
Reward Estimation for Variance Reduction in Deep
Reinforcement Learning

Joshua Romoff1,2∗, Peter Henderson1∗,
Alexandre Piché3, Vincent François-Lavet1, Joelle Pineau1,2

1 MILA, McGill University, Montréal, Québec, Canada
2 Facebook AI Research, Montréal, Québec, Canada
3 MILA, Université de Montréal, Québec, Canada

Abstract: Reinforcement Learning (RL) agents require the specification of a re-
ward signal for learning behaviours. However, introduction of corrupt or stochas-
tic rewards can yield high variance in learning. Such corruption may be a direct
result of goal misspecification, randomness in the reward signal, or correlation of
the reward with external factors that are not known to the agent. Corruption or
stochasticity of the reward signal can be especially problematic in robotics, where
goal specification can be particularly difficult for complex tasks. While many vari-
ance reduction techniques have been studied to improve the robustness of the RL
process, handling such stochastic or corrupted reward structures remains difficult.
As an alternative for handling this scenario in model-free RL methods, we sug-
gest using an estimator for both rewards and value functions. We demonstrate that
this improves performance under corrupted stochastic rewards in both the tabular
and non-linear function approximation settings for a variety of noise types and
environments. The use of reward estimation is a robust and easy-to-implement
improvement for handling corrupted reward signals in model-free RL.

Keywords: Reinforcement Learning, Uncertainty, Goal Specification

1 Introduction

Reinforcement Learning (RL) agents learn from a generated reward provided by the environment.
However, it is possible that the generated reward is corrupted [1, 2], stochastic [3], or misspeci-
fied [2]. The specification of rewards which do not exhibit these problems can be especially difficult
in robotics and has resulted in data-driven approaches for reward specification [4, 5, 6]. However,
these data-driven approaches may also yield corrupted reward signals where the sensory-based fea-
tures used for reward generation are themselves corrupted. As such, handling corrupted or stochas-
tic rewards in the learning process is a necessity for successfully learning complex behaviours in
robotics using RL Everitt et al. [2].

In particular, such scenarios can result in high variance in the gradients during learning and impede
successful convergence to an optimal policy. Several methods have already been used to reduce vari-
ance, sometimes at the cost of bias. These include generalized advantage estimation [7], constrained
updates [8], updating the target policy via the expectation of its actions [9, 10], and updating the
value function via the posterior mean of an estimated uncertain value distribution [11]. However,
these don’t explicitly account for corrupted rewards and aim to address variance induced with a
deterministic true reward.

Here, we propose a simple method for updating model-free RL algorithms to compensate for
stochastic corrupted reward signals. We suggest learning an estimator for both the local expected
reward and the value function – that is, using a direct estimate of rewards R̂(st) to update the dis-
counted value function V πγ (st) and policy πθ(st), rather than the sampled rewards.

∗Authors Contributed Equally

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.

We show that this method results in theoretical variance reductions in the tabular case and corre-
sponds to empirical performance gains in the tabular and function approximation settings in situa-
tions where rewards are highly stochastic and corrupted. We validate this on the MuJoCo environ-
ments [12] from OpenAI Gym [13] for continuous control robotic locomotion benchmark tasks and
provide complementary results on Atari games for discrete settings.

2 Related Work

A variety of model-based work in robotic and non-robotic domains has used reward estimation [14,
15, 16, 17, 18, 19]. However, those works use the predicted (or “imagined”) reward for planning
rather than training a value function. In several cases, estimated rewards are used in imagination
augmented rollouts with a stochastic dynamics model accompanying the reward estimator. For
example, [17, 20] use a method to apply model-based methods to model-free RL. However, in our
case we do not require multi-step imaginary rollouts, avoiding learning system dynamics as our
reward estimation method is explicitly aimed at handling corrupted stochastic rewards rather than
for planning. Nevertheless, it may be possible to view reward estimation as a single step case of
model-based value expansion.

Similarly, the myriad of inverse reinforcement learning (IRL) literature for robotics involves learning
reward functions from demonstrations rather than previous rewards. For example in [5, 6], rewards
are learned in a data-driven way explicitly to better model the desired robotic behaviours. In some
cases, such as in [6, 21], the reward function is modified to be compatible and beneficial to the
learning process. However, this doesn’t specifically account for corruption in the learned rewards.

Other works in the RL setting augment rewards via shaping mechanisms [22, 23]; for example, to
make robot learning easier with sparse rewards. Our method can be viewed as a shaping mechanism
as well, where the transformation is captured within a single function approximator. While much
of the reward shaping literature aims to aid exploration, Talvitie [24] comes close to our work by
learning to correct the reward function for misspecifications of the model.

Generally, while all of these works model rewards in some way, most do not explicitly seek to
address a corrupted reward. Everitt et al. [2], on the other hand set up the problem of corrupted
rewards formally and suggest a method to address corrupted reward channels in small GridWorld
scenarios. However, the method they introduce is specific to the tabular setting and they do not
propose any methods for continuous control as is often needed for handling complex robotic tasks.

3 Background

3.1 Reinforcement Learning

We formulate our method in the context of a fully observable Markov Decision Process (MDP) [25].
In an MDP, an agent can take an action at based on its current state st and receive a reward rt, be-
fore transitioning to the next state of the MDP st+1. We focus on the discounted MDP case, where
an agent tries to maximize the cumulative discounted reward V πγ (s) = [

∑∞
t=0 γ

trt|s0 = s, π], also
known as the discounted value of a policy π. It is common to learn a value estimate of the current
policy via temporal difference (TD) learning [26], where the current estimate of the value function
is used to bootstrap the next estimate according to the Bellman target Yt = rt + γV πγ (st+1), via

the loss: L(θV) = E
[(
Yt − V πγ (st; θV)

)2]
. In the case of Advantage Actor Critic (A2C), the syn-

chronous version of Asynchronous Advantage Actor Critic (A3C) [27], a stochastic parameterized
policy (actor, πθ(a|s)) is learned from this value estimator via the TD error. That is, the actor loss
becomes: L(θπ) = E

[
− log π(a, s; θπ)

(
rt + γV πγ (st+1; θV)− V πγ (st; θV)

)]
.

Proximal Policy Optimization (PPO) [8] can be considered to be a similar method to A2C. In the
case of PPO, however, long Monte Carlo rollouts are used while the value function acts primarily
as a variance-reducing baseline in the policy update – typically via generalized advantage estima-
tion [28]. Furthermore, the policy update is constrained via a trust region in the form of a clipping
objective (as we use here) or a divergence penalty. The clipping objective for training the policy is:

LCLIP (θ) = Ê
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

]
(1)

2

where the likelihood ratio is rt(θ) = πθ(at|st)
πθold (at|st)

, Ât is the generalized advantage function, and
ε < 1 is some small factor applied to constrain the update.

