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Abstract:

We propose a novel technique for efficiently navigating unknown environments
over long horizons by learning to predict properties of unknown space. We gener-
ate a dynamic action set defined by the current map, factor the Bellman Equation
in terms of these actions, and estimate terms, such as the probability that navigat-
ing beyond a particular subgoal will lead to a dead-end, that are otherwise difficult
to compute. Simulated agents navigating with our Learned Subgoal Planner in
real-world floor plans demonstrate a 21% expected decrease in cost-to-go com-
pared to standard optimistic planning techniques that rely on Dijkstra’s algorithm,
and real-world agents show promising navigation performance as well.
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1 Introduction

We aim to navigate partially-revealed environments in minimum distance. Imagine a robot tasked
with navigating a large office complex with a partial map, discovering the environment as it travels.
To reach its goal, the agent must plan to enter unknown parts of the map, and in so doing, reason
about the cost of trajectories through unknown space. Many approaches to planning attempt to
avoid the difficulties associated with reasoning about unknown space by optimistically assuming all
unobserved space is free of obstacles [1, 2]. Yet if instructed to travel to a conference room on the far
side of the building, for example, such an optimistic planner is likely to make globally suboptimal
decisions and guide the robot into countless offices as it navigates towards its goal.

Planning more intelligently requires making inferences about environmental topology, so that likely
dead-ends may be predicted and avoided. For example, offices in a building usually only have a
single entrance and measure no more than a dozen meters in either direction, so any proposed motion
plans that attempt to reach a faraway goal via an unexplored office should have a higher expected
cost than those that plan to navigate through hallways. In general, navigating in a partially-revealed
environment can be modeled as a Partially Observable Markov Decision Process [3] (POMDP),
which can be leveraged to compute the expected minimum cost path. However, using this model in
practice to evaluate the expected cost of an action, like choosing to go left or right at a fork-in-the-
road, requires not only enormous computational effort, but also access to a distribution over possible
environments. Obtaining such a distribution in a form that is useful for navigating unknown space
is difficult in practice for complex environments.

There are a number of learning-based approaches for navigating in unknown environments [4, 5, 6].
The key limitation of many such approaches so far has been in their ability to learn policies that
reason over long time horizons, since previous efforts have focused predominantly on short-horizon
costs. Richter ef al. [4, 7] showed an improvement over optimistic planning heuristics by directly
predicting the expected cost over a family of motion primitives; the predictions were limited to the
near-term horizon — only a few time-steps into the future — and were ineffective for predicting the
long-term implications of an action in topologically complex environments. Another approach to
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trajectory optimization implicit in the POMDP is to learn a good policy using reinforcement learn-
ing. Kahn et al. [8] learn a policy for navigating an office-like environment, but the model horizon
for their experiments is limited to 3.6 meters. While effective for avoiding obstacles, planning only a
few meters ahead is insufficient for recognizing and avoiding the long-term implications of actions,
which may impact navigation over hundreds of meters. Reinforcement learning has been shown to
be successful for navigation in known environments [9] and for short range navigation in unknown
environments [5, 6]. However, practical limitations associated with data complexity [10, 11] or de-
layed rewards [12] make it difficult for such agents to learn policies that can effectively navigate
large-scale, unknown environments.

In order to more easily reason about the structure of an unobserved environment beyond the short
term, we introduce an abstraction that allows us to make predictions in a computationally efficient
manner. Specifically, we define a dynamic action set by associating a subgoal with each boundary
between free and unknown space and defining high-level actions corresponding to traveling to the
goal through each subgoal. Beginning with the Bellman Equation, we derive an algorithm that uses
the subgoals to define a set of actions; doing so allows us to estimate the expected cost of navigating
to the goal via one of the subgoals and to avoid the computational challenges of reasoning over
individual trajectories or motion-primitives. Representing its possible paths to the goal, a robot
must pass through one of the subgoals to enter unknown space and reach the unseen goal. The set of
dynamic actions (subgoals) is computed on-line and updates as the robot explores the environment.
Key to our approach is learning the properties of the unknown environment beyond each subgoal:
e.g., the likelihood that attempting to reach the goal via a subgoal will ultimately lead to the goal or
to a dead end. By learning these terms, our algorithm is able to incorporate prior information and
estimate the long-time-horizon cost of our actions, while avoiding the computational costs usually
incurred when planning under uncertainty.

