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1 Derivation of the KL-divergence
Term

The kl-divergence terms composing the elbo can be
written as Lkl(ν) = Luent(νu) +Lucross(νu) +Lwent(νw) +
Lwcross(νw) where each term is given by:

Lucross(νu) =

Q∑
q=1

[
logN (mq; 0,K

q
zz)−

1

2
tr (Kq

zz)
−1Sq

]
(1)

Luent(νu) =
1

2

Q∑
q=1

[M log 2π + log |Sq|+M ] (2)

Lwcross(νw) =
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q=1

[
logN (ωq; 0,K

q
w)− 1

2
tr (Kq

w)−1Ωq

]
(3)

Lwent(νw) =
1

2

Q∑
q=1

[ P log 2π + log |Ωq|+ P ] , (4)

When placing an independent prior and approximate
posterior over W, the terms Lwent and Lwcross get sim-
plified further, reducing the computational cost sig-
nificantly when a large number of tasks is considered.
Here we derive the expressions for Eqs. (2)–(4).

The cross-entropy term for U (Eq. (1)) is given by:

Lucross(νu) = Eq(U|νu)[log p(U)]

=

∫
q(U|νu) log p(U)dU

=

Q∑
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The entropy term for U (Eq. (2)) is given by:

Luent(νu) = −Eq(U|νu)[log q(U|νu)]

= −
∫
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When placing a coupled prior on the mixing weights,
the cross-entropy term for WWW (Eq. (3)) is given by:

Lwcross(νw) = Eq(W|νw)[log p(W)]

=

∫
q(W|νw) log p(W)dW

=

Q∑
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The entropy term for WWW (Eq. (4)) is given by:

Lwent(νw) = −
∫
q(W|νw) log q(W|νw)dW

= −
Q∑
q=1

∫
N (W•q;ωq,Ωq)logN (W•q;ωq,Ωq)dW•q

= −
Q∑
q=1

[
N (ωq;ωq,Ωq)−

1

2
tr (Ωq)

−1Ωq

]

=
1

2

Q∑
q=1

[P log 2π + log |Ωq|+ P ] .

When placing an independent prior and approximate
posterior over W, the terms Lwent and Lwcross get further
simplified in:

Lwent(νw) = −
∫
q(W|νw) log q(W|νw)dW

= −
Q∑
q=1

P∑
p=1

∫
N (ωpq,Ωpq)logN (ωpq,Ωpq)dwpq

=
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[log 2π + log Ωpq + 1] ,

and in:

Lwcross(νw) =

∫
q(W|νw) log p(W)dW

=

Q∑
q=1
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∫
q(wpq|νw) log p(wpq)dwpq

=

Q∑
q=1

P∑
p=1

∫
N (ωpq,Ωpq) logN (0, σ2

pq)dwpq
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Ωpq
2σ2
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]
,

where Ωpq represents the p-th diagonal term of Ωq.

2 Closed form evaluation of the ELL
term

The mcpm model formulation allows to derive a closed
form expression for the moments of the intensity func-
tion. Here we provide details about the derivations
and obtain an expression for the first moment of
exp(Wp•Fn•) which has been used in the closed form
evaluation of Lell.

In order to compute the moments of λ we can exploit
the moment generating function (mgf) of the product

of two normal random variables. Denote by X and
Y two independent and normally distributed random
variables. The variable Z = XY has MGFZ(t) defined
as:

MGFZ(t) =
exp

[
tµXµY +1/2(µ2

Y σ
2
X+µ2

Xσ
2
Y )t2

1−t2σ2
Xσ

2
Y

]
√

1− t2σ2
Xσ

2
Y

. (5)

Now define V =
∑Q
q=1XqYq where Xq |= Yq,∀q,

Xq |= Xq′ ,∀q, q′ and Yq |= Yq′ ,∀q, q′. Given these as-
sumptions, the mgf for V is defined as the product
of Q mgf of the form given in Eq. (5). We have
MGFV (t) =

∏Q
q=1 MGFZq (t). This implies that:

E(λp) = E [exp(Wp•Fn•)] = MGFV (1) (6)

where Xq = ωpq and Yq = fnq.