3.2 Stochastic or Corrupted Rewards

Since we tackle the case of using stochastic or corrupted rewards, it is important to have a clear
understanding of this scenario. In stochastic rewards, for a state transition tuple (s, a, s′), a reward
can be treated as a random variable. That is, the reward is provided from some distribution with a
certain probability density. This corresponds to settings in robotics where a reward function may be
learned through variational means [4].

We further define a corrupted reward to be such that the provided reward does not match the true
reward due to some noise process, similarly to the Corrupted Reward MDP (CRMDP) setting of [2].
In the cases we consider, the reward is both corrupted and stochastic. That is, for a given state transi-
tion tuple (s, a, s′), the true reward is r(s, a, s′), whereas the corrupted stochastic reward becomes a
random variable R̃ such that the likelihood of a reward being sampled from the corrupted stochastic
random variable is P (R̃ = r|s, a, s′).

4 Reward Estimation

Under a corrupted stochastic reward, an additional source of variance is injected into the value
function update. To reduce this variance, we introduce an estimator for the reward at a given
state R̂(st). In the function approximation case, learning this reward estimator becomes a

simple regression problem: L(θR̂) = E
[(
rt − R̂(st; θR̂)

)2]
. We then use this reward es-

timator in the TD update of the value function, rather than the sampled reward: L(θV) =

E
[(
R̂(st; θR̂) + γV πγ (st+1; θV)− V πγ (st; θV)

)2]
. As we will see in Section 4.1, under corrupted

stochastic rewards, this estimation will reduce the variance propagated to the value function.

We note that this is an easy update to model-free methods which does not significantly change the
problem formulation and can be used in any model-free method. An example of using the reward
estimator in an actor-critic process can be seen in Figure 1.

Environment Value
Estimator

Policy

Reward
Estimate

State

Action

TD
Error

Reward
Estimator

Reward

Reward
Prediction

Error

Figure 1: The actor-critic update process with the reward estimator.

4.1 Theoretical Variance Reduction in Tabular Domains

To determine whether our method for using a reward approximator reduces variance theoretically,
we examine the tabular case. In this setting, we use the sample mean for the reward estimator:
R̂(s, a, s′) =

[
1
N

∑
i r
i
]

where ri ∼ R(s, a, s′) for all i ∈ [1, . . . , N]. That is, given N i.i.d reward
samples at a given state s where action a was taken and where we transitioned to s′, we determine
the mean of those rewards2. In this scenario, the sample mean is an unbiased estimator.

First, following a similar methodology to the variance analysis by Van Seijen et al. [29], we deter-
mine the variance of the standard discounted Bellman equation: [30]: Gγt = rt + γV γπ (st+1). The

2In domains where the reward signal is fully determined by s or by (s, a), R̂(s) or R̂(s, a) can be used
instead respectively.

3

variance of this Bellman estimate is:
var [Gγt] = var [rt] + var [γV γπ (st+1)] + 2 cov [rt, γV

γ
π (st+1)] . (2)

If we instead use an approximator for the reward, the Bellman equation becomes: Ĝγt =

R̂(st, at, st+1) + γV γπ (st+1). Similarly, the variance becomes:

var
[
Ĝγt

]
= var

[
R̂(st, at, st+1)

]
+ var [γV γπ (st+1)] + 2 cov

[
R̂(st, at, st+1), γV γπ (st+1)

]
. (3)

Moreover, since approximation in the tabular case is simply the sample mean, we have that:

var
[
R̂(st, at, st+1)

]
=

1

N
var [rt] (4)

and,

cov
[
R̂(st, at, st+1), γV γπ (st+1)

]
=

1

N
cov [rt, γV

γ
π (st+1)] (5)

Thus, we arrive at the following equality:

var
[
Ĝγt

]
−var [Gγt] =

1

N
var [rt]+

2

N
cov [rt, γV

γ
π (st+1)]−var [rt]−2 cov [rt, γV

γ
π (st+1)] . (6)

Analyzing Equation 6, one can see that if the covariance between the reward and the value function
at the next state is≥ 0 that var

[
Ĝγt

]
≤ var [Gγt] ,∀N ≥ 1.We note that this is always true when the

reward function depends only on (s, a) and not s′, since the covariance in this case is 0. Moreover,
even when the reward function depends on s′ it is likely to have a positive covariance. We refer to
the Appendix for a more lengthy discussion and to our results in Section 5.2.5 and Appendix D.3.1
that highlight the variance reduction empirically.

Therefore, by using the empirical mean of the rewards in a tabular setting, it is possible to reduce
the variance of the update. The M-Step return case follows similarly, holding under the same covari-
ance assumptions. The intuitive benefit of this becomes clear in settings with stochastic corrupted
rewards. In such a case, the error will propagate through longer MDP chains, whereas using the em-
pirical mean will provide a more stable estimate, as will be demonstrated in subsequent experimental
sections.

4.2 Choosing the Best Estimator

The features provided to the reward estimator can be updated to refine the estimate or provide an
expectation. Specifically, we can model the reward in three different ways:

R(s) = Es′,a∼π[r|s], R(s, a) = Es′ [r|s, a], or R(s, a, s′) = E[r|s, a, s′]. (7)

Overall, the inputs provided to the reward function capture expectations at different levels, some-
times encompassing the dynamics of the system. In our case, we focus on deterministic dynamics
but where the reward can be treated as a random variable so any of these estimators are effective to
varying degrees. However, choosing the best features to use as in Equation 7 can contain various
benefits and tradeoffs. The most obvious trade-off depends on the true reward function of the under-
lying MDP that is being estimated. If the true reward function depends on the action and next state
then not including one or the other as inputs will make estimation of the rewards more difficult (or
impossible). For example, in some of the OpenAI Gym MuJoCo benchmark robotics environments,
a reward is provided based on the action resulting in a penalty for large amounts of generated torque
on the simulated motors. Without providing the action as a feature to the learned reward function
it may be difficult to successfully learn a reward estimator. On the other hand, as we describe in
the Appendix, in domains like Atari where the reward signal is typically delayed several steps and
mostly dependent on only the current state, R(s) is an adequate choice. Using R(s, a) or R(s, a, s′)
would not provide any benefit and simply make estimating the reward more difficult due to the extra
inputs. Empirical results which demonstrate these effects can be found in the Appendix.

5 Experiments

To validate that using a function approximator R̂ for the reward improves performance, we inves-
tigate several settings with induced stochastic noise3. We investigate a small toy MDP problem in

3Code provided at https://github.com/facebookresearch/reward-estimator-corl.

4

https://github.com/facebookresearch/reward-estimator-corl

the tabular case to show the variance reduction properties of the system in the tabular setting which
validate our theoretical reduction shown in Section 4.1.

We then use several simulated MuJoCo tasks from the OpenAI Gym benchmark environments for
continuous control settings [13]. These tasks are particularly relevant for robotics domains as the
action space directly applies torque to simulated motors in various robotic configurations to learn
locomotion behaviours.