Our approach enables experience-guided navigation of unknown environments in real-time on an
autonomous platform. Moreover, we use classical planning techniques to navigate toward each
subgoal. Our planner is therefore is guaranteed to reach the goal if a feasible path exists, even in
unfamiliar environments where learning may not provide accurate predictions. We demonstrate the
effectiveness of our technique in simulation by showing that the expected cost of using our planner
for navigation is 21% lower on real-world floor plans as compared to a standard optimistic heuristic.
We also include real-world experiments on an RC car and show promising performance consistent
with the simulated results, thus demonstrating that our algorithm is suitable for operation on a real-
world robot.

2 Planning with Subgoals

Our objective is to minimize the expected cost of navigating a static, unknown environment. As
mentioned previously, navigating an unknown environment can be modeled as a Partially Observable
Markov Decision Process. The expected cost of an action under the optimal policy can be computed
recursively using the Bellman Equation:

Q(br,ar € A(br)) = > Pbigalbs, ar) {R(btﬂ,bt,at) +  min Qbgr,a41)| (1)
bery at+1E€A(bey1)

where R(bi11,bs, a;) is the expected cost of reaching belief state b;41 from b, by taking action a;.

Our belief state is a two-element tuple consisting of the partially observed map m; and the robot

pose ¢;: by = {my, g} In practice, computing the expected cost via Eq. (1) is intractable, since it

requires taking an expectation over the distribution of all possible maps.

To simplify the calculation of the expected cost, we introduce our Learned Subgoal Planning algo-
rithm, which we use to evaluate the expected cost of selecting a motion plan that passes through a
particular subgoal, each of which corresponds to a boundary between free and unknown space, and
navigates the unknown environment towards the goal. At every time step, the subgoals define our set
of actions: each action corresponds to traveling to the goal via the unknown space associated with a
particular subgoal. The action loop for our subgoal planning agent is as follows: (1) we obtain the
set of subgoals (this yields a set of actions .A(b;)) given the belief b;, (2) we compute the expected
cost of selecting an action a, (3) we choose the subgoal g, that minimizes the expected cost, (4)
we compute a motion plan passing through subgoal g, and (5) we select a low-level motion primi-



We recursively compute the approximate expected cost using a factored form of the Bellman Equation.
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Figure 1: This schematic gives an overview of our subgoal planning algorithm, which allows us to plan through
an unknown environment by computing the expected cost of each action in a way that is computationally
feasible. Learning is used to estimate the terms Ps, Rs and Rg, thereby introducing prior knowledge about
the environment class of interest into the decision-making procedure. This equation is derived and discussed
further in Sec. 2.1.

tive that moves along the computed path. This repeats at each time step until the goal is within the
revealed map, and the agent is able to plan to it.

2.1 Approximating Expected Cost via the Subgoal Planning Algorithm

We first factor the Bellman Equation according to our abstraction and introduce terms we later
estimate with learning. Without loss of generality, we can split the future belief states b, into two
sets: future states in which the robot has reached the goal, which we write as b;1 € G, and future
states in which it has not, b;11 ¢ G. Noting that the future cost is identically zero for states that
reach the goal, we can eliminate @ (b;y1, a¢1+1) when byy1 € G and rewrite Eq. (1) as follows:
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where Pg(bi+1 € Glbt,a) = thﬂ cc P(biy1]by, ar) is the proportion of states in which the agent

successfully reaches the goal after selecting action a; from belief state b; and Pg(byy1|bs, ar) =
P(biy1lbe, ar)/Ps(bir1 € Glby, ay) is normalized according to 3, ¢ Pa(beq1|be, ar) = 1, so
that the first term in Eq. (2) can be thought of as the expected cost over states that reach the goal
times the proportion of states that reach the goal (both of which, we later estimate using learning).
P is defined similarly over states that do not reach the goal. Evaluating the recursive term in Eq. (2)
remains particularly difficult to compute. We reduce this term with a simplifying assumption: that
the expected cost of the future states can be approximated using the current observed map my,
subject to the restriction that the set of future actions is simply the current set of actions minus the
action that was just chosen: A(bs11) = A(b:) \ {a+}. This pair of assumptions makes recursively
computing the expected cost of an action significantly easier, since the recursive term in the resulting
approximate Bellman Equation only depends on the current observed map m;:

min biy1,a) =  min me, ,a), 3

e Q(be+1,a) Lol QU{m¢, qr+1}, a) 3)
where {my, g;11} is a belief state consisting of the current observed map state m; and the next robot
pose g:+1. To compute the expected cost-to-go at time ¢ via our Subgoal Planning abstraction, we
first compute the set of actions, .4(b;), which each correspond to planning to the goal through one
of the available subgoals. Following Eqgs. (2) & (3), and recognizing that we can use a Dijkstra’s



algorithm heuristic D to navigate through known space, the expected cost can be written as,
1. 2.

