A Value function estimation

A. 1 Proof of Lemma 4.1

To see the identity

$$
\begin{equation*}
P_{\Phi}\left(\Phi-\bar{\Phi}_{+}+\mathbf{W}\right)(h-\widehat{h})=\Phi(I-\Gamma \otimes \Gamma)^{\top} \operatorname{VEC}(h-\hat{h}), \tag{13}
\end{equation*}
$$

note that a single element of the vector $\left(\Phi-\bar{\Phi}_{+}+W\right)(h-\widehat{h})$ can be expressed as

$$
\begin{equation*}
\left(\phi-\mathbf{E}\left(\phi_{+}\right)+\operatorname{vec}(W)\right)^{\top}(h-\hat{h})=\operatorname{vec}\left(x x^{\top}-\Gamma x x^{\top} \Gamma^{\top}\right)^{\top}(h-\hat{h})=\operatorname{vec}\left(x x^{\top}\right)^{\top}(I-\Gamma \otimes \Gamma)^{\top}(h-\hat{h}), \tag{14}
\end{equation*}
$$

where we have used the $\operatorname{Kronecker}$ product identity $\operatorname{vEC}\left(\Gamma X \Gamma^{\top}\right)=(\Gamma \otimes \Gamma) \operatorname{vEC}(X)$. Thus we have that

$$
\begin{equation*}
\left\|\Phi(I-\Gamma \otimes \Gamma)^{\top}(h-\hat{h})\right\| \leq\left\|P_{\Phi}\left(\bar{\Phi}_{+}-\Phi_{+}\right) \hat{h}\right\| . \tag{15}
\end{equation*}
$$

Next we lower-bound $\left\|(I-\Gamma \otimes \Gamma)^{\top}(h-\hat{h})\right\|$. Let $L=H^{1 / 2} \Gamma H^{-1 / 2}$ and let $\bar{H}=I-H^{-1 / 2} \widehat{H} H^{-1 / 2}$. We have the following:

$$
\begin{aligned}
\left\|(I-\Gamma \otimes \Gamma)^{\top} \operatorname{VEC}(H-\widehat{H})\right\| & =\left\|H-\widehat{H}-\Gamma^{\top}(H-\widehat{H}) \Gamma\right\|_{F} \\
& =\left\|H^{1 / 2}\left(\bar{H}-L^{\top} \bar{H} L\right) H^{1 / 2}\right\|_{F} \\
& =\sqrt{\operatorname{tr}\left(H\left(\bar{H}-L^{\top} \bar{H} L\right) H\left(\bar{H}-L^{\top} \bar{H} L\right)\right)} \\
& \geq \lambda_{\min }(H)\left\|\bar{H}-L^{\top} \bar{H} L\right\|_{F} \\
& \geq \lambda_{\min }(M)\left\|\bar{H}-L^{\top} \bar{H} L\right\|_{F}
\end{aligned}
$$

where the second-last inequality follows from the fact that $\operatorname{tr}(A B) \geq \lambda_{\min }(A) \operatorname{tr}(B)$ for p.s.d matrices A and B (Zhang and Zhang, 2006). Furthermore, using the fact that $\|L\|^{2} \leq 1-\lambda_{\min }(M)\|H\|^{-1},{ }^{3}$

$$
\begin{aligned}
\left\|\bar{H}-L^{\top} \bar{H} L\right\|_{F} & =\left\|(I-L \otimes L)^{\top} \operatorname{VEC}(\bar{H})\right\| \\
& \geq\left(1-\|L\|^{2}\right)\|\bar{H}\|_{F} \\
& \geq \frac{\lambda_{\min }(M)}{\|H\|}\left\|I-H^{-1 / 2} \widehat{H} H^{-1 / 2}\right\|_{F} \\
& =\frac{\lambda_{\min }(M)}{\|H\|} \sqrt{\operatorname{tr}\left(H^{-1}(H-\widehat{H}) H^{-1}(H-\widehat{H})\right)} \\
& \geq \lambda_{\min }(M)\|H\|^{-2}\|H-\widehat{H}\|_{F}
\end{aligned}
$$

Hence we get that

$$
\begin{equation*}
\left\|(I-\Gamma \otimes \Gamma)^{\top}(h-\hat{h})\right\| \geq \lambda_{\min }(M)^{2}\|H\|^{-2}\|H-\widehat{H}\|_{F} \tag{16}
\end{equation*}
$$

A. 2 Proof of Lemma 4.2

Proof. Let $P_{\Psi}=\Psi\left(\Psi^{\top} \Psi\right)^{-1} \Psi$ be the orthogonal projector onto Ψ. The true parameters $g=\operatorname{VEC}(G)$ and the estimate $\hat{g}=\operatorname{VEC}(\widehat{G})$ satisfy the following:

$$
\begin{align*}
& \Psi \hat{g}=P_{\Psi}\left(\mathbf{c}+\left(\Phi_{+}-\mathbf{W}\right) \hat{h}\right) \tag{17}\\
& \Psi g=\mathbf{c}+\left(\bar{\Phi}_{+}-\mathbf{W}\right) h \tag{18}
\end{align*}
$$