We generate three types of noise to corrupt the reward system with, or to introduce stochasticity into
the reward which may be relevant for robotic domains: Gaussian noise, ε-likelihood replacement
of the reward with uniform noise, and randomly induced sparsity. First, we add a Gaussian noise
to the system - which may occur with sensory noise in robotic systems or with a reward provided
from a distribution (as in with a data-driven distributional reward). Next, we investigate uniform
replacement of the reward with a random reward which could correspond to misspecification or
sensory noise. Finally, we investigate artificially and randomly induced sparsity in the reward signal
which could be the case if there is a human in the loop providing a reward signal to the robot such
that the human may or may not consider providing a reward at some timestep depending on the
teacher as in [31]. Alternatively, the stochastically sparse reward case could correspond to delayed
rewards provided to the robot as in [3].

Finally, we extend these experiments to Atari games to show the benefits in discrete settings as well.
In both the Atari and MuJoCo domains we use a neural network function approximator for R̂ to
match the value function and policy networks in the baselines. We also run several experiment seeds
for all settings as indicated by Henderson et al. [32]: 10 for MuJoCo tasks and 3 for Atari domains.

5.1 Tabular Experiments

We first empirically investigate the tabular case. We construct a 5 state MDP, as seen in Figure 5.1,
for value learning (an extended 10 state MDP can be seen in Appendix B). The MDPs contain
deterministic transitions from left to right in the states, and the agent follows a fixed policy moving to
the right and terminates on reaching the farthest state to the right. At each state it receives a stochastic
reward of 1, 2, or 5 with a fixed probability of 0.5. The value function is updated via the TD error
for 100 episodes. We measure the robustness to variance by evaluating the root mean squared error
(RMSE) of the value function across the 100 episodes. As is seen in Figure 2, when using the reward
estimator, the agent is able to learn more accurate representations of the value function even at high
learning rates. This aligns with the aforementioned theoretical variance reduction in Section 4.1.

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s

Eps_100_Num States=5 Reward=1 Prob=0.5
Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s

Eps_100_Num States=5 Reward=2 Prob=0.5
Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s

Eps_100_Num States=5 Reward=5 Prob=0.5
Baseline
Ours

Figure 2: Tabular experiments with a 5-state MDP. In all cases, rewards are assigned with probability
0.5 and, set to 0 otherwise (rewards of +1,+2,+5, from left to right). The x-axis demonstrates
various learning rates for the TD-update. We report the average RMSE over the first 100 episodes
of learning - lower is better.

0 1 2 g
+1 : 0, P (.5)+1 : 0, P (.5)+1 : 0, P (.5)

Figure 3: Illustration of the sample Markov Decision Process (MDP) used for the tabular case
experiments.

5

5.2 MuJoCo Experiments

We experiment on four different continuous control tasks in the MuJoCo simulator as provided by
OpenAI Gym [13]: Reacher, Hopper, HalfCheetah, and Walker2d. In all cases we use the −v2 ver-
sion of the MuJoCo benchmarks. We use the PyTorch PPO implementation with a clipping objective
found in [33] for the baseline, with modifications for reward estimation built directly on top of this.
Further information about experimental setup can be found in Appendix D. We compare against two
baselines: the regular implementation of PPO using the sampled reward and an augmented value
function network which trains on an additional auxiliary task to predict the reward as well as the
value function (such that hidden layers encode information for both tasks) similarly to [34].

5.2.1 Gaussian Noise

The first type of reward noise which we add is a Gaussian noise centered around 0 with increasing
variance. This noise is inspired by a reward signal which is sensory based, but where sensors exhibit
a Gaussian noisy distribution as in [35]. That is, the resulting reward becomes rnewt = rt+ψ where
Ψ ∼ N (0, σ2). The relative normalized baseline improvement of this experiment can be found
in Table 5.2.1 with extended information in the Appendix. As can be seen under a zero-centered
Gaussian noise, reward estimation improves results over the baseline in all cases except when no
noise is added.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

Hopper -8.09 4.05 6.15 10.39 33.42
Walker -8.09 63.67 159.03 177.59 150.60
Reacher -1.79 10.41 16.60 30.72 24.73

HalfCheetah -12.55 38.70 115.21 139.52 493.61
Average -7.63 29.21 74.25 89.55 175.59

Table 1: Gaussian reward noise (σ = (0.0, 0.1, 0.2, 0.3, 0.4)) comparison between our approach
and the best of both baselines (PPO and PPO with the reward prediction auxiliary task). The score
represents the relative improvement over the best baseline normalized with respect to the the average
episode reward over the last 100 Episodes after training for 1M steps: Ours−Best Baseline

|Best Baseline−Random Policy| . Bold
scores indicate an improvement over both baselines. The results are the average over 10 runs using
different random seeds.

5.2.2 Uniform Noise

For the uniform noise experiments, we randomly replace the reward with an ε probability by a
uniform reward between −1 and 1. That is:

rnewt =

{
ψ, with probability ε
rt, with probability (1− ε), (8)

where Ψ ∼ U(−1, 1) and where 0 ≤ ε ≤ 1 is the probability of replacing the current reward.
Table 5.2.2 demonstrates the results of this type of added noise. Once again, using reward estimation
increases results greatly with added noise up to a relative 500% average gain in extremely noise
scenarios (where the reward is replaced by a uniformly random reward 40% of the time).

ε = 0.0 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

Hopper -8.09 28.76 50.43 20.74 110.45
Walker -8.09 180.86 105.78 125.84 34.58
Reacher -1.79 15.60 24.62 32.61 40.31

HalfCheetah -12.55 110.99 212.74 555.61 2044.25
Average -7.63 84.05 98.39 183.70 557.40

Table 2: Uniform reward noise (ε = (0.0, 0.1, 0.2, 0.3, 0.4)) comparison between our approach to
the best of both baselines (PPO and PPO with the reward prediction auxiliary task). The score
represents the relative improvement as in Figure 5.2.1. The results are the average over 10 runs
using different random seeds.

6

5.2.3 Sparsity

We consider artificially making the reward sparser by replacing the true environmental reward with
the zero reward with varying levels of probability. Specifically, the reward at time t is defined as:

rnewt =

{
0, with probability ε
rt, with probability (1− ε), (9)

This may reflect a scenario where there is a signal dropout either in a sensory-based reward signal
as in [36] or in communication of the reward signal. This type of noise in particular provides insight
into the robustness of R̂ estimation to sparse rewards, while still preserving the optimal ordering
of policies – where the optimal ordering indicates that if Q(s, a) > Q(s, a′) under R(s, a, s′) then
Q′(s, a) > Q′(s, a′) under R(s, a, s′) ∗ c where c > 0. The latter is true because sparsity noise
can be seen as simply multiplying the reward signal by a constant positive factor at every time step.
Specifically, where 0 ≤ ε ≤ 1 is the probability of receiving reward 0:

E[rnew|s, a, s′] = (1− ε)E[r|s, a, s′]. (10)

As can be seen in Table 5.2.3, the reward estimation method does not always improve results in this
case, except under extreme sparsity. This is likely due to the need to correct reward learning for
distribution imbalance. It may be possible, since the baseline implementation uses Adam [37] for
the optimization method, that the reward estimator was unable to learn an improved representation
under sparsity for convergence properties presented in [38], while a value function update would not
encounter the sparsity issue as frequently. Nonetheless, in certain domains (Hopper and Walker) we
still see improved performance.

ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 0.95
(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

Hopper 16.31 -8.0 2.00 72.54 81.93
Walker 6.19 17.54 32.18 205.12 130.63
Reacher -9.98 -16.35 -18.32 -34.69 83.29

HalfCheetah -12.4 14.5 -0.67 -6.01 124.15
Average 0.03 -5.33 3.81 59.24 105

Table 3: Sparse reward noise (ε = (0.6, 0.7, 0.8, 0.9, 0.95)) comparison between our approach to
the best of both baselines (PPO and PPO with the reward prediction auxiliary task). The score
represents the relative improvement as in Figure 5.2.1. The results are the averaged over 10 different
experiment random seeds.

5.2.4 Analyzing the Empirical Advantage

We next attempt to uncover the exact source of the improved performances by analyzing the empiri-
cal advantage and TD-error. As mentioned in Section 3, the advantage function provides a signal for
both the critic and the policy to use as part of their objective in actor-critic methods. For the policy,
actions that lead to positive advantages are reinforced, while negative advantages result in a negative
likelihood update for those actions. A high expected squared advantage - TD error - implies a large
residual error that is not captured by the value function. As we can see in Figure 4, the reduction of
this advantage (and thus TD error) directly correlates to performance gains in the episode return.

5.2.5 Analyzing Reduction of Variance

To determine if our theoretical variance reduction properties found in Section 4.1 hold in the contin-
uous control case with neural network function approximators, we empirically measure the variance
of the Bellman operator itself with the corrupted stochastic rewards. With full experimental details
and extended results in the Appendix, we find that across all environments, we see an average of
59.7%, 76.7%, and 62.5% absolute reduction in variance under all tested levels of Gaussian, uni-
form, and sparsity inducing noise, respectively.

7

Figure 4: The recorded emperical advantage and performance of PPO on the HalfCheetah environ-
ment under Gaussian corruption of the reward.

5.3 Atari Experiments

We extend our methodology in the Atari domain to demonstrate the extension to discrete action
spaces (for example if a robot can only select macro actions). The experimental setup, details,
and full results for this can be found in Appendix C. Table 5.3 shows a sampling of results under
Gaussian noise where once again we see that using an estimator R̂ improves performance under
corrupted stochastic reward signals in most cases.

No Noise Noise1 Noise2 Noise3 Noise4
Average Improvement (Gaussian) -8.69 12.6 262.7 684.73 632.82
Average Improvement (Uniform) -8.69 20.86 108.15 285.59 –
Average Improvement (Sparse) -8.69 9.95 21.26 43.40 –

Table 4: The relative average percentage improvement across 5 Atari games of the R̂ estimator
using the same metric as in Figure 5.2.1 under Gaussian noise with different standard deviations.
See Appendix C for more details and results. Noise1-4 correspond to σ = 0.1, 0.2, 0.3, 0.4 for
Gaussian noise, ε = 0.1, 0.2, 0.3 for uniform noise, and ε = 0.3, 0.5, 0.75 for sparsity inducing
noise.

6 Conclusion

Our work provides a simple yet effective method for addressing and improving performance under
corrupted and stochastic rewards in model-free policy gradient methods. Future extensions of our
work may involve learning a distributional reward estimator as in [39], off-policy experience replay
for the reward estimator, or learn options for reward estimators as in [40]. These improvements may
help improve the fidelity and accuracy of reward estimation to further improve results in settings
such as induced sparsity.

More importantly, as reward generation moves toward data-driven [5, 6] or human-in-the-loop [31,
41] means, addressing the likely stochasticity or corruption in the reward signal – particularly
through the simple modification of existing methods as we show here – is vital for successful learn-
ing of intended behaviours in complex robotic tasks. We hope that our work provides a simple
foundation for which other methods can build on to address corrupted and stochastic rewards.

8

References
[1] A. Moreno, J. D. Martı́n, E. Soria, R. Magdalena, and M. Martı́nez. Noisy reinforcements

in reinforcement learning: some case studies based on gridworlds. In Proceedings of the 6th
WSEAS international conference on applied computer science, pages 296–300, 2006.

[2] T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and S. Legg. Reinforcement learning with a
corrupted reward channel. arXiv preprint arXiv:1705.08417, 2017.

[3] J. S. Campbell, S. N. Givigi, and H. M. Schwartz. Handling stochastic reward delays in ma-
chine reinforcement learning. In Electrical and Computer Engineering (CCECE), 2015 IEEE
28th Canadian Conference on, pages 314–319. IEEE, 2015.

[4] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events: A
general framework for data-driven reward definition. arXiv preprint arXiv:1805.11686, 2018.

[5] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan. Inverse reward design.
In Advances in Neural Information Processing Systems, pages 6768–6777, 2017.

[6] P. Sermanet, K. Xu, and S. Levine. Unsupervised perceptual rewards for imitation learning.
arXiv preprint arXiv:1612.06699, 2016.

[7] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2016.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[9] K. Ciosek and S. Whiteson. Expected policy gradients. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI), 2018.

[10] K. Asadi, C. Allen, M. Roderick, A.-r. Mohamed, G. Konidaris, and M. Littman. Mean actor
critic. arXiv preprint arXiv:1709.00503, 2017.

[11] P. Henderson, T. Doan, R. Islam, and D. Meger. Bayesian policy gradients via alpha divergence
dropout inference. Bayesian Deep Learning Workshop at NIPS, 2017.

[12] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE, 2012.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[14] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia,
O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep reinforcement
learning. In Advances in Neural Information Processing Systems, pages 5694–5705, 2017.

[15] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold, D. Re-
ichert, N. Rabinowitz, A. Barreto, et al. The predictron: End-to-end learning and planning.
arXiv preprint arXiv:1612.08810, 2016.

[16] M. Henaff, W. F. Whitney, and Y. LeCun. Model-based planning in discrete action spaces.
arXiv preprint arXiv:1705.07177, 2017.

[17] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. Model-based value
estimation for efficient model-free reinforcement learning. arXiv preprint arXiv:1803.00101,
2018.

[18] H. Van Seijen and R. S. Sutton. Efficient planning in MDPs by small backups. In Proceedings
of the International Conference on Machine Learning, 2013.

[19] V. François-Lavet, Y. Bengio, D. Precup, and J. Pineau. Combined reinforcement learning via
abstract representations. arXiv preprint arXiv:1809.04506, 2018.

