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APPENDIX
A Theoretical Analysis

A.1 Lemma 4

Lemma 4. Suppose that f satisfies assumption 3; then, z∗ := (x∗,y∗) is a locally optimal saddle point on K∗γ if
and only if the gradient is zero, i.e.

∇f(x∗,y∗) = 0, (33)

and the second derivative at (x∗,y∗) is positive definite in x and negative definite in y, i.e., there exist µx, µy > 0
such that

∇2
xf(x∗,y∗) � µxI, ∇2

yf(x∗,y∗) ≺ −µyI. (34)

Proof. From definition 1 follows that a locally optimal saddle point (x∗,y∗) ∈ K∗γ is a point for which the following
two conditions hold:

f(x∗,y) ≤ f(x,y) and f(x,y∗) ≥ f(x,y) ∀(x,y) ∈ K∗γ (35)

Hence, x is a local minimizer of f and y is a local maximizer. We therefore, without loss of generality, prove the
statement of the lemma only for the minimizer x, namely that

(i) ∇xf(x∗,y) = 0 ∀y s.t. ‖y − y∗‖ ≤ γ

(ii) ∇2
xf(x∗,y) � µxI ∀y s.t. ‖y − y∗‖ ≤ γ, µx > 0.

The proof for the maximizer y directly follows from this.

(i) If we assume that ∇xf(x∗,y) 6= 0, then there exists a feasible direction d ∈ Rk such that ∇>x f(x∗,y)d < 0,
and we can find a step size α > 0 for x(α) = x∗ + αd s.t. α‖d‖ ≤ γ with ‖d‖ = 1. Using the smoothness
assumptions (Assumption 2), we arrive at the following inequality∣∣∣∣f(x(α),y)− f(x∗,y)−∇>x f(x∗,y)(x(α)− x∗)

− 1

2
(x(α)− x∗)>∇2

xf(x∗,y)(x(α)− x∗)

∣∣∣∣ ≤ ρx
6
‖(x(α)− x∗)‖ (36)

Hence, it holds that:

f(x(α),y) ≤ f(x∗,y) + α

(
∇>x f(x∗,y)d +

ρx
6

+
1

2
αLx

)
(37)

By choosing the gradient descent direction d = −β∇>x f(x∗,y) (with β > 0 s.t. ‖d‖ = 1), we can find a step
size 0 < α < 2β

Lx
‖∇xf(x∗,y)‖2 − ρx

3Lx
such that f(x(α),y) < f(x∗,y),

which contradicts that f(x∗,y) is a local minimizer. Hence, ∇xf(x∗,y) = 0 is a necessary condition for a
local minimizer.

(ii) To prove the second statement, we again make use of inequality (36) coming from the smoothness assumption
and the update x(α) = x∗ + αd s.t. α‖d‖ ≤ γ with ‖d‖ = 1. From (i) we know that ∇xf(x∗,y) = 0 and,
therefore, we obtain: ∣∣∣∣f(x(α),y)− f(x∗,y)− 1

2
d>∇2

xf(x∗,y)d

∣∣∣∣ ≤ ρx
6
α (38)

⇒f(x(α),y) ≤ f(x∗,y) +
1

2
d>∇2

xf(x∗,y)d +
ρx
6
α (39)
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If ∇2
xf(x∗,y) is not positive semi-definite, then there exists at least one eigenvector v with negative curvature,

i.e. v>∇2
xf(x∗,y)v = −ε < 0. This implies that for α > 1

3ερx following the curvature vector v decreases
the function value, i.e., f(x(α),y) < f(x∗,y). This contradicts that f(x∗,y) is a local minimizer which
proves the sufficient condition

∇2
xf(x∗,y) � µxI , with µx > 0. (40)

A.2 Lemma 6

The following Lemma 11 proves that the gradient-based mapping for the saddle point problem is a diffeomorphism
which will be needed in the proof for Lemma 6.

Lemma 11. Suppose that assumption 2 holds; then the gradient mapping for the saddle point problem

g(x,y) = (x,y) + η(−∇xf(x,y),∇yf(x,y)) (41)

with step size η < min
(

1
Lx
, 1
Ly
, 1√

2Lz

)
is a diffeomorphism.