—_——~ —
Q(bmat) :D(mt7Qtan) +Ps(bt+1 € G|bt7at) RS(bt7QQ7qG7at) +
“4)

(1 = Ps(biy1 € Glbs,a¢)) | RE(bt, qg,a¢) + min — Q({my, g4}, 0a) |,
N — A€ A(bt)\ O e e’

3. 4.

where we define the following terms:

1. D(m¢,q,qq): the cost of traveling from ¢, the current location of the agent, to a subgoal g, (as
specified by an action a;). Since this motion plan occurs entirely within known space, we use
Dijkstra’s algorithm as a heuristic to calculate this cost.

2. Rs(bt,qq,9G,a¢): the expected cost of success. Suppose the robot succeeds in reaching the
goal via the subgoal specified by action a; with a probability Ps(b;+1 € G|bs,as). Then, with
probability Ps, we accrue an expected cost of traveling from the subgoal g, to the goal g¢ via
unknown space.

3. Rg(by, qq,a:): the exploration cost. In the event that the agent does not reach the goal, we say
that it instead explores the space beyond the subgoal of interest. With probability 1 — Pg, the
agent then accumulates an exploration cost, the expected cost of trying to navigate to the goal via
a; and returning to the subgoal g,.

4. Q({m4, g4}, a): the future expected reward. Upon failing to reach the goal and exploring the
chosen space beyond the subgoal g, we consider a different action, a € A(b;) \ a;. We compute
this final term recursively until all actions in .A(b;) have been exhausted.

An illustration of our procedure for a simple example can be found in Fig. 1.

2.2 Learning Properties of Unknown Space

The computation of a number of the terms in Eq. (4) — the probability of succeeding in reaching
the goal Pg, the success cost Rg, the exploration cost R — are implicitly expectations over the
future belief b;,1 and, as before, are computationally intractable. Rather than attempt to compute
these terms, we learn them', allowing us to predict information about the unseen portions of the
environment and incorporate this information into the calculation of the expected costs. These three
terms are learned in a supervised manner: we train a fully-connected neural network to take as
input (1) a single sensor observation, a 256-element vector of LIDAR range measurements, (2) the
2D robot-frame position of the goal, and (3) the robot-frame position of the subgoal, and predict
the three terms specified above. As new observations are incorporated into the map and the set of
subgoals changes — i.e., the boundary of observed space changes — any new subgoal is passed to
the neural network, which then estimates the properties of the unknown space beyond that subgoal.

For all environments, the neural network is a fully connected neural network with hidden layers of
width {256,128, 48,16}, each followed a batch normalization layer, 50% dropout, and a sigmoid
activation function?. The output of the neural network is of dimension three, for each of the three
desired outputs; a sigmoid activation and weighted cross-entropy loss is used to predict the success
probability while a linear activation and a squared error loss is used for the two regression outputs.
Loss for the success cost is only applied when a plan through a subgoal does lead to the goal and the
loss for the exploration cost is only applied when it does not. One additional consideration is that
the effective cost of misclassifying a subgoal strongly depends on a number of factors. For example,

'In fact, since using Dijkstra’s algorithm to compute the distance between the goal g and each subgoal
gy provides a reasonable estimate of the success cost, we instead learn the delta success cost, the difference
between the two: ARs = Rg(bt, at) — D(bs, qq, qc)-

