF) [28], a kernel approximation technique which allows linear models to enjoy the expressivity of
kernel methods. It should be noted that these features are different from Fourier basis [29], which do
not approximate kernel functions. Further comparison is given in supplementary material. Although
RFF were recently used to learn policy parametrizations [30], to the best of our knowledge, this is the
first time RFF are applied to the value function approximation problem in RL.

For any shift invariant kernel, which can be written as k(τ) with τ = x− x′, a representation based
on the Fourier transform can be computed with Bochner’s theorem [31]. We have

k(τ) =

∫
RD

e−iτωp(ω)dω ≈ 1

M

M∑
j=1

e−iτωj = 〈φ(x),φ(x′)〉, (18)

1Code available at https://github.com/PhilippeMorere/EMU-Q
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Figure 1: (a) Chain domain described in [4]. (b) Steps to goal (mean and standard deviation) in
goal-only chain domain, for increasing chain lengths (30 runs). (c) Steps to goal in semi-sparse
10-state chain, as a function of reward sparsity, with maximum of 1000 steps (100 runs).

where p is the spectral density of k, φ(x) is an approximate feature map, and M the number of
spectral samples from p. In practice, the feature map approximating k(x,x′) is

φ(x) =
1√
M

[cos(xTω1), ..., cos(x
TωM ), sin(xTω1), ..., sin(x

TωM )], (19)

where the imaginary part was set to zero, as required for real kernels. In the case of the RBF
kernel defined as k(x,x′) = exp(− 1

2σ2 ||x − x′||22), the kernel spectral density is Gaussian p =

N (0, 2σ−2I). Feature maps can be computed by drawing M/2× d samples from p one time only,
and computing Equation 19 on new inputs x using these samples. Resulting features are not domain
specific and require no feature engineering. Users only need to choose a kernel that represents
adequate distance measures in the state-action space, and can benefit from numerous kernels already
provided by the literature. As the number of features increases, kernel approximation error decreases
[32], and Bayesian linear regression with RFF approximates a Gaussian process. Additionally,
sampling frequencies according to a quasi-random sampling scheme (used in our experiments)
reduces kernel approximation error compared to classic Monte-Carlo sampling with the same number
of features [33].

Bringing our contributions together, EMU-Q combines the ease-of-use and expressivity of kernel
methods brought by RFF with the convergence properties and speed of linear models.

4 Experiments

We qualitatively and quantitatively evaluate the performance of our method EMU-Q on a toy chain
MDP example, 7 widely-used continuous control domains, and a robotic manipulator problem.
Experiments aim at measuring exploration capabilities in domains with goal-only rewards. Domains
feature one absorbing goal state with positive unit reward, and penalizing absorbing states with reward
−1. All other rewards are zero, resulting in very sparse reward functions, and rendering guidance
from reward gradient information inapplicable.

4.1 Synthetic Chain Domain

Goal-only Rewards: We investigate EMU-Q’s exploration capabilities on a classic domain known
to be hard to explore. It is composed of a chain of N states and two actions, displayed in Figure 1a.
Action right (dashed) has probability 1 − 1/N to move right and probability 1/N to move left.
Action left (solid) is deterministic. Rewards are goal-only with goal state SN . Classic exploration
such as ε-greedy was shown to have exponential regret with the number of states in this domain
[4]. Achieving better performance on this domain is therefore essential to any advanced exploration
technique. We compare EMU-Q to ε-greedy exploration for increasing chain lengths, in terms of
number of steps before goal-state SN is found. Results in Figure 1b illustrate the exponential regret
of ε-greedy while EMU-Q achieves much lower exploration time, scaling linearly with chain length.

Semi-Sparse Rewards: We now investigate the impact of reward structure by decreasing the chain
domain’s reward sparsity. In this experiment only, agents are given additional −1 rewards with
probability 1− p for every non-goal state, effectively guiding them towards the goal state (goal-only
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Figure 2: Goal-only MountainCar. (a,b,c) Background: exploration value function U (for action left)
after 1, 2, and 3 episodes. State trajectories for 3 episodes are plain lines (yellow, black and white
respectively). (d) Steps to goal (x > 0.9), with policy refined after goal state was found (30 runs).

rewards are recovered with p = 0). The average number of steps before the goal is reached as a
function of p is compared for ε-greedy and EMU-Q in Figure 1c. Results show that ε-greedy performs
very poorly for high p, but improves as guiding reward density increases. Conversely, our algorithm
seems unaffected by reward density and performs equally well for all values of p. When p = 0,
agents receive −1 reward in every non-goal state, and ε-greedy performs similarly to EMU-Q.