Proof. The following proof is very much based on the proof of proposition 4.5 from [22].
A necessary condition for a diffeomorphism is bijectivity. Hence, we need to check that g is (i) injective, and (ii)
surjective for η < min

(
1
Lx
, 1
Ly
, 1√

2Lz

)
.

(i) Consider two points z := (x,y), z̃ := (x̃, ỹ) ∈ Kγ for which

g(z) = g(z̃) (42)

holds. Then, we have that

z− z̃ = η

[
−∇xf(z)
∇yf(z)

]
− η

[
−∇xf(z̃)
∇yf(z̃)

]
(43)

= η

[
−∇xf(z) +∇xf(z̃)
∇yf(z)−∇yf(z̃)

]
. (44)

Note that

‖∇xf(z)−∇xf(z̃)‖ ≤ ‖∇f(z)−∇f(z̃)‖ ≤ Lz‖z− z̃‖ (45)
‖∇yf(z)−∇yf(z̃)‖ ≤ ‖∇f(z)−∇f(z̃)‖ ≤ Lz‖z− z̃‖, (46)

from which follows that

‖z− z̃‖ ≤ η
√
L2
z‖z− z̃‖2 + L2

z‖z− z̃‖2 (47)

=
√

2ηLz‖z− z̃‖. (48)

For 0 < η < 1√
2Lz

this means z = z̃, and therefore g is injective.

(ii) We will show that g is surjective by constructing an explicit inverse function for both optimization problems
individually. As suggested by [22], we make use of the proximal point algorithm on the function −f for the
parameters x,y, individually.
For the parameter x the proximal point mapping of −f centered at x̃ is given by

x(x̃) = arg min
x

1

2
‖x− x̃‖2 − ηf(x,y)︸ ︷︷ ︸

h(x)

(49)
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Moreover, note that h(x) is strongly convex in x if η < 1
Lx

:

(∇xh(x)−∇xh(x̂))>(x− x̂) = (x− η∇xf(x,y)− x̂ + η∇xf(x̂,y))>(x− x̂) (50)

= ‖x− x̂‖2 − η(∇xf(x,y)−∇xf(x̂,y))>(x− x̂) ≥ (1− ηLx)‖x− x̂‖2 (51)

Hence, the function h(x) has a unique minimizer, given by

0
!
= ∇xh(x) = x− x̃− η∇xf(x,y) (52)
⇒ x̃ = x− η∇xf(x,y) (53)

which means that there is a unique mapping from x to x̃ under the gradient mapping g if η < 1
Lx

.
The same line of reasoning can be applied to the parameter y with the negative proximal point mapping of
−f centered at ỹ, i.e.

y(ỹ) = arg max
y
−1

2
‖y − ỹ‖2 − ηf(x,y)︸ ︷︷ ︸

h(y)

(54)

Similarly as before, we can observe that h(y) is strictly concave for η < 1
Ly

and that the unique minimizer
of h(y) yields the y update step of g. This let’s us conclude that the mapping g is surjective for (x,y) if
η < min

(
1
Lx
, 1
Ly

)
Observing that for η < 1

Lz
, g−1 is continuously differentiable concludes the proof that g is a diffeomorphism.

Lemma 6 (Random Initialization). Suppose that assumption 2 holds. Consider gradient iterates of Eq. (3) with
step size η < min

(
1
Lx
, 1
Ly
, 1√

2Lz

)
starting from a random initial point. If the iterates converge to a stationary

point, then the stationary point is almost surely stable.

Proof. From lemma 11 follows that the gradient update from Eq. (3) for the saddle point problem is a diffeomor-
phism. The remaining part of the proof follows directly from theorem 4.1 from [22].

A.3 Lemma 7

Lemma 7. The point z := (x,y) is a stationary point of the iterates in Eq. (22) if and only if z is a locally
optimal saddle point.