Subtracting the above equations, we have

$$
\|\Psi g-\Psi \hat{g}\|=\left\|P_{\Psi}\left(\left(\bar{\Phi}_{+}-\mathbf{W}\right)(h-\hat{h})+\left(\bar{\Phi}_{+}-\Phi_{+}\right) \hat{h}\right)\right\|
$$

[^0]$$
\leq\left\|\left(\bar{\Phi}_{+}-\mathbf{W}\right)(h-\hat{h})\right\|+\left\|P_{\Psi}\left(\bar{\Phi}_{+}-\Phi_{+}\right) \hat{h}\right\|
$$

Using $\|\Psi v\| \geq \sqrt{\lambda_{\min }\left(\Psi^{\top} \Psi\right)}\|v\|$ on the l.h.s., and $\left\|P_{\Psi} v\right\| \leq\left\|\Psi^{\top} v\right\| / \sqrt{\lambda_{\min }\left(\Psi^{\top} \Psi\right)}$ on the r.h.s.,

$$
\begin{equation*}
\|G-\widehat{G}\|_{F}=\|g-\hat{g}\| \leq \frac{\left\|\left(\bar{\Phi}_{+}-\mathbf{W}\right)(h-\hat{h})\right\|}{\sqrt{\lambda_{\min }\left(\Psi^{\top} \Psi\right)}}+\frac{\left\|\Psi^{\top}\left(\bar{\Phi}_{+}-\Phi_{+}\right) \hat{h}\right\|}{\lambda_{\min }\left(\Psi^{\top} \Psi\right)} \tag{19}
\end{equation*}
$$

Using similar arguments as for $\lambda_{\min }\left(\Phi^{\top} \Phi\right)$ and the fact that actions are randomly sampled, it can be shown that $\lambda_{\text {min }}\left(\Psi^{\top} \Psi\right)=O(\tau)$.
Let $\Sigma_{G, \pi}=A \Sigma_{\pi} A^{\top}+B \Sigma_{a} B^{\top}$. Assuming that we are close to steady state $x \sim \mathcal{N}\left(0, \Sigma_{\pi}\right)$ each time we take a random action $a \sim \mathcal{N}\left(0, \Sigma_{a}\right)$, the next state is distributed as $x_{+} \sim \mathcal{N}\left(0, \Sigma_{G, \pi}+W\right)$. Therefore each element of $\left(\bar{\Phi}_{+}-\mathbf{W}\right)(h-\hat{h})$ is bounded as:

$$
\begin{aligned}
\left|\left(\mathbf{E}\left(\phi_{+}\right)-\operatorname{vEc}(W)\right)^{\top}(h-\hat{h})\right| & =\left|\operatorname{tr}\left(\Sigma_{G, \pi}(H-\widehat{H})\right)\right| \\
& \leq \operatorname{tr}\left(\Sigma_{G, \pi}\right)\|H-\widehat{H}\|
\end{aligned}
$$

where we have used the fact that $\left|\operatorname{tr}\left(M_{1} M_{2}\right)\right| \leq\left\|M_{1}\right\| \operatorname{tr}\left(M_{2}\right)$ for real-valued square matrices M_{1} and $M_{2} \succ 0$ (see e.g. (Zhang and Zhang, 2006)). Thus, the first term of (19) is bounded as

$$
\begin{equation*}
\left\|\left(\bar{\Phi}_{+}-\mathbf{W}\right)(h-\hat{h})\right\| \leq \operatorname{tr}\left(\Sigma_{G, \pi}\right)\|H-\widehat{H}\| \sqrt{\tau} \tag{20}
\end{equation*}
$$

To bound the second term, we can again use Lemma 4.8 of Tu and Recht (2017), where the only changes are that we bound $\max _{t}\left\|\psi_{t}\right\|$ as opposed to $\max _{t}\left\|\phi_{t}\right\|$, and that we have a different distribution of next-state vectors x_{+}. Thus, with probability at least $1-\delta$, the second term scales as

$$
\begin{equation*}
\left\|\Psi^{\top}\left(\bar{\Phi}_{+}-\Phi_{+}\right) \hat{h}\right\|=O\left(\sqrt{\tau}\|W \hat{H}\|_{F}\left(\operatorname{tr}\left(\Sigma_{\pi}\right)+\operatorname{tr}\left(\Sigma_{a}\right)\right)\left\|\Sigma_{G, \pi}\right\|_{F} \operatorname{poly} \log \left(n^{2}, 1 / \delta, \tau\right)\right) \tag{21}
\end{equation*}
$$

B Analysis of the MFLQ algorithm

B. 1 Proof of Lemma 5.1

Proof. Let $G^{j}=\frac{1}{j} \sum_{i=1}^{j} G_{i}$ and $\widehat{G}^{j}=\frac{1}{j} \sum_{i=1}^{j} \widehat{G}_{i}$ be the averages of true and estimated state-action value matrices of policies K_{1}, \ldots, K_{j}, respectively. Let H^{j} and \widehat{H}^{j} be the corresponding value matrices. The greedy policy with respect to \widehat{G}^{j} is given by:

$$
\begin{align*}
& \qquad \begin{aligned}
& K_{j+1}=\arg \min _{K} \operatorname{tr}\left(\begin{array}{ll}
\left.x^{\top}\left[\begin{array}{ll}
I & -K^{\top}
\end{array}\right] \widehat{G}^{j}\left[\begin{array}{c}
I \\
-K
\end{array}\right] x\right) \\
& =\arg \min _{K} \operatorname{tr}\left(\widehat{G}^{j} X_{K}\right),
\end{array}\right. \\
& \text { where } X_{K}=\left[\begin{array}{c}
I \\
-K
\end{array}\right] x x^{\top}\left[\begin{array}{ll}
I & -K^{\top}
\end{array}\right] .
\end{aligned} \text {. }
\end{align*}
$$