2All networks were trained using the Adam optimizer in TensorFlow (default parameters) over 100k steps
with a batch size of 256 and using roughly 300k training samples for each environment. The learning rate
begins at 0.004 and decreases by a factor of 0.9 every 5k steps; the relatively fast learning rate decay and the
dropout regularize the network and reduce overfitting. The performance is largely insensitive to changes in
the random seed, adding additional layers, or changing the number of hidden nodes. We trained a few dozen
different networks with variations on these parameters, and found that the standard deviation in the loss between
these different networks was only 4.2%.
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Figure 2: A comparison between the cost-to-go of the optimistic planner baseline and our subgoal planner for
1,200 simulated trials in the Guided Maze Environment. The blue line represents the calculated fit line of data
points selected by RANSAC (filled circles). The Learned Subgoal Planning agent travels a total of 22.3% less
distance than the optimistic baseline over these trials, which is shown in the scatter plot by the fit line being in
the green colored region. In plots of the subgoal planner’s path, boundaries associated with each subgoal are
colored from green to red so as to visualize Pgs, the estimated likelihood that it will lead to the goal.

if a subgoal constitutes the only path to the goal, then the penalty for misclassifying this subgoal is
very high. By contrast, deciding to explore a small room near the goal will not likely take long and is
therefore of relatively low cost. Computing the relative importance of correctly classifying a subgoal
would require solving the full Bellman Equation and is therefore too expensive to compute. Instead,
we provide a heuristic for computing this misclassification cost at training time. For subgoals that
do not lead to the goal, misclassification results in the exploration cost Ry described above, which is
roughly the cost of exploring the space beyond the chosen subgoal. For subgoals that do lead to the
goal, the robot could travel across the entire map before returning; therefore, the penalty is the cost of
traveling to the furthest point beyond a subgoal that does not lead to the goal and back. The computed
costs are then used as weights for the cross-entropy loss used to train the classifier. Our heuristic
matches intuition: subgoals that lead to the goal are naturally more important to correctly classify
than those that do not. Finally, we also use class reweighting to compensate for the asymmetry in
the proportion of subgoals that do and do not lead to the goal.

2.3 Training Data Generation

Since we learn the properties of the unknown space beyond each subgoal, we require training data
generated from each environment class of interest. To obtain this data, we generate maps from the
environment class of interest and have an agent navigate using the optimistic planner as if the map
were unknown. As the agent explores, revealing new portions of the environment, we extract the
newly updated subgoals. Using the underlying map, we determine if planning through each subgoal
will lead to the goal and its cost of success (if the subgoal does lead to the goal) or its exploration
cost (if the subgoal does not lead to the goal). Thus, each new subgoal corresponds to a single
training datum. For each environment, we generate a few hundred maps and collect data from each
run of the optimistic planner. The resulting data is then used to train the neural network described
in the previous section. We note that the maps we use for training are distinct from those used for
testing. Additionally, for our floor plan environment, the maps we use to generate our training data
are from different buildings than the floor plans we use to evaluate performance, so that we may
show that we learn generally informative features about human-structured environments instead of
memorizing the environments themselves.

3 Simulation Results

To evaluate the performance of our approach to planning, we generate simulated occupancy grids
from three different classes of environments: “guided” mazes, random forests, and real-world floor
plans. We generate training data from these environments and train a neural network for each class,
as described in Sec. 2.2 & 2.3. For each environment class, individual trials consist of our simulated
RC Car agent navigating between a random start/goal location for each of the optimistic planner —
which plans as if all unknown space is unoccupied — and Learned Subgoal Planner; the length of
the resulting trajectories are compared.
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Figure 3: A comparison between the cost-to-go of the optimistic planner baseline and our Learned Subgoal
Planner for 1,000 simulated trials in the Forest Environment. Our agent closely matches the performance of the
optimistic baseline, which already achieves near-optimal navigation.

3.1 “Guided” Maze Navigation Results

We generate maze environments using Kruskal’s Algorithm [13]. We use the term guided to mean
that the maze is designed in such a way that local features give immediate guidance on which way
to go: the hallways along the most-direct path between the start and the goal are twice as wide as
any other branches of the maze. The Learned Subgoal Planner should therefore be able to use indi-
vidual laser scans to estimate properties of the unknown space beyond each subgoal with reasonable
reliability. We evaluate navigation performance of the simulated agents through 1,200 runs in our
synthetic maze environment, and include a scatter plot in Fig. 2 that gives the net distance traveled
of each trial by both the optimistic planner baseline and our subgoal planner.

The net cost incurred by the robot summed over all trials (each from start to goal) shown in Fig. 2
is 22.3% lower for our subgoal planner than for the optimistic planner. Furthermore, fitting a line to
95% of the data — as selected by RANSAC — compares the incurred cost of our planner to that of
the optimistic planner, yielding a cost ratio of 0.570: the expected cost of the motion plan executed
by our subgoal planner is 43% lower than that of the optimistic planner for the same environment
configuration. Fig. 2A shows one example where the subgoal planner, using local features to es-
timate the expected cost of each subgoal, navigates directly to the goal, yet the optimistic planner
unnecessarily explores much of the environment before eventually reaching the goal.