Proof. The point z∗ is a stationary point of the iterates if and only if vz∗ + η(−∇xf(z∗),∇yf(z∗)) = 0. Let’s
consider w.l.o.g. only the stationary point condition with respect to x, i.e.

vz∗ = η∇xf(z∗) (55)

We prove that the above equation holds only if ∇f(z∗) = vz∗ = 0. This can be proven by a simple contradiction;
suppose that ∇f(z∗) 6= 0, then multiplying both sides of the above equation by ∇f(z∗) yields

λx∗/(2ρx)︸ ︷︷ ︸
<0

sgn(v>x∗∇xf(z∗))v>x∗∇xf(z∗)︸ ︷︷ ︸
>0

= η‖∇xf(z∗)‖2 (56)

Since the left-hand side is negative and the right-hand side is positive, the above equation leads to a contradiction.
Therefore, ∇f(z∗) = 0 and vz∗ = 0. This means that λx∗ ≥ 0 and λy∗ ≤ 0 and therefore according to lemma 4,
z∗ is a locally optimal saddle point.
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A.4 Lemma 8

Lemma 8. Suppose that assumptions 2 and 3 hold. Let z∗ := (x∗,y∗) be a locally optimal saddle point, i.e.

∇f(z) = 0, ∇2
xf(z∗) � µxI, ∇2

yf(z∗) � −µyI, (µx, µy > 0) (57)

Then iterates of Eq. (22) are stable in K∗γ as long as

γ ≤ min{µx/(
√

2ρx), µy/(
√

2ρy)} (58)

Proof. The proof is based on a simple idea: in a K∗γ neighborhood of a locally optimal saddle point, f can not
have extreme curvatures, i.e., vz = 0. Hence, within K∗γ the update of Eq. (22) reduces to the gradient update in
Eq. (3), which is stable according to [27, 26].
To prove our claim that negative curvature doesn’t exist in K∗γ , we make use of the smoothness assumption.
Suppose that z := (x,y) ∈ K∗γ , then the smoothness assumption 2 implies

∇2
xf(z) = ∇2

xf(z∗)−
(
∇2

xf(z∗)−∇2
xf(z)

)
(59)

� ∇2
xf(z∗)− ρx‖z− z∗‖I (60)

� ∇2
xf(z∗)−

√
2ρxγI (61)

� (µx −
√

2ρxγ)I (62)

� 0 [γ < µx/(
√

2ρx)] (63)

Similarly, one can show that

∇2
yf(z) ≺ 0 [γ < µy/(

√
2ρy)]. (64)

Therefore, the extreme curvature direction is zero according to the definition in Eq. (20).

A.5 Lemma 9

Lemma 9. Suppose that z∗ := (x∗,y∗) is an undesired stationary point of the gradient dynamics, namely

∇f(z∗) = 0, ‖vz∗‖ > 0. (65)

Consider the iterates of Eq. (22) starting from z0 = (x0,y0) in a γ-neighbourhood of z∗. After one step the
iterates escape the γ-neighbourhood of z∗, i.e.

‖z1 − z∗‖ ≥ γ (66)

for a sufficiently small γ = O(‖vz∗‖).

Proof. Preliminaries: Consider compact notations

∇0 := (−∇xf(z0),∇yf(z0)),v0 := vz0
,v∗ = vz∗ (67)

λ(−) := λmin

(
∇2

xf(z∗)
)
< 0, λ(+) := λmax

(
∇2

yf(z∗)
)
> 0 (68)

λ
(−)
0 := λmin

(
∇2

xf(z0)
)
< 0, λ

(+)
0 := λmax

(
∇2

yf(z0)
)
> 0 (69)

Characterizing extreme curvature: The choice of v0 ensures that

∇>0 v0 > 0 (70)

holds. Since z0 lies in a γ-neighbourhood of z∗, we can use the smoothness of f to relate the negative curvature
at z0 to negative curvature in z∗:

∇2
xf(z0) � ∇2

xf(z∗) + ρx‖z0 − z∗‖I (71)

� ∇2
xf(z∗) +

√
2ρxγI. (72)
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Therefore

λ
(−)
0 ≤ λ(−) +

√
2ρxγ (73)

Similarly, one can show that

λ
(+)
0 ≥ λ(+) −

√
2ρyγ (74)

Combining these two bounds yields

‖v0‖ =

√
(λ

(−)
0 /(2ρx))2 + (λ

(+)
0 /(2ρy))2 (75)