Let $\left|X_{K}\right|$ be the matrix obtained from X_{K} by taking the absolute value of each entry. We have the following:

$$
\begin{align*}
\operatorname{tr}\left(G_{j} X_{K_{j+1}}\right) & \leq \operatorname{tr}\left(\widehat{G}_{j} X_{K_{j+1}}\right)+\varepsilon_{1} \operatorname{tr}\left(\mathbf{1 1}^{\top}\left|X_{K_{j+1}}\right|\right) \tag{24}\\
& \leq \operatorname{tr}\left(\widehat{G}_{j} X_{K_{j}}\right)+\varepsilon_{1} \mathbf{1}^{\top}\left|X_{K_{j+1}}\right| \mathbf{1} \tag{25}\\
& \leq \operatorname{tr}\left(G_{j} X_{K_{j}}\right)+\varepsilon_{1} \mathbf{1}^{\top}\left(\left|X_{K_{j}}\right|+\left|X_{K_{j+1}}\right|\right) \mathbf{1} \tag{26}\\
& =x^{\top} H_{j} x+\varepsilon_{1} \mathbf{1}^{\top}\left(\left|X_{K_{j}}\right|+\left|X_{K_{j+1}}\right|\right) \mathbf{1} \tag{27}
\end{align*}
$$

Here, (24) and (26) follow from the error bound, ${ }^{4}$ and (27) follows from $\operatorname{tr}\left(G_{j} X_{K_{j}}\right)=x^{\top} H_{j} x$. To see (25), note that K_{i+1} is optimal for \widehat{G}^{i} and we have:

$$
\begin{aligned}
\operatorname{tr}\left(\widehat{G}^{j} X_{K_{j+1}}\right) & =\frac{j-1}{j} \operatorname{tr}\left(\widehat{G}^{j-1} X_{K_{j+1}}\right)+\frac{1}{j} \operatorname{tr}\left(\widehat{G}_{j} X_{K_{j+1}}\right) \\
& \leq \frac{j-1}{j} \operatorname{tr}\left(\widehat{G}^{j-1} X_{K_{j}}\right)+\frac{1}{j} \operatorname{tr}\left(\widehat{G}_{j} X_{K_{j}}\right) \\
& =\operatorname{tr}\left(\widehat{G}^{j} X_{K_{j}}\right) .
\end{aligned}
$$

Since $\operatorname{tr}\left(\widehat{G}^{j-1} X_{K_{j}}\right) \leq \operatorname{tr}\left(\widehat{G}^{j-1} X_{K_{j+1}}\right)$ it follows that $\operatorname{tr}\left(\widehat{G}_{j} X_{K_{j+1}}\right) \leq \operatorname{tr}\left(\widehat{G}_{j} X_{K_{j}}\right)$.
Now note that we can rewrite $\operatorname{tr}\left(G_{j} X_{K_{j+1}}\right)$ as a function of H_{j} as follows:

$$
\begin{aligned}
\operatorname{tr}\left(G_{j} X_{K_{j+1}}\right) & =x^{\top}\left[\begin{array}{ll}
I & -K_{j+1}^{\top}
\end{array}\right] G_{j}\left[\begin{array}{c}
I \\
-K_{j+1}
\end{array}\right] x \\
& =x^{\top}\left[\begin{array}{ll}
I & -K_{j+1}^{\top}
\end{array}\right]\left(\left[\begin{array}{c}
A^{\top} \\
B^{\top}
\end{array}\right] H_{j}\left[\begin{array}{ll}
A & B
\end{array}\right]+\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right]\right)\left[\begin{array}{c}
I \\
-K_{j+1}
\end{array}\right] x \\
& =x^{\top}\left(\left(A-B K_{j+1}\right)^{\top} H_{j}\left(A-B K_{j+1}\right)\right) x+\operatorname{tr}\left(\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right] X_{K_{j+1}}\right) .
\end{aligned}
$$

Letting $\Gamma_{j}=A-B K_{j}$, we have that

$$
\begin{equation*}
x^{\top}\left(\Gamma_{j+1}^{\top} H_{j} \Gamma_{j+1}\right) x+\varepsilon_{2} \leq x^{\top} H_{j} x \tag{28}
\end{equation*}
$$

$$
\text { where } \varepsilon_{2}=x^{\top}\left(M+K_{j+1}^{\top} N K_{j+1}\right) x-\varepsilon_{1} \mathbf{1}^{\top}\left(\left|X_{K_{j}}\right|+\left|X_{K_{j+1}}\right|\right) \mathbf{1}
$$

If the estimation error ε_{1} is small enough so that $\varepsilon_{2}>0$ for any unit-norm x and all policies, then $H_{j} \succ \Gamma_{j+1}^{\top} H_{j} \Gamma_{j+1}$ and K_{j+1} is stable by a Lyapunov theorem. Since K_{1} is stable and H_{1} bounded, all policies remain stable.