9

[20] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Machine Learning Proceedings 1990, pages 216–224. Elsevier,
1990.

[21] A. M. Metelli, M. Pirotta, and M. Restelli. Compatible Reward Inverse Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems, pages 2047–2056, 2017.

[22] M. Grzes and D. Kudenko. Learning shaping rewards in model-based reinforcement learning.
In Proc. AAMAS 2009 Workshop on Adaptive Learning Agents, volume 115, 2009.

[23] J. Sorg, S. Singh, and R. L. Lewis. Variance-based rewards for approximate bayesian rein-
forcement learning. arXiv preprint arXiv:1203.3518, 2012.

[24] E. Talvitie. Learning the reward function for a misspecified model. arXiv preprint
arXiv:1801.09624, 2018.

[25] R. Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 1957.

[26] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, Aug 1988.

[27] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928–1937, 2016.

[28] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[29] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering. A theoretical and empirical
analysis of expected sarsa. In Adaptive Dynamic Programming and Reinforcement Learning,
2009. ADPRL’09. IEEE Symposium on, pages 177–184. IEEE, 2009.

[30] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

[31] A. L. Thomaz, G. Hoffman, and C. Breazeal. Reinforcement learning with human teachers:
Understanding how people want to teach robots. In The 15th IEEE International Symposium
on Robot and Human Interactive Communication (ROMAN), pages 352–357. IEEE, 2006.

[32] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep Reinforcement
Learning that Matters. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI), 2018.

[33] I. Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr, 2018.

[34] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. International
Conference on Learning Representations, 2017.

[35] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sensor noise for improved 3d recon-
struction and tracking. In 3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), 2012 Second International Conference on, pages 524–530. IEEE, 2012.

[36] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin. Sparsity and compressed sensing in radar
imaging. Proceedings of the IEEE, 98(6):1006–1020, 2010.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[38] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

[39] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In ICML, volume 70 of Proceedings of Machine Learning Research, pages 449–458.
PMLR, 2017.

10

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr

[40] P. Henderson, W.-D. Chang, P.-L. Bacon, D. Meger, J. Pineau, and D. Precup. OptionGAN:
Learning Joint Reward-Policy Options using Generative Adversarial Inverse Reinforcement
Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI), 2018.

[41] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems,
pages 4302–4310, 2017.

[42] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

[43] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu. Openai baselines. https://github.com/openai/baselines, 2017.

11

https://github.com/openai/baselines

A Theoretical Proof Extensions

A.1 Theoretical Variance Reduction Extended Discussion

We note that we make an assumption that in most cases cov [rt, γV
γ
π (st+1)] ≥ 0.

When conditioned on st, at and ′st+1, rt and rt+1 are independent variables and thus their covari-
ance equal to zero. When the covariance is not zero and we must fall back to another formality. We
note that as N → ∞ the left most terms of the right hand side of Equation 6 tend to 0, which gives
us the following:

var
[
Ĝγt

]
− var [Gγt] = − var [rt]− 2 cov [rt, γV

γ
π (st+1)] , (11)

which is less than 0 when:
var [rt] > −2 cov [rt, γV

γ
π (st+1)] . (12)

Thus, when the variables are not independent and covariance equal to zero, Equation 12 must be
followed for reductions in variance to occur using a reward estimator that is the expectation over the
random variable.

B Tabular MDP Experiment

Figure 5 shows the extended results for our tabular experiments.

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s

Eps_100_Num States=5 Reward=1 Prob=0.5
Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s

Eps_100_Num States=5 Reward=2 Prob=0.5
Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s

Eps_100_Num States=5 Reward=5 Prob=0.5
Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s Eps_100_Num States=10 Reward=1 Prob=0.5

Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s Eps_100_Num States=10 Reward=2 Prob=0.5

Baseline
Ours

0.2 0.4 0.6 0.8 1.0
Alphas

0

1

2

3

4

5

R
M

S
 E

rr
or

 a
ve

ra
ge

d
ov

er
 1

00
 E

pi
so

de
s Eps_100_Num States=10 Reward=5 Prob=0.5

Baseline
Ours

Figure 5: Tabular experiments with a 5-state MDP (top row) and a 10-state MDP (bottom row),
with varying reward assignments at each states. In all cases, rewards are assigned with probability
0.5 and, set to 0 otherwise (rewards of +1,+2,+5, from left to right). The x-axis demonstrates
various learning rates for the TD-update, as seen in similar variance analysis experiments [29]. As
can be seen, using the sample mean in MDPs with stochastic processes greatly reduces the variance,
allowing for higher learning rates to be used.

C Atari Experiments

For evaluating our method with function approximation, we use 5 Atari games from the Arcade
Learning Environment (ALE) [42]. We use the exact same hyperparameters used in OpenAI’s Base-
lines implementation [43] and modify the PyTorch A2C implementation for our codebase [33], but
use an additional network (with the same architecture) as a reward predictor and use it to train our
critic as described in Section 4. We compare our approach to the standard A2C algorithm, as well
as A2C with reward prediction as an auxiliary task, similar to [34]. We report results, averaged over
3 random seeds, for rewards with varying levels of Gaussian noise in Table C.2, C.2 and Figure 6.
In most settings, we see that our proposed method performs relatively better once noise has been
introduced.

12

C.1 Performance of Random Agent

For the displayed results in the main text we normalize by the performance over a random agent.
These performances were averaged over 100 episodes by uniformly sampling from the action space
and can be found in Table 5,

Game BeamRider Breakout Pong QBert Seaquest Space Invaders
Return 337 1.7 -20.7 163.9 68.4 148

Table 5: Average return of a random uniform sampling policy on Atari games across 100 episodes.

C.2 Extended Experimental Results

Environment σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
(% Gain) (% Gain) (% Gain) (% Gain) (% Gain)

BeamRider 26.87 49.45 1350.95 876.43 485.13
Breakout -1.24 15.40 101.82 681.86 2152.73

Pong -0.22 21.66 -1.55 1882.6 32.05
Qbert -37.57 -10.18 78.55 456.57 646.32

Seaquest -29.53 -9.18 -8.68 74.66 115.86
SpaceInvaders -10.48 8.46 55.10 136.29 364.82

Average -8.69 12.6 262.7 684.73 632.82
Table 6: Comparison of the average episode reward over 10M steps of training between our approach
to the best of both baselines (A2C and A2C with the reward prediction auxiliary task). The score
represents the relative improvement over the best baseline normalized by the performance of the
random policy: Ours−Best Baseline

|Best Baseline−Random Policy| . Bold scores indicate an improvement over both baselines.
The results are the average over 3 runs using different random seeds. Variance of the added Gaussian
noise is σ2.