There are a handful of cases in which the optimistic planner outperforms the Learned Subgoal Plan-
ner. Such trials typically result from errors in the estimation near the start of motion: if our planner
incorrectly predicts that the subgoal leading to the goal is a dead end, it will navigate a portion of
the remaining environment before returning to correct its mistake. We show one such example in
Fig. 2B. These cases are uncommon, however, (roughly 2.5% of results) and are outweighed by the
trials in which our planner outperforms the optimistic planner.

3.2 Forest Navigation Results

Having shown that our algorithm is capable of using local features to aid navigation, we also demon-
strate that the Learned Subgoal Planner does not appreciably lower performance in environments
were the optimistic planner is already close to the best policy. We navigate in a set of random
forests, generated in such a way that gaps between each individual cylinder is large enough to allow
the agent to pass between them. We conducted 1,000 trials in the random forest environments and
plot the results in Fig. 3, which shows a good agreement between the cost of the motion plans from
the optimistic planner and our subgoal planner. Fitting a line to 95% of the data — as selected by
RANSAC — yields a cost ratio of 1.006 between the planners, confirming the good agreement. In
addition, the cost of using our subgoal planner summed over all trials is only 2% higher than the net
cost from the optimistic planner, suggesting that using our subgoal planner does not substantively
lower performance in environments for which the optimistic planner is already very effective. It
is worth noting that outlying points, those visibly above the line, are uncommon and have only a
small impact on the overall navigation performance; such points, such as the one shown in Fig. 3B,
frequently occur near the goal, when small fluctuations in the learning output may cause our planner
to change directions while encircling a cylindrical object. Other small deviations, as in Fig. 3A, are
caused mostly by luck, when the two motion plans deviate around an obstacle.
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Figure 4: A comparison between the cost-to-go of our Learned Subgoal Planner and the optimistic planner
baseline for 2,000 simulated trials in the Floor Plan Environment. The subgoal planning agent travels a total of
12.5% less distance than the optimistic baseline.

3.3 Floor Plan Environment Navigation Results

Finally, we conducted trials in the floor plan environment: maps of our floor plan environment are
occupancy grids generated from blueprints of real-world buildings around the MIT campus with
obstacles added at random, so as to mimic real-world furniture and clutter. A scatter plot showing
the results of these trials can be found in Fig. 4. Our Learned Subgoal Planner achieves better
performance in expectation for the floor plan environments. The net cost over all runs is 12.5%
lower for the subgoal planner than for the optimistic planner. We again fit a line to 95% of the data,
as selected by RANSAC; the cost ratio is 0.784, suggesting that the expected cost of a plan using
the Learned Subgoal Planner is 21% shorter than that of the optimistic planner.

In Fig. 4A, we show a typical sample from the navigation trials, in which our Learned Subgoal
Planner avoids many dead ends — which take the form of offices and lab spaces — that lead the
optimistic planner astray. In most floor plan maps, hallways define the most likely routes between
faraway start and goal locations; thus, subgoals that lead down hallways are frequently of lowest
expected cost. Most outliers in Fig. 4 occur when the two planners travel in different directions at a
branching point in the environment. Relatedly, we highlight in Fig. 4B one case in which following
the hallway does not lead to the goal. After traveling much of the hallway, the subgoal planning
agent recovers and turns back to seek more probable route to the goal. It reaches the goal 22% faster
than the the optimistic agent, which goes on to explore the upper-left portion of the map.

4 Real-world Experiments

Finally, we integrated our Learned Subgoal Planner with a physical platform so as to observe its
performance in the real world. For our experimental platform, we used a RC car [14] with a Hokuyo
Lidar [15] and a Microstrain IMU [16]. The Robot Operating System was used for interprocess
communication, run on a NUC computer [17]. The Octomap package [18] was used to build a 2D
occupancy grid from the incoming laser scans and the robot pose, provided by an Extended Kalman
Filter that fuses the output from a laser scan matcher and IMU measurements. Rather than collect
a large-volume of real-world data, we instead trained in simulated floor-plan environments with a
realistic distribution of open doorways. Using this data was a natural choice, since the real-world
environments we use for testing are similar in structure to the floor plans.

