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A Value function estimation

A.1 Proof of Lemma 4.1

To see the identity

P
�

(�� �
+

+W)(h� bh) = �(I � �⌦ �)>VEC(h� ˆh), (13)

note that a single element of the vector (�� �
+

+W )(h� bh) can be expressed as

(��E(�
+
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>
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�

>
)
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where we have used the Kronecker product identity VEC(�X�>) = (�⌦ �)VEC(X). Thus we have that
����(I � �⌦ �)>(h� ˆh)
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Next we lower-bound
���(I � �⌦ �)>(h� ˆh)

���. Let L = H1/2
�H�1/2 and let H = I � H�1/2 bHH�1/2. We have the

following:
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where the second-last inequality follows from the fact that tr(AB) � �
min

(A) tr(B) for p.s.d matrices A and B (Zhang
and Zhang, 2006). Furthermore, using the fact that kLk2  1� �
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Hence we get that ���(I � �⌦ �)>(h� ˆh)
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A.2 Proof of Lemma 4.2

Proof. Let P
 

=  ( 

>
 )

�1

 be the orthogonal projector onto  . The true parameters g = VEC(G) and the estimate
ĝ = VEC( bG) satisfy the following:
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Subtracting the above equations, we have
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3This can be seen by multiplying the equation H � �>H�+ �
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(M)I by H�1/2 on both sides.
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���(�
+

�W)(h� ˆh)
���

p
�
min

( 

>
 )

+

��� >
(�

+

� �
+

)

ˆh
���

�
min

( 

>
 )

. (19)

Using similar arguments as for �
min

(�

>
�) and the fact that actions are randomly sampled, it can be shown that

�
min

( 

>
 ) = O(⌧).

Let ⌃G,⇡ = A⌃⇡A>
+ B⌃aB>. Assuming that we are close to steady state x ⇠ N (0,⌃⇡) each time we take a random

action a ⇠ N (0,⌃a), the next state is distributed as x
+

⇠ N (0,⌃G,⇡+W ). Therefore each element of (�
+
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where we have used the fact that | tr(M
1

M
2

)|  kM
1
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2

) for real-valued square matrices M
1

and M
2

� 0 (see e.g.
(Zhang and Zhang, 2006)). Thus, the first term of (19) is bounded as
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To bound the second term, we can again use Lemma 4.8 of Tu and Recht (2017), where the only changes are that we
bound maxt k tk as opposed to maxt k�tk, and that we have a different distribution of next-state vectors x

+

. Thus, with
probability at least 1� �, the second term scales as
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B Analysis of the MFLQ algorithm

B.1 Proof of Lemma 5.1

Proof. Let Gj
=

1

j

Pj
i=1

Gi and bGj
=

1

j

Pj
i=1

bGi be the averages of true and estimated state-action value matrices of
policies K

1

, . . . ,Kj , respectively. Let Hj and bHj be the corresponding value matrices. The greedy policy with respect to
bGj is given by:
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where XK =
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Let |XK | be the matrix obtained from XK by taking the absolute value of each entry. We have the following:
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Here, (24) and (26) follow from the error bound,4 and (27) follows from tr(GjXKj ) = x>Hjx. To see (25), note that
Ki+1

is optimal for bGi and we have:

tr(

bGjXKj+1) =

j � 1

j
tr(

bGj�1XKj+1) +

1

j
tr(

bGjXKj+1)

 j � 1

j
tr(

bGj�1XKj ) +

1

j
tr(

bGjXKj )

= tr(

bGjXKj ) .

Since tr(

bGj�1XKj )  tr(

bGj�1XKj+1) it follows that tr( bGjXKj+1)  tr(

bGjXKj ).