≥ 1

4
|λ(−)0 /ρx|+

1

4
|λ(+)

0 /ρy| (76)

≥ 1

4

(
|λ(−)/ρx|+ λ(+)/ρy − 2

√
2γ
)

(77)

To simplify the above bound, we use the compact notation λ := 0.25(|λ(−)/ρx|+ λ(+)/ρy):

‖v0‖ ≥ λ−
√

2

2
γ (78)

Proof of escaping: The squared norm of the update can be computed as

‖z1 − z∗‖2 = ‖z0 − z∗ + η∇0 + v0‖2 (79)

= ‖z0 − z∗‖2 + ‖η∇0 + v0‖2 + 2(z0 − z∗)>(η∇0 + v0) (80)

≥ ‖η∇0 + v0‖
(
‖η∇0 + v0‖ − 2

√
2γ
)

(81)

Now, we plug the results obtained from the smoothness assumption in the above inequality. First, we provide a
lower-bound on the sum of gradients and the extreme curvature:

‖η∇0 + v0‖ =
(
η2‖∇0‖2 + ‖v0‖2 + 2v>0 ∇0

)1/2
(82)

(70)
≥ ‖v0‖ (83)

(78)
≥ λ−

√
2

2
γ (84)

Under the condition ‖η∇0 + v0‖ − 2
√

2γ > 0, we can use the above lower-bound for inequality (81) yielding

‖z1 − z∗‖2 ≥ (λ−
√

2

2
γ)(λ− 5√

2
γ) (85)

Choice of γ: To complete our inductive argument, we need to choose γ such that the derived lower-bound of
Eq. (85) is greater than γ2, i.e.

(λ−
√

2

2
γ)(λ− 5√

2
γ) ≥ γ2 (86)

which holds for

γ ≤ λ(
√

2− 2√
3

) = O (‖vz∗‖) . (87)

Observing that for this choice for the bound of γ it holds that

‖η∇0 + v0‖ − 2
√

2γ ≥ λ− 5√
2
γ (88)

≥ λ− 5√
2
λ(
√

2− 2√
3

) (89)

= λ
5
√

6− 12

3
> 0 (90)

concludes the proof.
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A.6 Guaranteed decrease/increase

The gradient update step of Eq. (3) has the property that an update with respect to x (y) decreases (increases)
the function value. The next lemma proves that Cesp shares the same desirable property in regions where
extreme curvature exists. Note that in regions without extreme curvature, the Cesp method reduces to gradient
based optimization and therefore inherits its theoretical properties.

Lemma 12. In each iteration of Eq. (22), f decreases in x with

f(xt+1,yt) ≤ f(xt,yt)− (η/2)‖∇xf(zt)‖2 + λ3x/(24ρ2x), (91)

and increases in y with

f(xt,yt+1) ≥ f(xt,yt) + (η/2)‖∇yf(zt)‖2 + λ3y/(24ρ2y). (92)

as long as the step size is chosen as

η ≤ min


√

9L2
x + 48ρx`x − 3Lx

8ρx`x
,

√
9L2

y + 48ρy`y − 3Ly

8ρy`y

 (93)

Proof. The Lipschitzness of the Hessian (Assumption 6) implies that for ∆ ∈ Rd

|f(x + ∆,y)− f(x,y)−∆>∇xf(x,y)− 1

2
∆>∇2

xf(x,y)∆| ≤ ρx
6
‖∆‖3 (94)

holds. The update in Eq. (22) for x is given by ∆ = αv − η∇xf(x,y), where α = −λ/(2ρx) (where we assume
w.l.o.g. that v>∇xf(x,y) < 0) and v is the eigenvector associated with the minimum eigenvalue λ of the Hessian
matrix ∇2

xf(xt,yt). In the following we use the shorter notation: ∇f := ∇xf(x,y), and H := ∇2
xf(x,y). We

can construct a lower bound on the left hand side of Eq. (94) as

|f(x + ∆,y)− f(x,y)−∆>∇f − 1

2
∆>H∆| (95)