In order to have $\varepsilon_{2}>0$, it suffices to have

$$
\varepsilon_{1}<\left(\left(\sqrt{n}+\left\|K_{j}\right\| \sqrt{d}\right)^{2}+\left(\sqrt{n}+\left\|K_{j+1}\right\| \sqrt{d}\right)^{2}\right)^{-1}
$$

This follows since $M \succ I$, and since for any unit norm vector $x \in \mathbb{S}^{n}, \mathbf{1}^{\top} x x^{\top} \mathbf{1} \leq n$, with equality achieved by $x=\frac{1}{\sqrt{n}} \mathbf{1}$. Similarly, $\mathbf{1}^{\top} K x x^{\top} K^{\top} \mathbf{1} \leq\|K\|^{2} d$, and $\mathbf{1}^{\top}\left(\left|X_{K_{j}}\right|\right) \mathbf{1} \leq\left(\sqrt{n}+\left\|K_{j}\right\| \sqrt{d}\right)^{2}$.
As we will see, we need a smaller estimation error in phase j :

$$
\begin{equation*}
\varepsilon_{1}<\frac{1}{6 C_{1} S}\left(\left(\sqrt{n}+\left\|K_{j}\right\| \sqrt{d}\right)^{2}+\left(\sqrt{n}+\left\|K_{j+1}\right\| \sqrt{d}\right)^{2}\right)^{-1} \tag{29}
\end{equation*}
$$

Here, C_{1} is an upper bound on $\left\|H_{1}\right\|$; note that $H_{1} \succ M \succ I$, so $C_{1}>1$. The above condition guarantees that

$$
\varepsilon_{1} \mathbf{1}^{\top}\left(\left|X_{K_{j}}\right|+\left|X_{K_{j+1}}\right|\right) \mathbf{1} \leq \frac{1}{6 C_{1} S}
$$

We have that $G_{1,22} \succ N \succ I$ and $G_{1,21}=B^{\top} H_{1} A$. Given that the estimation error (10) is small, we have $\left\|K_{2}\right\| \leq$ $2\left(\left\|B^{\top} H_{1} A\right\|+1\right) \leq C_{K}$. Then (10) implies (29) for $j=1$, and the above argument shows that K_{2} is stable.

Next, we show a bound on $\left\|\Gamma_{i}^{k}\right\|$. Let $L_{i+1}=H_{i}^{1 / 2} \Gamma_{i+1} H_{i}^{-1 / 2}$. By (28), $M \succ I$, and the error bound,

$$
\begin{aligned}
H_{1} & \succ \Gamma_{2}^{\top} H_{1} \Gamma_{2}+\left(M+K_{2}^{\top} N K_{2}\right)-\left(6 C_{1} S\right)^{-1} I \\
I & \succ L_{2}^{\top} L_{2}+H_{1}^{-1 / 2}\left(M+K_{2}^{\top} N K_{2}\right) H_{1}^{-1 / 2}-\left(6 C_{1} S\right)^{-1} H_{1}^{-1} \\
& \succ L_{2}^{\top} L_{2}+H_{1}^{-1}-\left(6 C_{1}\right)^{-1} I
\end{aligned}
$$

[^1]$$
\succ L_{2}^{\top} L_{2}+\left(3 C_{1}\right)^{-1} I-\left(6 C_{1}\right)^{-1} I .
$$

Thus, $\left\|L_{2}\right\| \leq \sqrt{1-\left(6 C_{1}\right)^{-1}}$ and we have that

$$
\left\|\Gamma_{2}^{k}\right\|=\left\|\left(H_{1}^{-1 / 2} L_{2} H_{1}^{1 / 2}\right)^{k}\right\| \leq \sqrt{C_{1}}\left(1-\left(6 C_{1}\right)^{-1}\right)^{k / 2}
$$

To show a uniform bound on value functions, we first note that

$$
H_{2}-H_{1} \prec \Gamma_{2}^{\top}\left(H_{2}-H_{1}\right) \Gamma_{2}+\left(6 C_{1} S\right)^{-1} I .
$$

Using the stability of Γ_{2},

$$
\begin{aligned}
& H_{2}-H_{1} \prec\left(6 C_{1} S\right)^{-1} \sum_{k=0}^{\infty}\left(\Gamma_{2}^{\top}\right)^{k} \Gamma_{2}^{k} \\
& \\
& \quad\left\|H_{2}\right\| \leq\left\|H_{1}\right\|+\frac{C_{1}}{6 C_{1} S\left(1-\left\|L_{2}\right\|^{2}\right)} \leq\left(1+S^{-1}\right) C_{1} .
\end{aligned}
$$

Thus $C_{2} \leq\left(1+S^{-1}\right) C_{1}$, and by repeating the same argument,

$$
\begin{equation*}
C_{i} \leq\left(1+S^{-1}\right)^{i} C_{1} \leq 3 C_{1} . \tag{30}
\end{equation*}
$$

C Regret bound

In this section, we prove Lemma 5.2 by bounding β_{T}, γ_{T}, and α_{T}.