We focused on locations known to cause problems for optimistic approaches to navigating unknown
spaces, particularly hallways with classrooms or other rooms. As in our simulation results, agents
using an optimistic planner frequently entered rooms, even when the goal was sufficiently far away
that reaching the goal via entering the room was unlikely. In three distinct, real-world environments,
we observed similar behavior: the subgoal planning agent would actively avoid unnecessarily enter-
ing dead-ends — including classrooms, a lecture hall, an apartment, and numerous closets — which
the optimistic planner would enter. Yet if the goal was placed inside these regions, the subgoal plan-
ner would know to enter them, showing that the agent knew more than to simply follow hallway-like
features. We highlight one of our real-world experiments in Fig. 5, in which the agent demonstrates
the aforementioned behavior in an apartment complex. By avoiding the open rooms and dead-ends,
the agent running our planner reached faraway goals more quickly than the optimistic planner, thus
corroborating our simulation results with a real-world platform.
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Figure 5: This figure shows an experimental run on our RC Car, in which our Learned Subgoal Planner (left)

outperforms the optimistic planner (center) in navigating to an unseen goal. In (A), we observe the subgoal

planner choose to pass the room and continue down the hallway. By contrast, the optimistic planner enters the

room (C). On the far right, our Learned Subgoal Planner knows to enter the room when the goal is placed in a
position where the lowest expected cost path is to go inside.

5 Related Work

Work on solving navigation and exploration tasks in uncertain environments using POMDPs dates to
the mid-1990’s [3, 19, 20]. Some recent work has instead focused on using a dynamic action set [21]
or boundaries between free and unknown space [22, 23] for navigation/exploration of unknown en-
vironments, though none incorporate learning. Karaman and Frazzoli [24] navigate unknown ran-
dom forest environments, yet make strong assumptions about the environment distribution. If the
distribution over states is not known, learning is required to estimate the expected cost [7]. Most lit-
erature that uses learning to explore unknown environments focuses on short-time-horizon planning.
Richter et al. [4] learn to solve an approximate POMDP for navigation of unknown environments,
yet restrict their planning horizon to only a few time-steps. The deep reinforcement learning (Deep
RL) community has been making rapid progress towards model-free navigation of unknown envi-
ronments [5, 25, 6, 26, 27], yet most such research focuses on small environments or, as in Kahn
et al. [8], use time-horizons insufficient for making reasoned decisions in environments of our size,
which can require recall of information over thousands of steps. The MERLIN agent [11] uses a
differentiable neural computer to tackle maze navigation and other goal-oriented tasks, which en-
ables storage and recall of information over much longer time-horizons than is typically realizable
by standard “end-to-end” Deep RL systems. However, their approach requires orders of magnitude
more data than is used for our approach (billions of samples versus hundreds-of-thousands) and on
environments considerably smaller than ours, owing to the difficulties associated with model-free
reinforcement learning with delayed rewards [10, 12]. Like other Deep RL agents, they also lack
guarantees their agent will ultimately succeed at the assigned task.

6 Conclusion and Future Work

In this work, we present Learned Subgoal Planning as an approach to use subgoals, each corre-
sponding to a boundary between free and unknown space, and an accompanying factorization of the
Bellman Equation for evaluating the expected cost of navigating through unknown space to reach an
unseen goal in partially-revealed environments. With this planning framework, we can incorporate
prior information into our decision making process in a way that deterministically reaches the goal
and is computationally tractable. We show that our Learned Subgoal Planner is capable of mak-
ing informed decisions in both simulated environments and on real-world hardware. One potential
avenue to improve our work is augmenting the learning pipeline to use more than a single sensor
observation, which could allow the system to update the properties of faraway subgoals as the robot
explores. Our representation is also not without limitations. We make an independence assumption
between our actions so that our model does not capture the impact of information gathering actions.
Second, our neural network model returns only the maximum likelihood value for each learned sub-
goal property: our model may have trouble when higher-order moments of the distribution matter
a great deal. Despite these limitations, our planner demonstrates reductions of over 20% in the ex-
pected cost-to-go in simulated floor plan environments. Furthermore, we demonstrate promising
results on a real-world platform, showing that our Learned Subgoal Planning approach is a practical
method for improving autonomous navigation of structured unknown environments.
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