≥ f(x + ∆,y)− f(x,y)−∆>∇f − 1

2
∆>H∆ (96)

≥ f(x + ∆,y)− f(x,y)− αv>∇f + (η − η2

2
Lx)‖∇f‖2 − 1

2
α2λ+ αηλv>∇f (97)

which leads to the following inequality

f(x + ∆,y)− f(x,y) ≤ αv>∇f − (η − η2

2
Lx)‖∇f‖2 +

1

2
α2λ− αηλv>∇f +

ρx
6
‖∆‖3 (98)

≤ 1

2
α2λ− (η − η2

2
Lx)‖∇f‖2 +

ρx
6
‖∆‖3 (99)

By using the triangular inequality we obtain the following bound on the cubic term

‖∆‖3 ≤ (η‖∇f‖+ α‖v‖)3 (100)

≤ 4η3‖∇f‖3 + 4α3‖v‖3 = 4η3‖∇f‖3 + 4α3. (101)

Replacing this bound into the upper bound of Eq. (98) yields

f(x + ∆,y)− f(x,y) ≤ 1

2
α2λ− (η − η2

2
Lx)‖∇f‖2 +

ρx
6

(
4η3‖∇f‖3 + 4α3

)
(102)

The choice of α = −λ/(2ρx) leads to further simplification of the above bound:

f(x + ∆,y)− f(x,y) ≤ λ3

24ρ2x
− η(1− η

2
Lx −

2

3
ρxη

2`x)‖∇f‖2 (103)
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Now, we choose step size η such that

1− η

2
Lx −

2

3
ρxη

2`x ≥ 1/2 (104)

For η ≤
√

9L2
x+48ρx`x−3Lx

8ρx`x
, the above inequality holds. Therefore, the following decrease in the function value is

guaranteed

f(x + ∆,y)− f(x,y) ≤ λ3/(24ρ2x)− (η/2)‖∇f‖2 (105)

Similarly, one can derive the lower-bound for the function increase in y.

Within a region of extreme curvature, this lemma guarantees a larger decrease (increase) in x (in y) compared to
gradient descent (ascent). However, we are not claiming that these decrements accelerate the global convergence.

A.7 Lemma 10

Lemma 10. The set of locally optimal saddle points as defined in Def. 1 and the set of stable points of the
linear-transformed CESP update method in Eq. (29) are the same.

Proof. As a direct consequence of lemma 7 and the positive definiteness property of the linear transformation
matrix follows that a locally optimal saddle point is a stationary point of the linear-transformed updates.

In the following, we prove stability of locally optimal saddles. Let’s consider a locally optimal saddle point
z∗ := (x∗,y∗) in the sense of Def. 1. From lemma 4 follows that

∇2
xf(x∗,y∗) � µxI, ∇2

yf(x∗,y∗) � −µyI. (106)

for µx, µy > 0. As a direct consequence the extreme curvature direction is zero, i.e. vz = 0. Hence, the Jacobian
of the update in Eq. (29) is given by

I + ηAz∗H(z∗). (107)

where H(z∗) is the partial derivative of (−∇xf(z∗),∇yf(z∗)). The point z∗ is a stable point of the dynamic if
all eigenvalues of its Jacobian lie within the unit disk. This condition can be fulfilled, with a sufficiently small
step size, if and only if all the real parts of the eigenvalues of Az∗H(z∗) are negative.
Hence, to prove stability of the update for a locally optimal saddle point z∗, we have to show that the following
expression is a Hurwitz matrix [17]:

J(z∗) = Az︸︷︷︸
:=A

[
−∇2

xf(z∗) −∇x,yf(z∗)
∇y,xf(z∗) ∇2

yf(z∗)

]
︸ ︷︷ ︸

=H

:= J (108)

Since A is a symmetric, positive definite matrix, we can construct its square root A
1
2 such that A = A

1
2A

1
2 .