Now note that we can rewrite tr(GjXKj+1) as a function of Hj as follows:

tr(GjXKj+1) = x> ⇥I �K>
j+1

⇤
Gj


I

�Kj+1

�
x

= x> ⇥I �K>
j+1

⇤✓ A>

B>

�
Hj

⇥
A B

⇤
+


M 0

0 N

�◆
I

�Kj+1

�
x

= x>
✓
(A�BKj+1

)

>Hj(A�BKj+1

)

◆
x+ tr

✓
M 0

0 N

�
XKj+1

◆
.

Letting �j = A�BKj , we have that
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where "
2
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)x� "
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If the estimation error "
1

is small enough so that "
2

> 0 for any unit-norm x and all policies, then Hj � �>j+1

Hj�j+1

and
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is stable by a Lyapunov theorem. Since K
1
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1

bounded, all policies remain stable.
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As we will see, we need a smaller estimation error in phase j:
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Here, C
1

is an upper bound on kH
1
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1
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To show a uniform bound on value functions, we first note that
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Thus C
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, and by repeating the same argument,

Ci  (1 + S�1

)
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1

 3C
1
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C Regret bound

In this section, we prove Lemma 5.2 by bounding �T , �T , and ↵T .

C.1 Bounding �T

Because we use FTL as our expert algorithm and value functions are quadratic, we can use the following regret bound for
the FTL algorithm (Theorem 3.1 in (Cesa-Bianchi and Lugosi, 2006)).
Theorem C.1 (FTL Regret Bound). Assume that the loss function ft(·) is convex, is Lipschitz with constant F

1

, and is
twice differentiable everywhere with Hessian H � F

2

I . Then the regret of the Follow The Leader algorithm is bounded by

BT  F 2

1

2F
2

(1 + log T ) .

Because we execute S policies, each for ⌧ = T/S rounds (where ⌧ = T 2/3+⇠ and ⌧ = T 3/4 for MFLQV1 and MFLQV2,
respectively),

�T =

SX

i=1

⌧Ex⇠µ⇡ (Qi(x,⇡i(x))�Qi(x,⇡(x)))

= ⌧
SX

i=1

✓
Ex⇠µ⇡ (

bQi(x,⇡i(x))� bQi(x,⇡(x)))

+Ex⇠µ⇡ (Qi(x,⇡i(x))� bQi(x,⇡i(x)))

+Ex⇠µ⇡ (
bQi(x,⇡(x))�Qi(x,⇡(x)))

◆

 C 0pST log T + ⌧
SX

i=1

Ex⇠µ⇡ (
bQi(x,⇡i(x))� bQi(x,⇡(x))) ,

where the last inequality holds by Lemma 4.2. Consider the remaining term:

ET = ⌧
SX

i=1

Ex⇠µ⇡ (
bQi(x,⇡i(x))� bQi(x,⇡(x))) .
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We bound this term using the FTL regret bound. We show that the conditions of Theorem C.1 hold for the loss function
fi(K) = Ex⇠µ⇡ (

bQi(x,Kx)). Let ⌃⇡ be the covariance matrix of the steady-state distribution µ⇡(x). We have that

fi(K) = tr

✓
⌃⇡

� bGi,11 �K> bGi,21 � bGi,12K +K> bGi,22K
�◆

rKfi(K) = 2⌃⇡

�
K> bGi,22 � bGi,12

�

= 2MAT
�
(

bGi,22 ⌦ ⌃⇡)VEC(K)

�
� 2⌃⇡

bGi,12

r2

VEC(K)

fi(K) = 2

bGi,22 ⌦ ⌃⇡ .

Boundedness and Lipschitzness of the loss function fi(Ki) follow from the boundedness of policies Ki and value matrix
estimates bGi. By Lemma 5.1, we have that kKik  CK . To bound k bGik, note that

Gi =

✓
A>

B>

◆
Hi

�
A B

�
+

✓
M 0

0 N

◆

kGik  CH(kAk+ kBk)2 + kMk+ kNk (Lemma 5.1)
��� bGi

���  kGik+ "
1

p
n+ d (Lemma 4.2).