Environment ε = 0.1 ε = 0.2 ε = 0.3
(% Gain) (% Gain) (% Gain)

BeamRiderNoFrameskip-v4 86.72 71.28 38.76
BreakoutNoFrameskip-v4 44.93 280.40 1169.55

PongNoFrameskip-v4 -13.97 -0.54 0.17
QbertNoFrameskip-v4 13.74 248.81 351.26

SeaquestNoFrameskip-v4 -20.64 12.64 91.16
SpaceInvadersNoFrameskip-v4 14.39 36.31 62.64

Average 20.86 108.15 285.59
Table 7: Comparison of the average episode reward over 10M steps of training between our approach
to the best of both baselines (A2C and A2C with the reward prediction auxiliary task). The score
represents the relative improvement over the best baseline normalized by the performance of the
random policy: Ours−Best Baseline

|Best Baseline−Random Policy| . Bold scores indicate an improvement over both baselines.
The results are the average over 3 runs using different random seeds. ε values indicate likelihood of
uniform noise.

13

Environment ε = 0.3 ε = 0.5 ε = 0.75
(% Gain) (% Gain) (% Gain)

BeamRiderNoFrameskip-v4 44.11 64.69 16.27
BreakoutNoFrameskip-v4 3.22 4.25 69.70

PongNoFrameskip-v4 22.03 16.27 -0.75
QbertNoFrameskip-v4 31.49 70.61 141.26

SeaquestNoFrameskip-v4 -41.34 -26.05 11.20
SpaceInvadersNoFrameskip-v4 0.18 -2.21 22.74

Average 9.95 21.26 43.40
Table 8: Comparison of the average episode reward over 10M steps of training between our approach
to the best of both baselines (A2C and A2C with the reward prediction auxiliary task). The score
represents the relative improvement over the best baseline normalized by the performance of the
random policy: Ours−Best Baseline

|Best Baseline−Random Policy| . Bold scores indicate an improvement over both baselines.
The results are the average over 3 runs using different random seeds. ε values indicate likelihood of
sparsity induction.

Environment Gaussian Noise A2C A2C+ R̂(s)

BeamRiderNoFrameskip-v4

0 2151.73 1836.51 2639.65
0.1 1555.06 991.56 2157.87
0.2 416.91 429.00 1685.37
0.3 398.13 396.06 942.69
0.4 390.60 393.35 671.57

BreakoutNoFrameskip-v4

0 252.19 274.57 271.19
0.1 222.99 223.14 257.24
0.2 114.05 119.35 239.15
0.3 27.51 29.83 221.64
0.4 6.86 10.93 209.68

PongNoFrameskip-v4

0 9.95 9.60 9.88
0.1 0.07 -2.10 4.57
0.2 -14.63 -10.13 -10.29
0.3 -20.46 -20.42 -15.08
0.4 -20.47 -20.43 -20.34

QbertNoFrameskip-v4

0 4539.80 7332.23 4638.91
0.1 3343.67 4867.65 4388.63
0.2 1584.20 2362.24 4089.10
0.3 608.56 712.62 3217.89
0.4 412.90 531.20 2905.16

SeaquestNoFrameskip-v4

0 1381.11 1154.93 993.49
0.1 619.22 963.16 881.00
0.2 785.69 352.32 723.40
0.3 297.31 262.98 468.21
0.4 162.95 185.23 320.59

SpaceInvadersNoFrameskip-v4

0 630.36 558.65 579.80
0.1 542.80 549.90 583.90
0.2 420.60 422.60 573.91
0.3 300.52 281.72 508.40
0.4 218.09 209.49 473.78

Table 9: The asymptotic average return across all episodes of training for the Atari experiments
across 3 training runs with different random seeds (for both network initialization and environment
seeding) under the Gaussian noise.

14

Environment Uniform Noise A2C A2C+ Ours

BeamRiderNoFrameskip-v4
0.1 402.36 532.39 1286.34
0.2 398.35 395.18 922.52
0.3 390.33 393.20 676.20

BreakoutNoFrameskip-v4
0.1 149.31 160.98 234.07
0.2 45.28 55.66 216.50
0.3 12.79 13.43 190.33

PongNoFrameskip-v4
0.1 -13.91 -8.94 -13.08
0.2 -20.08 -20.37 -20.30
0.3 -20.41 -20.38 -20.31

QbertNoFrameskip-v4
0.1 1778.70 3436.01 3930.60
0.2 752.14 589.16 3031.33
0.3 394.96 440.09 2561.66

SeaquestNoFrameskip-v4
0.1 462.80 1005.19 783.56
0.2 384.28 184.19 441.49
0.3 168.80 162.69 385.03

SpaceInvadersNoFrameskip-v4
0.1 451.64 420.91 537.92
0.2 319.46 279.20 489.20
0.3 227.79 207.25 463.20

Table 10: The asymptotic average return across all episodes episodes of training for the Atari ex-
periments across 3 training runs with different random seeds (for both network initialization and
environment seeding) under the uniform noise.

Environment Sparsity Noise A2C A2C+ Ours

BeamRiderNoFrameskip-v4
0.3 1555.07 1505.46 2389.58
0.5 918.60 931.14 1751.48
0.75 492.38 405.17 627.33

BreakoutNoFrameskip-v4
0.3 256.43 259.22 267.63
0.5 223.10 234.60 244.65
0.75 101.99 88.84 174.25

PongNoFrameskip-v4
0.3 -0.53 -0.01 4.55
0.5 -6.73 -20.28 -2.27
0.75 -20.28 -19.38 -19.68

QbertNoFrameskip-v4
0.3 2534.81 3232.79 4302.55
0.5 1666.17 1986.04 3504.11
0.75 564.04 587.49 1648.87

SeaquestNoFrameskip-v4
0.3 1195.62 1319.00 745.50
0.5 938.44 957.43 690.18
0.75 399.54 354.25 451.95

SpaceInvadersNoFrameskip-v4
0.3 562.61 588.71 590.05
0.5 496.33 510.24 495.69
0.75 348.18 328.75 461.00

Table 11: The asymptotic average return across all episodes of training for the Atari experiments
across 3 training runs with different random seeds (for both network initialization and environment
seeding) under the sparsity inducing noise.

15

Figure 6: Full learning curves for 3 runs for six Atari Games over 10M training steps (corresponding
with 40M raw frames). From top to bottom: Beam Rider, Breakout, Space Invaders, Seaquest, Qbert,
Pong. We compare five different noise levels that each correspond to adding Gaussian noise centered
at zero with the labelled standard-deviation. From left to right we have: 0.0, 0.1, 0.2, 0.3, 0.4. Our
proposed method is labelled ”Ours”, while A2C and A2C with the reward prediction auxiliary task
are labelled Baseline and Baseline+ respectively.

Additional details: Our architecture and hyper-parameters are identical to the standard A2C pa-
rameters used in [43]. To learn the reward-predictor, we used a completely separate network with
the same overall structure as the value/policy network.

We tuned the learning rate for the reward-predictor roughly through a coarse grid-search be-
tween [0.0001, 0.00025, 0.0005, 0.00075, 0.001] on a single game Pong and then used the best one
(0.0001) on all other games.