4.2 Classic Control

We further evaluate EMU-Q on goal-only and fully continuous versions of standard control problems
[34], in which classic exploration methods are unable to reach goal states. Details on reward functions
used and experimental setup are given in supplementary material.

Exploration Behaviour on goal-only MountainCar: We first provide intuition behind what ex-
ploration values learn and illustrate its typical behaviour on a continuous goal-only version of
MountainCar. In this problem, the agent is granted a unit reward for reaching the top of the right
hill, and zero elsewhere. Figure 2 displays the state-action exploration value function U at different
stages of learning, overlaid by the state-space trajectories followed during learning. The first episode
(yellow line) exemplifies action babbling, and the car does not exit the valley (around x = 0.4). On
the next episode (black line), the agent finds sequences of action that allow exiting the valley and
exploring further areas of the state-action space. Lastly, in episode three (white line), the agent finds
the goal (x > 0.9). This is done by adopting a strategy that quickly leads to unexplored areas, as
shown by the increased distance between white lines. The exploration value function U reflects high
uncertainty about unexplored areas (yellow), which shrink as more data is gathered, and low and
decreasing uncertainty for often visited areas such as starting states (purple). Function U also features
a gradient which can be followed from any state to find new areas of the state-action space to explore.
Figure 2d shows EMU-Q’s exploration capabilities enables to find the goal state within one or two
episodes.

Continuous control benchmark: We now compare our algorithm on the complete benchmark of
7 continuous control goal-only tasks. Random Fourier Features approximating square exponential
kernels are used for both state and action spaces. Exploration parameter κ is set to 1/Vmax.

Most methods in the sparse rewards literature address domains with discrete states and/or action
spaces, making it difficult to find baselines to compare EMU-Q to. Furthermore, classic exploration
techniques such as ε-greedy fail on these domains. We compare our algorithm to three baselines.
VIME [18] defines exploration as maximizing information gain about the agent’s belief of the
environment dynamics. DORA [14], which we run on discretized action spaces, extends visit counts
to continuous state spaces. Q-Learning with ε-greedy exploration and RFF is denoted RFF-Q and run
on domains with classic rewards. We are interested in comparing exploration performance, favouring
fast discovery of goal states. To reflect exploration performance, we measure the number of episodes
required before the first positive reward is obtained. This metric reflects how long pure exploration is
required for before goal-reaching information can be exploited to refine policies.

Results displayed in Table 1 indicate that EMU-Q is more consistent than VIME or DORA in finding
goal states on all domains, illustrating better exploration capabilities. The average number of episodes
to reach goal states is computed only on successful runs. EMU-Q displays better goal finding on
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Domain EMU-Q VIME DORA (discrete) RFF-Q (classic reward)
Success Episodes to goal Success Episodes to goal Success Episodes to goal Success Episodes to goal

SinglePendulum 100% 1.80 (1.07) 95% 2.05 (2.04) 35% 3.00 (4.11) 100% 1.0 (0.00)
MountainCar 100% 2.95 (0.38) 65% 5.08 (2.43) 0% – 100% 8.6 (8.05)
DoublePendulum 100% 1.10 (0.30) 90% 3.61 (2.75) 0% – 100% 4.20 (2.25)
CartpoleSwingup 90% 12.40 (16.79) 65% 3.23 (2.66) 35% 48.71 (30.44) 100% 9.70 (12.39)
LunarLander 100% 28.75 (29.57) 75% 4.47 (2.47) 30% 35.17 (31.38) 95% 19.15 (24.06)
Reacher 100% 19.70 (20.69) 95% 3.68 (2.03) 35% 1.00 (0.00) 95% 26.55 (25.58)
Hopper 60% 52.85 (39.32) 40% 5.62 (3.35) 20% 30.50 (11.80) 80% 41.15 (35.72)

Table 1: Results for all 7 domains, as success rate of goal finding within 100 episodes and mean (and
standard deviation) of number of episodes before goal is found. Success rate rate is more important
than number of episodes to goal. Results averaged over 20 runs. DORA was run with discretized
action, and RFF-Q on domains with classic rewards.
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Figure 3: (a) Manipulator task: learning to reach a randomly located target (red ball). (b) EMU-Q’s
directed exploration yields higher performance compared to RFF-Q with ε-greedy exploration.

lower dimension domains, while VIME tends to find goals faster on domains with higher dimensions
but fails in more occasions. Observing similar results with RFF-Q confirms EMU-Q can deal with
goal-only rewards without sacrificing performance.