C. 1 Bounding β_{T}

Because we use FTL as our expert algorithm and value functions are quadratic, we can use the following regret bound for the FTL algorithm (Theorem 3.1 in (Cesa-Bianchi and Lugosi, 2006)).
Theorem C. 1 (FTL Regret Bound). Assume that the loss function $f_{t}(\cdot)$ is convex, is Lipschitz with constant F_{1}, and is twice differentiable everywhere with Hessian $H \succ F_{2} I$. Then the regret of the Follow The Leader algorithm is bounded by

$$
B_{T} \leq \frac{F_{1}^{2}}{2 F_{2}}(1+\log T) .
$$

Because we execute S policies, each for $\tau=T / S$ rounds (where $\tau=T^{2 / 3+\xi}$ and $\tau=T^{3 / 4}$ for MFLQv1 and MFLQv2, respectively),

$$
\begin{aligned}
& \beta_{T}=\sum_{i=1}^{S} \tau \mathbf{E}_{x \sim \mu_{\pi}}\left(Q_{i}\left(x, \pi_{i}(x)\right)-Q_{i}(x, \pi(x))\right) \\
&= \tau \sum_{i=1}^{S}\left(\mathbf{E}_{x \sim \mu_{\pi}}\left(\widehat{Q}_{i}\left(x, \pi_{i}(x)\right)-\widehat{Q}_{i}(x, \pi(x))\right)\right. \\
&+\mathbf{E}_{x \sim \mu_{\pi}}\left(Q_{i}\left(x, \pi_{i}(x)\right)-\widehat{Q}_{i}\left(x, \pi_{i}(x)\right)\right) \\
&\left.+\mathbf{E}_{x \sim \mu_{\pi}}\left(\widehat{Q}_{i}(x, \pi(x))-Q_{i}(x, \pi(x))\right)\right) \\
& \leq C^{\prime} \sqrt{S T} \log T+\tau \sum_{i=1}^{S} \mathbf{E}_{x \sim \mu_{\pi}}\left(\widehat{Q}_{i}\left(x, \pi_{i}(x)\right)-\widehat{Q}_{i}(x, \pi(x))\right),
\end{aligned}
$$

where the last inequality holds by Lemma 4.2. Consider the remaining term:

$$
E_{T}=\tau \sum_{i=1}^{S} \mathbf{E}_{x \sim \mu_{\pi}}\left(\widehat{Q}_{i}\left(x, \pi_{i}(x)\right)-\widehat{Q}_{i}(x, \pi(x))\right) .
$$

We bound this term using the FTL regret bound. We show that the conditions of Theorem C. 1 hold for the loss function $f_{i}(K)=\mathbf{E}_{x \sim \mu_{\pi}}\left(\widehat{Q}_{i}(x, K x)\right)$. Let Σ_{π} be the covariance matrix of the steady-state distribution $\mu_{\pi}(x)$. We have that

$$
\begin{aligned}
f_{i}(K) & =\operatorname{tr}\left(\Sigma_{\pi}\left(\widehat{G}_{i, 11}-K^{\top} \widehat{G}_{i, 21}-\widehat{G}_{i, 12} K+K^{\top} \widehat{G}_{i, 22} K\right)\right) \\
\nabla_{K} f_{i}(K) & =2 \Sigma_{\pi}\left(K^{\top} \widehat{G}_{i, 22}-\widehat{G}_{i, 12}\right) \\
& =2 \operatorname{MAT}\left(\left(\widehat{G}_{i, 22} \otimes \Sigma_{\pi}\right) \operatorname{vEC}(K)\right)-2 \Sigma_{\pi} \widehat{G}_{i, 12} \\
\nabla_{\mathrm{VEC}(K)}^{2} f_{i}(K) & =2 \widehat{G}_{i, 22} \otimes \Sigma_{\pi} .
\end{aligned}
$$

Boundedness and Lipschitzness of the loss function $f_{i}\left(K_{i}\right)$ follow from the boundedness of policies K_{i} and value matrix estimates \widehat{G}_{i}. By Lemma 5.1, we have that $\left\|K_{i}\right\| \leq C_{K}$. To bound $\left\|\widehat{G}_{i}\right\|$, note that

$$
\begin{align*}
G_{i} & =\binom{A^{\top}}{B^{\top}} H_{i}\left(\begin{array}{ll}
A & B
\end{array}\right)+\left(\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right) \\
\left\|G_{i}\right\| & \leq C_{H}(\|A\|+\|B\|)^{2}+\|M\|+\|N\| \tag{Lemma5.1}\\
\left\|\widehat{G}_{i}\right\| & \leq\left\|G_{i}\right\|+\varepsilon_{1} \sqrt{n+d} \tag{Lemma4.2}
\end{align*}
$$

The Hessian lower bound is $\nabla_{\mathrm{VEC}(K)}^{2} f_{i}(K) \succ F_{2} I$, where F_{2} is given by two times the product of the minimum eigenvalues of Σ_{π} and $\widehat{G}_{i, 22}$. For any stable policy $\pi(x)=K x$, the covariance matrix of the stationary distribution satisfies $\Sigma_{\pi} \succ W$, and we project the estimates \widehat{G}_{i} onto the constraint $\widehat{G}_{i} \succeq\left(\begin{array}{cc}M & 0 \\ 0 & N\end{array}\right)$. Therefore the Hessian of the loss is lower-bounded by $2 \lambda_{\min }(W) I$. By Theorem C.1, $E_{T} \leq \tau \log S=C^{\prime \prime} \tau \log T$ for an appropriate constant $C^{\prime \prime}$.