Additionally, we found that occasionally our algorithm diverged completely due to poor initializa-
tion of the reward-predictor. To alleviate this issue, we provided a convex combination between
our estimate r̂ and the stochastic corrupted environment reward (for all environments) - which we
linearly decayed over the first 25000 network updates (out of the total 125000 updates).

For Atari experiments we model R̂(s) which we find to be sufficient to improve performance since
rewards are not directly related to the actions themselves and are often delayed by several steps.

16

D Mujoco Experiments

Additional details: Our architecture and hyper-parameters are identical to the standard PPO param-
eters used in [43], our implementation is directly taken from [33]. To learn the reward-predictor, we
used a completely separate network with the same overall structure as the value network.

We used the same learning rate as was standard for the policy / value network 0.0003.

Additionally, we found that occasionally our algorithm diverged completely due to poor initializa-
tion of the reward-predictor. To alleviate this issue, we provided a convex combination between
our estimate r̂ and the stochastic corrupted environment reward (for all environments) - which we
linearly decayed over the first 100 network updates (out of the total ∼ 500 updates).

For MuJoCo experiments we model R̂(s, a, s′). We find that adding an expectation over states alone
does not provide enough fidelity on the reward function since several of the tasks provide a reward
for the action itself (e.g., Reacher).

D.1 Performance of Random Agent

For the displayed results in the main text we normalize by the performance over a random agent.
These performances were averaged over 100 episodes by uniformly sampling from the action space
and can be found in Table 12,

Env Hopper Walker2d HalfCheetah Reacher
Return 16.97 1.54 -272 -43.1

Table 12: Average return of a random uniform sampling policy on MuJoCo tasks across 100
episodes.

D.2 Result Tables

Environment Gaussian Noise PPO PPO+ R̂(s) R̂(s,a) R̂(s,a,s’)

HalfCheetah-v2

0.0 1392.40 1462.89 174.38 1638.44 1245.21
0.1 977.12 803.66 404.80 1595.80 1460.57
0.2 339.41 300.59 105.42 1095.05 1043.79
0.3 122.36 56.86 115.28 1148.32 672.59
0.4 -131.29 -149.76 -98.19 868.31 563.25

Hopper-v2

0.0 1854.69 1991.64 1820.39 1828.26 1831.93
0.1 1689.57 1809.31 1857.21 1801.71 1881.85
0.2 1170.60 1687.88 1873.61 1922.32 1790.57
0.3 1420.17 1184.10 1542.23 1767.25 1565.90
0.4 843.86 1188.19 1793.98 1697.48 1579.56

Reacher-v2

0.0 -6.53 -6.41 -99.90 -6.54 -7.07
0.1 -17.28 -17.11 -127.82 -15.94 -14.40
0.2 -22.43 -22.88 -161.28 -20.87 -19.00
0.3 -26.34 -27.33 -173.28 -22.57 -21.20
0.4 -29.14 -32.53 -175.05 -25.70 -25.68

Walker2d-v2

0.0 2340.91 2672.04 2346.76 2447.12 2455.96
0.1 1412.13 1211.24 2153.51 2473.58 2310.20
0.2 677.54 589.28 1571.95 1966.97 1752.62
0.3 393.01 540.58 1292.29 1091.87 1497.89
0.4 400.04 352.48 1160.65 1362.22 1000.16

Table 13: The asymptotic average return across the last 100 episodes of training for the MuJoCo
experiments across 10 training runs with different random seeds (for both network initialization and
environment seeding). We also include results for varying features provided to the R̂ estimator such
that this demonstrates the selection criteria in the main text. As can be seen, in several tasks where
the reward has a component related to the action or transition itself, the use of action as a feature is
required.

17

Environment Sparsity Noise PPO PPO+ R̂(s) R̂(s,a) R̂(s,a,s’)

HalfCheetah-v2

0.6 1612.95 1222.08 361.60 1233.47 1379.16
0.7 1232.03 1305.56 198.67 1200.28 1076.82
0.8 1293.07 1113.19 30.52 1142.94 1282.56
0.9 1238.62 810.83 152.05 648.19 1147.88
0.95 98.35 113.87 -375.79 783.76 592.91

Hopper-v2

0.6 1675.30 1618.70 1788.76 2058.57 1945.85
0.7 1883.82 1944.51 1864.50 1753.45 1790.25
0.8 1720.89 1661.29 1954.20 1700.17 1755.76
0.9 1023.55 678.48 1778.44 1560.97 1753.77
0.95 1031.92 598.93 1497.67 1487.81 1863.43

Reacher-v2

0.6 -8.43 -8.29 -118.82 -12.18 -11.76
0.7 -8.51 -11.09 -138.26 -14.10 -14.16
0.8 -10.75 -12.24 -157.20 -17.77 -16.68
0.9 -15.64 -20.07 -188.48 -27.33 -25.17
0.95 -53.25 -50.36 -241.73 -36.47 -44.31

Walker2d-v2

0.6 1692.40 2126.73 2053.24 2581.97 2258.18
0.7 1357.61 1949.10 2270.63 2090.89 2290.78
0.8 1655.21 1141.59 2059.51 2477.55 2187.35
0.9 679.50 731.16 1525.32 1828.97 2227.78
0.95 600.89 456.80 966.98 1727.84 1383.83

Table 14: The asymptotic average return across the last 100 episodes of training for the MuJoCo
experiments across 10 training runs with different random seeds (for both network initialization and
environment seeding). We also include results for varying features provided to the R̂ estimator such
that this demonstrates the selection criteria in the main text. As can be seen, in several tasks where
the reward has a component related to the action or transition itself, the use of action as a feature is
required. Sparsity inducing noise did not always yield improvements over the baseline except for in
higher noise conditions.

Environment Uniform Noise PPO PPO+ R̂(s) R̂(s,a) R̂(s,a,s’)

HalfCheetah-v2

0.1 293.01 391.48 99.28 990.88 1127.91
0.2 55.01 74.90 -44.54 933.78 812.91
0.3 -164.12 -141.44 -178.28 641.36 583.93
0.4 -432.13 -304.93 -1017.45 273.59 368.28

Hopper-v2

0.1 1579.85 1629.17 1799.82 1842.31 2092.86
0.2 1303.62 1101.23 1494.78 1622.64 1952.41
0.3 1085.40 935.10 1262.49 1323.28 1307.01
0.4 559.75 758.62 1081.88 1109.00 1577.78

Reacher-v2

0.1 -21.66 -23.61 -148.80 -18.16 -18.31
0.2 -26.20 -27.87 -167.59 -23.58 -22.04
0.3 -31.29 -33.03 -176.22 -24.93 -27.44
0.4 -37.97 -37.79 -201.12 -30.95 -35.65

Walker2d-v2

0.1 720.39 639.01 1861.84 2176.73 2020.49
0.2 430.20 355.24 1071.72 1235.42 883.65
0.3 350.06 343.81 687.34 986.12 788.61
0.4 287.41 320.70 582.23 752.07 431.05

Table 15: The asymptotic average return across the last 100 episodes of training for the MuJoCo
experiments across 10 training runs with different random seeds (for both network initialization and
environment seeding). We also include results for varying features provided to the R̂ estimator such
that this demonstrates the selection criteria in the main text. As can be seen, in several tasks where
the reward has a component related to the action or transition itself, the use of action as a feature is
required.