The matrix product AH can be re-written as

AH = A
1
2 (A

1
2HA

1
2 )A−

1
2 . (109)

Since we are multiplying the matrix J̃ = A
1
2HA

1
2 from the left with the inverse of the matrix from which we are

multiplying from the right side, we can observe that J has the same eigenvalues as J̃. The symmetric part of
J̃(z∗) is given by

1

2

(
J̃ + J̃>

)
=

1

2
(A

1
2HA

1
2 + A

1
2H>A

1
2 ) = A

1
2 (H + H>)A

1
2 (110)

= A
1
2

[
−∇2

xf(z∗) 0
0 ∇2

yf(z∗)

]
A

1
2 (111)

From the assumption in Eq. (106) follows that the block diagonal matrix (H + H>) is a symmetric, negative
definite matrix, for which it therefore holds that x>(J̃ + J̃>)x ≤ 0 for any x ∈ Rk+d. The remaining part of the
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proof follows the argument from [5] Theorem 3.6.

Let (λ, v) be an eigenpair of J̃. Then, the following two equalities hold:

v∗J̃v = λ (112)

(v∗J̃v)∗ = v∗J̃>v = λ̄ (113)

Therefore, we can re-write the real part of the eigenvalue λ as:

Re(λ) =
λ+ λ̄

2
=

1

2
v∗(J̃ + J̃>)v. (114)

By observing that

v∗(J̃ + J̃>)v = Re(v)>(J̃ + J̃>)Re(v) + Im(v)>(J̃ + J̃>)Im(v) (115)

is a real, negative quantity, we can be sure that the real part of any eigenvalue of J is negative. Therefore it
directly follows that, with a sufficiently small step size η > 0, any locally optimal saddle point z∗ is a stable
stationary point of the linear-transformed update method in Eq. (29).

B Transformed Gradient Updates

Table 1 shows the update matrices for commonly used optimization methods on the saddle point problem.

Table 1: Update matrices of the different optimization schemes.

Formula positive definite?

Gradient Descent At = I Yes.Bt = I

Adagrad [11] At,ii =

(√∑t
τ=1 (∇xi

f(xτ ,yτ ))
2

+ ε

)−1
Yes.

Bt,ii =

(√∑t
τ=1 (∇yi

f(xτ ,yτ ))
2

+ ε

)−1
Saddle-Free Newton [10] At =

∣∣∇2
xf(xt,yt)

∣∣−1
Yes.

Bt =
∣∣∇2

yf(xt,yt)
∣∣−1

C Experiments

C.1 Toy Example

Figure 6 shows the basin of attraction for GD and Cesp on the toy saddle point problem of Eq. (17).

C.2 Generative Adversarial Networks

C.2.1 Single-layer GAN

Using two individual loss functions It is common practice in GAN training to not consider the saddle point
problem as defined in Eq. (32), but rather split the training into two individual optimization problems over
different functions. In particular, one usually considers

min
x

(f1(x,y) = −Ez∼pz logDx(Gy(z))) (116)

max
y

(f2(x,y) = Eθ∼pd logDx(θ) + Ez∼pz log(1−Dx(Gy(z)))) (117)
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(a) (b)

Figure 6: Comparison of the basin of attraction for GD and Cesp to the locally optimal saddle point (green area) and the
undesired critical point (red area).

Table 2: Parameters of the single-layer GAN model.

Discriminator Generator
Input Dimension 784 10
Hidden Layers 1 1
Hidden Units / Layer 100 100
Activation Function Leaky ReLU Leaky ReLU
Output Dimension 1 784
Batch Size 1000
Learning Rate η 0.01
Learning Rate α := 1

2ρx
= 1

2ρy
0.05

Our Cesp optimization method is defined individually for the two parameter sets x and y and can therefore
also be applied on such a setting with two individual objectives. Figure 7 shows the results on the single-layer
GAN problem, trained with two individual losses. In this experiment, Cesp decreases the negative curvature of
∇2

xf1, while the gradient method can not exploit the negative curvature appropriately (the value of the smallest
eigenvalue is oscillating in the negative area).
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Figure 7: Results of the single-layer GAN with individual loss functions on MNIST data. The first two plots show
the minimum eigenvalue of ∇2

xf1(x,y) and the maximum eigenvalue of ∇2
yf2(x,y), respectively. The third plot shows

‖∇f(zt)‖2. The transparent graph shows the original values, whereas the solid graph is smoothed with a Gaussian filter.
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