C. 2 Bounding γ_{T}

In this section, we bound the average cost of following a stable policy, $\gamma_{T}=\sum_{t=1}^{T}\left(\lambda_{\pi}-c\left(x_{t}, \pi\left(x_{t}\right)\right)\right)$. Recall that the instantaneous and average costs of following a policy $\pi(x)=-K x$ can be written as

$$
\begin{align*}
c\left(x_{t}, \pi\left(x_{t}\right)\right) & =x_{t}^{\top}\left(M+K^{\top} N K\right) x_{t} \tag{31}\\
\lambda_{\pi} & =\operatorname{tr}\left(\Sigma_{\pi}\left(M+K^{\top} N K\right)\right), \tag{32}
\end{align*}
$$

where Σ_{π} is the steady-state covariance of x_{t}. Let Σ_{t} be the covariance of x_{t}, let $D_{t}=\Sigma_{t}^{1 / 2}\left(M+K^{\top} N K\right) \Sigma_{t}^{1 / 2}$, and let $\lambda_{t}=\operatorname{tr}\left(D_{t}\right)$. To bound γ_{T}, we start by rewriting the cost terms as follows:

$$
\begin{align*}
\lambda_{\pi}-c\left(x_{t}, \pi\left(x_{t}\right)\right) & =\lambda_{\pi}-\lambda_{t}+\lambda_{t}-c\left(x_{t}^{\pi}, \pi\left(x_{t}^{\pi}\right)\right) \tag{33}\\
& =\operatorname{tr}\left(\left(\Sigma_{\pi}-\Sigma_{t}\right)\left(M+K^{\top} N K\right)\right)+\left(\operatorname{tr}\left(D_{t}\right)-u_{t}^{\top} D_{t} u_{t}\right) \tag{34}
\end{align*}
$$

where $u_{t} \sim \mathcal{N}\left(0, I_{n}\right)$ is a standard normal vector.
To bound $\operatorname{tr}\left(\left(\Sigma_{\pi}-\Sigma_{t}\right)\left(M+K^{\top} N K\right)\right)$, note that $\Sigma_{\pi}=\Gamma \Sigma_{\pi} \Gamma^{\top}+W$ and $\Sigma_{t}=\Gamma \Sigma_{t-1} \Gamma^{\top}+W$. Subtracting the two equations and recursing,

$$
\begin{equation*}
\Sigma_{\pi}-\Sigma_{t}=\Gamma\left(\Sigma_{\pi}-\Sigma_{t-1}\right) \Gamma^{\top}=\Gamma^{t}\left(\Sigma_{\pi}-\Sigma_{0}\right)\left(\Gamma^{t}\right)^{\top} \tag{35}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\sum_{t=0}^{T} \operatorname{tr}\left(\left(M+K^{\top} N K\right)\left(\Sigma_{\pi}-\Sigma_{t}\right)\right) & =\sum_{t=0}^{T} \operatorname{tr}\left(\left(M+K^{\top} N K\right) \Gamma^{t}\left(\Sigma_{\pi}-\Sigma_{0}\right)\left(\Gamma^{t}\right)^{\top}\right) \tag{36}\\
& \leq \operatorname{tr}\left(\Sigma_{\pi}-\Sigma_{0}\right) \operatorname{tr}\left(\sum_{t=0}^{\infty}\left(\Gamma^{t}\right)^{\top}\left(M+K^{\top} N K\right) \Gamma^{t}\right) \tag{37}\\
& =\operatorname{tr}\left(\Sigma_{\pi}-\Sigma_{0}\right) \operatorname{tr}\left(H_{\pi}\right) \tag{38}
\end{align*}
$$

Let U be the concatenation of u_{1}, \ldots, u_{T}, and let D be a block-diagonal matrix constructed from D_{1}, \ldots, D_{T}. To bound the second term, note that by the Hanson-Wright inequality

$$
\begin{align*}
\mathbf{P}\left(\left|\sum_{t=1}^{T} u_{t}^{\top} D_{t} u_{t}-\operatorname{tr} D_{t}\right|>s\right) & =\mathbf{P}\left(\left|U^{\top} D U-\operatorname{tr} D\right|>s\right) \\
& \leq 2 \exp \left(-c \min \left(\frac{s^{2}}{\|D\|_{F}^{2}}, \frac{s}{\|D\|}\right)\right) \tag{39}
\end{align*}
$$