The Hessian lower bound is r2

VEC(K)

fi(K) � F
2

I , where F
2

is given by two times the product of the minimum eigenvalues
of ⌃⇡ and bGi,22. For any stable policy ⇡(x) = Kx, the covariance matrix of the stationary distribution satisfies ⌃⇡ � W ,
and we project the estimates bGi onto the constraint bGi ⌫ (

M 0

0 N ). Therefore the Hessian of the loss is lower-bounded by
2�

min

(W )I . By Theorem C.1, ET  ⌧ logS = C 00⌧ log T for an appropriate constant C 00.

C.2 Bounding �T

In this section, we bound the average cost of following a stable policy, �T =

PT
t=1

(�⇡ � c(xt,⇡(xt))). Recall that the
instantaneous and average costs of following a policy ⇡(x) = �Kx can be written as

c(xt,⇡(xt)) = x>
t (M +K>NK)xt (31)

�⇡ = tr(⌃⇡(M +K>NK)) , (32)

where ⌃⇡ is the steady-state covariance of xt. Let ⌃t be the covariance of xt, let Dt = ⌃
1/2
t (M +K>NK)⌃

1/2
t , and let

�t = tr(Dt). To bound �T , we start by rewriting the cost terms as follows:

�⇡ � c(xt,⇡(xt)) = �⇡ � �t + �t � c(x⇡
t ,⇡(x

⇡
t )) (33)

= tr((⌃⇡ � ⌃t)(M +K>NK)) +

�
tr(Dt)� u>

t Dtut

�
(34)

where ut ⇠ N (0, In) is a standard normal vector.

To bound tr((⌃⇡ � ⌃t)(M + K>NK)), note that ⌃⇡ = �⌃⇡�
>
+ W and ⌃t = �⌃t�1

�

>
+ W . Subtracting the two

equations and recursing,

⌃⇡ � ⌃t = �(⌃⇡ � ⌃t�1

)�

>
= �

t
(⌃⇡ � ⌃

0

)(�

t
)

>. (35)

Thus,

TX

t=0

tr((M +K>NK)(⌃⇡ � ⌃t)) =

TX

t=0

tr

�
(M +K>NK)�

t
(⌃⇡ � ⌃

0

)(�

t
)

>� (36)

 tr(⌃⇡ � ⌃
0

) tr

✓ 1X

t=0

(�

t
)

>
(M +K>NK)�

t

◆
(37)

= tr(⌃⇡ � ⌃
0

) tr(H⇡) . (38)
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Let U be the concatenation of u
1

, . . . , uT , and let D be a block-diagonal matrix constructed from D
1

, . . . , DT . To bound
the second term, note that by the Hanson-Wright inequality

P

 �����

TX

t=1

u>
t Dtut � trDt

����� > s

!
= P

���U>DU � trD
�� > s

�

 2 exp

✓
� cmin

✓
s2

kDk2F
,

s

kDk

◆◆
. (39)

Thus with probability at least 1� � we have
�����

TX

t=1

u>
t Dtut � tr(Dt)

�����  kDkF
p
ln(2/�)/c+ kDk ln(2/�)/c



vuut
TX

t=1

kDtk2F
p
ln(2/�)/c+max

t
kDtk ln(2/�)/c (40)

where c is a universal constant. Given that for all t,

kDtk  tr(Dt)

= tr((M +K>NK)(⌃⇡ + �

t
(⌃

0

� ⌃⇡)(�
T
)

t
))

 �⇡ ,

with probability at least 1� �,

TX

t=1

c(x⇡
t ,⇡(x

⇡
t ))� �t  �⇡

⇣p
T ln(2/�)/c+ ln(2/�)/c

⌘
. (41)

Thus, we can bound �T as

�T  tr(H⇡) tr(⌃⇡) + �⇡
⇣p

T ln(2/�)/c+ ln(2/�)/c
⌘

. (42)