18

Fi
gu

re
7:

G
au

ss
ia

n
no

is
e

19

Fi
gu

re
8:

U
ni

fo
rm

no
is

e
-w

ith
pr

ob
ab

ili
ty

p
th

e
re

w
ar

d
is

re
pl

ac
ed

w
ith

a
sa

m
pl

ed
re

w
ar

d
fr

om
U

[-
1,

1]

20

Fi
gu

re
9:

Sp
ar

si
ty

no
is

e
-w

ith
pr

ob
ab

ili
ty

p
th

e
re

w
ar

d
is

re
pl

ac
ed

w
ith

0

21

Fi
gu

re
10

:T
D

er
ro

rw
ith

G
au

ss
ia

n
no

is
e

22

Fi
gu

re
11

:T
D

er
ro

rw
ith

U
ni

fo
rm

no
is

e

23

Fi
gu

re
12

:T
D

er
ro

rw
ith

Sp
ar

si
ty

no
is

e

24

D.3 Extended Experiments

D.3.1 Variance

To discover whether there is indeed a variance reduction in the Bellman backup operator, we use a
pretrained policy and reward estimator and run 100 more training episodes to retrain a new value
function. We do this for 10 trials under all noise conditions and environments. The results of this
can be seen in Tables D.3.1, D.3.1, and D.3.1.

Environment ε var(Rtrue) var(Rcorr) var(R̂) MSE(Rcorr, Rtrue) MSE(R̂, Rtrue)

HalfCheetah-v2

0.1 54.770 78.743 19.112 0.034 0.004
0.2 49.468 101.663 44.717 0.067 0.006
0.3 83.261 149.241 30.471 0.101 0.004
0.4 57.554 163.790 29.989 0.134 0.005

Hopper-v2

0.1 74.558 64.372 37.278 0.033 0.017
0.2 370.582 243.092 93.033 0.070 0.029
0.3 151.449 85.673 13.354 0.105 0.016
0.4 149.258 72.268 4.146 0.142 0.020

Reacher-v2

0.1 4.947 6.047 0.209 0.034 0.026
0.2 5.058 6.675 0.309 0.071 0.027
0.3 5.110 7.692 0.622 0.106 0.027
0.4 4.917 8.709 0.778 0.143 0.027

Walker2d-v2

0.1 14.739 16.633 9.202 0.034 0.014
0.2 14.710 16.499 4.345 0.069 0.014
0.3 15.603 31.481 7.402 0.102 0.013
0.4 17.224 29.401 5.587 0.140 0.016

Table 16: The variance and mean squared error averaged over 10 trials of 100 episodes under uni-
form noise at varying ε probabilities where the likelihood of replacement with a random reward is
ε.

Environment ε var(Rtrue) var(Rcorr) var(R̂) MSE(Rcorr, Rtrue) MSE(R̂, Rtrue)

HalfCheetah-v2

0.6 66.947 11.796 5.087 0.003 0.005
0.7 67.277 6.051 2.461 0.003 0.003
0.8 67.176 3.368 1.107 0.004 0.005
0.9 59.593 0.705 0.698 0.002 0.003
0.95 69.234 0.316 0.183 0.004 0.004

Hopper-v2

0.6 343.477 54.577 14.768 0.011 0.017
0.7 505.215 46.451 10.550 0.014 0.018
0.8 10.416 0.483 0.218 0.016 0.017
0.9 239.583 3.014 0.256 0.018 0.018
0.95 407.326 1.161 0.060 0.021 0.021

Reacher-v2

0.6 5.068 0.721 0.007 0.020 0.025
0.7 4.811 0.406 0.004 0.022 0.026
0.8 5.249 0.260 0.004 0.023 0.026
0.9 5.008 0.054 0.002 0.026 0.027
0.95 4.811 0.019 0.002 0.027 0.027

Walker2d-v2

0.6 28.327 4.720 4.929 0.010 0.013
0.7 84.195 7.686 4.380 0.008 0.011
0.8 11.193 0.518 0.285 0.010 0.011
0.9 45.122 0.501 0.268 0.013 0.013
0.95 38.299 0.118 0.096 0.011 0.011

Table 17: Variance and mean squared error under sparsity inducing noise with ε indicating the
probability that a reward is replaced with 0.

25

Environment σ var(Rtrue) var(Rcorr) var(R̂) MSE(Rcorr, Rtrue) MSE(R̂, Rtrue)

HalfCheetah-v2

0 90.984 90.984 47.689 0.000 0.004
0.1 58.407 69.364 27.151 0.010 0.005
0.2 81.375 117.149 45.172 0.040 0.004
0.3 48.259 134.517 42.478 0.090 0.005
0.4 67.252 241.708 95.358 0.160 0.006

Hopper-v2

0 577.269 577.269 108.070 0.000 0.019
0.1 254.271 254.137 176.411 0.010 0.012
0.2 77.429 84.184 45.178 0.040 0.016
0.3 1180.103 1213.711 67.992 0.091 0.029
0.4 288.084 333.094 87.369 0.160 0.026

Reacher-v2

0 4.947 4.947 0.020 0.000 0.024
0.1 4.845 5.383 0.124 0.010 0.025
0.2 4.930 6.983 0.371 0.040 0.025
0.3 4.871 9.672 0.605 0.090 0.026
0.4 5.326 13.629 1.481 0.160 0.028

Walker2d-v2

0 95.792 95.792 75.649 0.000 0.009
0.1 67.335 71.721 38.815 0.010 0.013
0.2 8.616 13.220 13.372 0.040 0.017
0.3 10.462 22.723 24.300 0.090 0.019
0.4 26.990 58.277 38.250 0.161 0.017

Table 18: Variance and mean squared error under added Gaussian noise with variance σ2.

26

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Stochastic or Corrupted Rewards

	Reward Estimation
	Theoretical Variance Reduction in Tabular Domains
	Choosing the Best Estimator

	Experiments
	Tabular Experiments
	MuJoCo Experiments
	Gaussian Noise
	Uniform Noise
	Sparsity
	Analyzing the Empirical Advantage
	Analyzing Reduction of Variance

	Atari Experiments

	Conclusion
	Theoretical Proof Extensions
	Theoretical Variance Reduction Extended Discussion

	Tabular MDP Experiment
	Atari Experiments
	Performance of Random Agent
	Extended Experimental Results

	Mujoco Experiments
	Performance of Random Agent
	Result Tables
	Extended Experiments
	Variance