Thus with probability at least $1-\delta$ we have

$$
\begin{align*}
\left|\sum_{t=1}^{T} u_{t}^{\top} D_{t} u_{t}-\operatorname{tr}\left(D_{t}\right)\right| & \leq\|D\|_{F} \sqrt{\ln (2 / \delta) / c}+\|D\| \ln (2 / \delta) / c \\
& \leq \sqrt{\sum_{t=1}^{T}\left\|D_{t}\right\|_{F}^{2}} \sqrt{\ln (2 / \delta) / c}+\max _{t}\left\|D_{t}\right\| \ln (2 / \delta) / c \tag{40}
\end{align*}
$$

where c is a universal constant. Given that for all t,

$$
\begin{aligned}
\left\|D_{t}\right\| & \leq \operatorname{tr}\left(D_{t}\right) \\
& =\operatorname{tr}\left(\left(M+K^{\top} N K\right)\left(\Sigma_{\pi}+\Gamma^{t}\left(\Sigma_{0}-\Sigma_{\pi}\right)\left(\Gamma^{T}\right)^{t}\right)\right) \\
& \leq \lambda_{\pi}
\end{aligned}
$$

with probability at least $1-\delta$,

$$
\begin{equation*}
\sum_{t=1}^{T} c\left(x_{t}^{\pi}, \pi\left(x_{t}^{\pi}\right)\right)-\lambda_{t} \leq \lambda_{\pi}(\sqrt{T \ln (2 / \delta) / c}+\ln (2 / \delta) / c) \tag{41}
\end{equation*}
$$

Thus, we can bound γ_{T} as

$$
\begin{equation*}
\gamma_{T} \leq \operatorname{tr}\left(H_{\pi}\right) \operatorname{tr}\left(\Sigma_{\pi}\right)+\lambda_{\pi}(\sqrt{T \ln (2 / \delta) / c}+\ln (2 / \delta) / c) \tag{42}
\end{equation*}
$$

C. 3 Bounding α_{T}

To bound $\alpha_{T}=\sum_{t=1}^{T}\left(c\left(x_{t}, a_{t}\right)-\lambda_{\pi_{t}}\right)$, in addition to bounding the cost of following a policy, we need to account for having S policy switches, as well as the cost of random actions. Let I_{a} be the set of time indices of all random actions $a \sim \mathcal{N}\left(0, \Sigma_{a}\right)$. Using the Hanson-Wright inequality, with probability at least $1-\delta$,

$$
\begin{equation*}
\sum_{t \in I_{a}}\left|a_{t}^{\top} N a_{t}-\operatorname{tr}\left(\Sigma_{a} N\right)\right| \leq\left\|\Sigma_{a} N\right\|_{F} \sqrt{\left|I_{a}\right| \ln (2 / \delta) / c_{1}}+\left\|\Sigma_{a} N\right\| \ln (2 / \delta) / c_{1} \tag{43}
\end{equation*}
$$

Let $D_{i, t}=\Sigma_{t}^{1 / 2}\left(M+K_{i}^{\top} N K_{i}\right) \Sigma_{t}^{1 / 2}$, and let $\lambda_{i, t}=\operatorname{tr}\left(D_{i, t}\right)$. Let I_{i} be the set of time indices corresponding to following policy π_{i} in phase i. The corresponding cost can be decomposed similarly to γ_{T} :

$$
\begin{equation*}
\sum_{i=1}^{S} \sum_{t \in I_{i}} c\left(x_{t}, \pi_{i}\left(x_{t}\right)\right)-\lambda_{\pi_{i}}=\sum_{i=1}^{S} \sum_{t \in I_{i}} \operatorname{tr}\left(\left(\Sigma_{t}-\Sigma_{\pi_{i}}\right)\left(M+K_{i}^{\top} N K_{i}\right)+\left(u_{t}^{\top} D_{i, t} u_{t}-\operatorname{tr}\left(D_{i, t}\right)\right)\right. \tag{44}
\end{equation*}
$$

Let $D_{\max } \geq \max _{i, t}\left\|D_{i, t}\right\|$. Similarly to the previous section, with probability at least $1-\delta$ we have

$$
\begin{equation*}
\left|\sum_{i=1}^{S} \sum_{t \in I_{i}} u_{t}^{\top} D_{i, t} u_{t}-\operatorname{tr}\left(D_{i, t}\right)\right| \leq D_{\max } \sqrt{\operatorname{Tn} \ln (2 / \delta) / c_{2}}+D_{\max } \ln (2 / \delta) / c_{2} \tag{45}
\end{equation*}
$$

At the beginning of each phase i, the state covariance is $\Sigma_{\pi_{i-1}}$ (and we define $\Sigma_{\pi_{0}}=W$). After following π_{i} for T_{v} steps,

$$
\sum_{i=1}^{S} \sum_{t \in I_{i}} \operatorname{tr}\left(\left(\Sigma_{t}-\Sigma_{\pi_{i}}\right)\left(M+K_{i}^{\top} N K_{i}\right)\right)=\sum_{i=1}^{S} \sum_{k=0}^{T_{v}-1} \operatorname{tr}\left(\left(\Sigma_{\pi_{i-1}}-\Sigma_{\pi_{i}}\right)\left(\Gamma_{i}{ }^{k}\right)^{\top}\left(M+K_{i}^{\top} N K_{i}\right) \Gamma_{i}^{k}\right)
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{S} \operatorname{tr}\left(H_{i}\right) \operatorname{tr}\left(\Sigma_{\pi_{i-1}}\right) \\
& \leq S n C_{H} \max _{i} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right)
\end{aligned}
$$