4.3 Jaco manipulator

Lastly, we apply EMU-Q to a robotics problem in which we want to learn to control a Jaco manipulator
solely from joint configuration. Although computing inverse kinematics on robotic arms is studied
extensively, we focus here on learning a mapping from joint configuration to joint torques on a
damaged manipulator. We model damage by immobilizing four of the joints, making previous inverse
kinematics invalid. The task requires an RL algorithm to learn a policy to reach different areas of
the space, as shown in Figure 3a, in which rewards are only given when the goal is reached. Results
in Figure 3b show EMU-Q learns faster and manages to complete the task more consistently than
RFF-Q, confirming directed exploration is beneficial to this robotics scenario.

5 Conclusion

We presented a novel method for data-efficient exploration in RL domains with goal-only rewards,
guiding exploration toward regions of high state-action value function uncertainty. We defined the
expected exploration return, which represents the exploration potential of state-action pairs, and
brought the exploration-exploitation trade-off to a policy level. We introduced features approximating
kernels, bringing expressivity and reduced cost to our algorithm. Evaluated on a toy problem, a
benchmark of continuous goal-only reward control tasks and a robotic manipulator task, our method
provides competitive exploration performance. It excels in smaller domains, where it consistently
finds goals within a couple of episodes.

Modelling exploration and exploitation as separate quantities results in increased flexibility and new
ways to dynamically control exploration and learning. Combined with easy reward specification and
data efficiency, our method makes RL extremely accessible to robotics.
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A Derivation of Bayesian linear regression for Q-learning

A.1 Weight posterior distribution

The likelihood function is defined as follows

p(t|x,w, β) =
N∏
i=1

N (ti|ri + γwTφs′i,a′i , β
−1), (20)

where independent transitions are denoted xi = (si, ai, ri, s
′
i, a
′
i). we treat the linear regression

weights w as random variables and introduce a Gaussian prior

p(w) = N (w|0, α−1I) (21)

The weight posterior can be computed analytically with Bayes rule, resulting in a normal distribution

p(w|t) = p(t|w)p(w)

p(t)
= N (w|mQ,S) (22)

Expressions for the mean mQ and variance S follow from general results of products of normal
distributions [35]:

mQ = βSΦT
s,a(r + γQ′) (23)

S = (αI + βΦT
s,aΦs,a)

−1, (24)

where Φs,a = {φsi,ai}Ni=1, Q′ = {Q(s′i, a
′
i)}Ni=1, and r = {ri}Ni=1. The predictive distribution

p(t|x, t, α, β) can be obtain by weight marginalization and is also normal

p(t|x, t, α, β) =
∫
p(t|w, β)p(w|x, t, α, β)dw = N (t|Q, σ2) (25)

Expressions for Q and σ2 follow from general results [35], yielding

Q(s, a) = E[p(t|x, t, α, β)] = φTs,amQ, (26)

σ2(s, a) = V[p(t|x, t, α, β)] = β−1 + φTs,aSφs,a. (27)

A.2 Sherman-Morisson update

The Sherman-Morrison inverse matrix equality is used to compute a rank-1 update of matrix S with
the feature map φs,a of a data point:

St+1 = St − β
(Stφs,a)(φ

T
s,aSt)

1 + βφTs,aStφs,a
(28)

This update only requires matrix-to-vector multiplications and saves the cost of inverting a matrix
after every step. Hence the complexity cost is reduced from O(M3) to O(M2) in the number of
features M . This update is included in the optimized implementation of EMU-Q.