C.3 Bounding ↵T

To bound ↵T =

PT
t=1

(c(xt, at) � �⇡t), in addition to bounding the cost of following a policy, we need to account for
having S policy switches, as well as the cost of random actions. Let Ia be the set of time indices of all random actions
a ⇠ N (0,⌃a). Using the Hanson-Wright inequality, with probability at least 1� �,

X

t2Ia

|a>t Nat � tr(⌃aN)|  k⌃aNkF
p

|Ia| ln(2/�)/c1 + k⌃aNk ln(2/�)/c
1

. (43)

Let Di,t = ⌃
1/2
t (M +K>

i NKi)⌃
1/2
t , and let �i,t = tr(Di,t). Let Ii be the set of time indices corresponding to following

policy ⇡i in phase i. The corresponding cost can be decomposed similarly to �T :

SX

i=1

X

t2Ii

c(xt,⇡i(xt))� �⇡i =

SX

i=1

X

t2Ii

tr((⌃t � ⌃⇡i)(M +K>
i NKi) +

�
u>
t Di,tut � tr(Di,t)

�
. (44)

Let D
max

� maxi,t kDi,tk. Similarly to the previous section, with probability at least 1� � we have
�����

SX

i=1

X

t2Ii

u>
t Di,tut � tr(Di,t)

�����  D
max

p
Tn ln(2/�)/c

2

+D
max

ln(2/�)/c
2

. (45)

At the beginning of each phase i, the state covariance is ⌃⇡i�1 (and we define ⌃⇡0 = W ). After following ⇡i for Tv steps,

SX

i=1

X

t2Ii

tr((⌃t � ⌃⇡i)(M +K>
i NKi)) =

SX

i=1

Tv�1X

k=0

tr((⌃⇡i�1 � ⌃⇡i)(�i
k
)

>
(M +K>

i NKi)�i
k
)
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SX

i=1

tr(Hi) tr(⌃⇡i�1)

 SnCH max

i
tr(⌃⇡i)

Following each random action, the state covariance is ⌃G,i = A⌃⇡iA
>
+ B⌃aB>

+ W . After taking a random action
and following ⇡i for Ts steps, we have

TsX

k=0

tr((⌃G,i � ⌃⇡i)(�i
k
)

>
(M +K>

i NKi)�i
k
)  tr(⌃G,i) tr(Hi)  nCH(tr(B⌃aB

>
) + kAk2 tr(⌃⇡i)) .

Putting everything together, we have

↵t  k⌃aNkF
p
|Ia| ln(2/�)/c1 + k⌃aNk ln(2/�)/c

1

+D
max

p
Tn ln(2/�)/c

2

+D
max

ln(2/�)/c
2

+ SnCH max

i
tr(⌃⇡i)

+ |Ia|nCH

�
tr(B⌃aB

>
) + kAk2 max

i
tr(⌃⇡i)

�

where in V1 S = T 1/3�⇠ and |Ia| = O(T 2/3+⇠
), while in V2 S = T 1/4 and |Ia| = T 3/4+⇠. We bound maxi tr(⌃⇡i) and

kDi,tk in C.3.1.

C.3.1 State covariance bound

We bound maxi tr(⌃⇡i) using the following equation for the average cost of a policy:

tr(⌃⇡i(M +K>
i NKi)) = tr(HiW )

tr(⌃⇡i)  kHik tr(W )/�
min

(M)

max

i
tr(⌃⇡i)  CH tr(W )/�

min

(M) .

To bound kDi,tk, we note that

kDi,tk  tr(Di,t) = tr

�
⌃t(M +K>

i NKi)
�

 tr(⌃t)(kMk+ C2

K kNk) ,

and bound the state covariance tr(⌃t). After starting at distribution N (0,⌃
0

) and following a policy ⇡i for t steps, the
state covariance is
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The initial covariance ⌃
0

is close to ⌃⇡i�1 after a policy switch, and close to A⌃⇡iA
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+ W after a random
action. Therefore we can bound the state covariance in each phase as
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