Following each random action, the state covariance is $\Sigma_{G, i}=A \Sigma_{\pi_{i}} A^{\top}+B \Sigma_{a} B^{\top}+W$. After taking a random action and following π_{i} for T_{s} steps, we have

$$
\sum_{k=0}^{T_{s}} \operatorname{tr}\left(\left(\Sigma_{G, i}-\Sigma_{\pi_{i}}\right)\left(\Gamma_{i}{ }^{k}\right)^{\top}\left(M+K_{i}^{\top} N K_{i}\right) \Gamma_{i}{ }^{k}\right) \leq \operatorname{tr}\left(\Sigma_{G, i}\right) \operatorname{tr}\left(H_{i}\right) \leq n C_{H}\left(\operatorname{tr}\left(B \Sigma_{a} B^{\top}\right)+\|A\|^{2} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right)\right) .
$$

Putting everything together, we have

$$
\begin{aligned}
\alpha_{t} & \leq\left\|\Sigma_{a} N\right\|_{F} \sqrt{\left|I_{a}\right| \ln (2 / \delta) / c_{1}}+\left\|\Sigma_{a} N\right\| \ln (2 / \delta) / c_{1} \\
& +D_{\max } \sqrt{\operatorname{Tn} \ln (2 / \delta) / c_{2}}+D_{\max } \ln (2 / \delta) / c_{2} \\
& +S n C_{H} \max _{i} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right) \\
& +\left|I_{a}\right| n C_{H}\left(\operatorname{tr}\left(B \Sigma_{a} B^{\top}\right)+\|A\|^{2} \max _{i} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right)\right)
\end{aligned}
$$

where in v1 $S=T^{1 / 3-\xi}$ and $\left|I_{a}\right|=O\left(T^{2 / 3+\xi}\right)$, while in v2 $S=T^{1 / 4}$ and $\left|I_{a}\right|=T^{3 / 4+\xi}$. We bound max $\max _{i}\left(\Sigma_{\pi_{i}}\right)$ and $\left\|D_{i, t}\right\|$ in C.3.1.

C.3.1 State covariance bound

We bound $\max _{i} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right)$ using the following equation for the average cost of a policy:

$$
\begin{aligned}
\operatorname{tr}\left(\Sigma_{\pi_{i}}\left(M+K_{i}^{\top} N K_{i}\right)\right) & =\operatorname{tr}\left(H_{i} W\right) \\
\operatorname{tr}\left(\Sigma_{\pi_{i}}\right) & \leq\left\|H_{i}\right\| \operatorname{tr}(W) / \lambda_{\min }(M) \\
\max _{i} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right) & \leq C_{H} \operatorname{tr}(W) / \lambda_{\min }(M) .
\end{aligned}
$$

To bound $\left\|D_{i, t}\right\|$, we note that

$$
\begin{aligned}
\left\|D_{i, t}\right\| \leq \operatorname{tr}\left(D_{i, t}\right) & =\operatorname{tr}\left(\Sigma_{t}\left(M+K_{i}^{\top} N K_{i}\right)\right) \\
& \leq \operatorname{tr}\left(\Sigma_{t}\right)\left(\|M\|+C_{K}^{2}\|N\|\right),
\end{aligned}
$$

and bound the state covariance $\operatorname{tr}\left(\Sigma_{t}\right)$. After starting at distribution $\mathcal{N}\left(0, \Sigma_{0}\right)$ and following a policy π_{i} for t steps, the state covariance is

$$
\begin{aligned}
\Sigma_{t} & =\Gamma_{i} \Sigma_{t-1} \Gamma_{i}^{\top}+W \\
& =\Gamma_{i}^{t} \Sigma_{0} \Gamma_{i}^{t^{\top}}+\sum_{k=0}^{t-1} \Gamma_{i}^{k} W \Gamma_{i}^{k^{\top}} \\
& \prec \Sigma_{0}+\Sigma_{\pi_{i}} .
\end{aligned}
$$

The initial covariance Σ_{0} is close to $\Sigma_{\pi_{i-1}}$ after a policy switch, and close to $A \Sigma_{\pi_{i}} A^{\top}+B \Sigma_{a} B^{\top}+W$ after a random action. Therefore we can bound the state covariance in each phase as

$$
\begin{aligned}
\Sigma_{t} & \preceq \Sigma_{\pi_{i}}+\Sigma_{\pi_{i-1}}+A \Sigma_{\pi_{i}} A^{\top}+B \Sigma_{a} B^{\top} \\
\operatorname{tr}\left(\Sigma_{t}\right) & \leq\left(2+\|A\|^{2}\right) \max _{i} \operatorname{tr}\left(\Sigma_{\pi_{i}}\right)+\operatorname{tr}\left(B \Sigma_{a} B^{\top}\right) \\
& \leq\left(2+\|A\|^{2}\right) C_{H} \operatorname{tr}(W) / \lambda_{\min }(M)+\operatorname{tr}\left(B \Sigma_{a} B^{\top}\right) .
\end{aligned}
$$

[^0]: ${ }^{3}$ This can be seen by multiplying the equation $H \succ \Gamma^{\top} H \Gamma+\lambda_{\min }(M) I$ by $H^{-1 / 2}$ on both sides.

[^1]: ${ }^{4}$ Note that the elementwise max norm of a matrix satisfies $\|G\|_{\max } \leq\|G\|_{F}$.