B Comparison between random Fourier features and Fourier basis

Fourier basis features are described in [29] as a linear function approximation based on Fourier series
decomposition. Formally, the order-n feature map for state s is defined as follows:

φ(s) = cos(πsTC), (29)

where C is the Cartesian product of all cj ∈ {0, ..., n} for j = 1, .., dS . Note that Fourier basis
features do not scale well. Indeed, the number of features generated is exponential with state space
dimension.

While Fourier basis features approximate value functions with periodic basis functions, random
Fourier features are designed to approximate a kernel function with similar basis functions. As such,
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Figure 4: Return mean and standard deviation for Q-learning with random Fourier features (RFF) or
Fourier basis features on SinglePendulum (a), MountainCar (b), and DoublePendulum (c) domain
with classic rewards. Results are computed using classic Q-learning with ε-greedy policy, and
averaged over 20 runs for each method.

they allow recovering properties of kernel methods in the limit of the number of features. Additionally,
random Fourier features scale better with higher dimensions

We compare both types of features on several classic RL domains using Q-learning. The number of
random Fourier features was set to 300, and the order of Fourier basis was set to 5 for SinglePendulum
and MountainCar and to 3 for DoublePendulum. Higher state and action space dimensions on
subsequent domains make using Fourier basis features prohibitively expensive. Results displayed
in Figure 4 show RFF outperforms Fourier basis both in terms of learning speed and asymptotic
performance. In DoublePendulum, the low order of Fourier basis features (still leading to more than
2000 features) seems insufficient to learn a policy completing the task.

C Comparison of our method on RL benchmark

C.1 Domain description

All domains make use of OpenAI Gym [34], and are modified to feature goal only rewards and
continuous state and action spaces whose dimensions are detailed in Table 2.

Reward functions are modified to the following:

• In SinglePendulum, the agent receives a unit reward when θ < 0.05 rad where θ is the pole
angle.

• In MountainCar, the agent is given a unit reward for reaching the top of the right hill x > 0.9.

• In DoublePendulum, the agent is given a unit reward when the distance between the tip of
the pendulum is within a distance d < 1 from the tallest point it can reach.

• In CartpoleSwingUp, the agent receives a unit reward when cos(θ) > 0.8, with θ the pole
angle. In LunarLander, the agent receives a unit reward for reaching the landing pad within
distance d < 0.05 of its centre point on both axis, and is given negative unit reward for
crashing or exiting the flying area.

• In Reacher, the agent is given unit reward for reaching the target within a distance d < 0.015.

• In Hopper, the agent is given a unit reward for jumping to height h > 1.3, and a negative
unit reward for falling |θ| > 0.2 where θ is the leg angle.

C.2 Experimental setup

Parameters γ and η are set to 0.99 for all domains. Episodes are capped at 500 steps for all domains.
State spaces are normalized for each domain, and Random Fourier Features approximating square
exponential kernels are used for both state and action spaces. The state and action kernel lengthscales
are denoted as lS and lA respectively. Exploration and exploitation trade-off parameter κ is set to
1/Vmax for all experiments. Algorithm parameters were manually fixed to reasonable values given
in Table 2.
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Domain dS dA lS lA M α β
SinglePendulum 3 1 0.3 0.3 300 0.001 1.0
MountainCar 2 1 0.3 10 300 0.1 1.0
DoublePendulum 6 1 0.3 0.3 500 0.01 1.0
CartpoleSwingUp 4 1 0.8 1.0 500 0.01 1.0
LunarLander 8 2 0.5 0.3 500 0.01 1.0
Reacher 11 2 0.3 0.3 500 0.001 1.0
Hopper 11 3 0.3 0.3 500 0.01 1.0

Table 2: Experimental parameters for all 7 domains

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Episode

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
tu

rn

= 1 = 0 = 0.1 = 1

Figure 5: Influence of using schedules for κ while learning on goal-only MountainCar: higher values
lead to increases in return while lower ones tend to stabilize performance (averaged over 30 runs).

D Schedule for κ while learning

Bringing the exploration-exploitation trade-off at a policy level allows for dynamically controlling
such balance. In this section, we show a basic example of learning behavior when parameter κ is being
changed during the learning process. Figure 5 shows agent performance in goal-only MountainCar
when κ is first set to 1, then 0 and increased again. Performance increases proportionally to κ when it
is greater than 0, while returns tends to stay constant when it is set to 0.
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