Exploiting Eq. (6) we can derive a closed form expres-
sion for Lell:

Eq(F),q(W) [log(p(Y|F,W))] =

= −
N∑
n=1

P∑
p=1

E [exp(Wp•Fn• + φp) + ynplog(exp(Wp•Fn• + φp)

+logΓ(ynp + 1)]

=

N∑
n=1

P∑
p=1

E [−exp(Wp•Fn• + φp)ynpWp•Fn• + ynpφp

+logΓ(ynp + 1)]

= −
N∑
n=1

P∑
p=1

E [exp(Wp•Fn• + φp)] +

N∑
n=1

P∑
p=1

[ynpE(Wp•Fn•)+

+ynpφp + logΓ(ynp + 1)]

= −
N∑
n=1

P∑
p=1

exp(φp)MGFV (1)+

N∑
n=1

P∑
p=1

Q∑
q=1

(ynpωpqµq(xn) + ynpφp + logΓ(ynp + 1))

(7)

Given the moments of q(Wp•) and q(Fn•) we can write:

Eq(Fn•)q(Wp•) [exp(Wp•Fn•)]

=

Q∏
q=1

exp
[
ωpqµnq+1/2(µ2

nqΩpq+ω
2
pqΣ

q
nn)

1−ΩpqΣ
q
nn

]
√

1− ΩpqΣ
q
nn

(8)

Defining δX = µX/σX in Eq. (5) we can rewrite
mgfZ(t) as:
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MGFZ(t) =

exp

 tµXµY +1/2(µ2
Y σ

2
X+µ2

Xσ
2
Y )t2

1−t2
µ2
X
σ2
Y

δ2
X


√

1− t2 µ
2
Xσ

2
Y

δ2X

(9)

As δX increases, mgfZ(t) converges to the form:

MGFZ(t) = exp
[
tµXµY + 1/2(µ2

Y σ
2
X + µ2

Xσ
2
Y )t2

]
(10)

which is the mgf of a Gaussian distribution with mean
and variance given by µXµY and µ2

Y σ
2
X + µ2

Xσ
2
Y re-

spectively (Seijas-Macías and Oliveira, 2012). This
implies that, for increasing values of δXq the sum of the
products of Gaussians tends to a Gaussian distribution.

3 Relationship to existing literature

As mentioned in §2, when Ωq → 0, Wp•Fn• converges
to a Gaussian distribution. Depending on the number
of latent gps included in the model (Q) and the mo-
ments of q(Wp•), mcpm will thus converge either to
an icm (or lcm) or to a mlgcp or to an lgcp. When
Q 6= P , we have logλp(x(n)) =

∑Q
q=1 ωpqFn• for each

n and p. We can thus write:

lim
Kw→0

Cov(logλp(x), logλp′(x′))

=

Q∑
q=1

Q∑
q′=1

ωpqωp′q′Cov(F•q,F•q′)

=

Q∑
q=1

ωpqωp′q′︸ ︷︷ ︸
Bq

K̃
q

xx′

where we have exploited the independence assumption
between F•q and F•q′ for q 6= q′.

When Q = P + 1 and WP×(P+1) = [IP 1P ], the
intensity for each task will be determined by the (P+1)-
th common gp and by the p-th task specific gp. We
thus recover the mlgcp formulation.

Finally, when Q = P and WP×P = IP , the intensity
for each task will be determined only by the p-th task
specific gp. We thus recover the lgcp formulation.

We summarise these results in the following lemma:

lemma 1 mcpm generalizes icm, mlgcp and lgcp.
As Cov(wpq, wp′q′)→ 0,∀p, q, p′, q′, for Q 6= P we have
λ̂mcpm → λ̂icm (or a λ̂mcpm → λ̂lcm depending on the
assumed covariance functions for the latent gps) where
the intensity parameters are jointly determined by the

moments of F and W:

lim
Cov(wpq,wp′q′ )→0

∀p,q,p′,q′

Cov(logλp(x), logλp′(x′))

=

Q∑
q=1

γpqγp′q′︸ ︷︷ ︸
Bq

(p,p′)

K̃
q

xx′

where Bq ∈ RP×P is known as coregionalisation matrix.
For Q = P + 1 and WP×(P+1) = [IP 1P ] we have
λ̂mcpm → λ̂mlgcp. Finally, for Q = P and WP×P = IP
we have λ̂mcpm → λ̂lgcp.

When having task descriptors h, we can view the log in-
tensity as a function of the joint space of input features
and task descriptors i.e. log λ(x,h). It is possible to
show that under our independence prior assumption
between weights (W) and latent functions (F), the
prior covariance over the log intensities (evaluated at
inputs x and x′ and tasks p and p′) is given by:

Cov[log λp(x), λp′(x
′)] =

Q∑
q=1

κqw(hp,hp
′
)κqf (x,x′)

where hp denotes the p-th task descriptors. At the
observed data {X,H}, assuming a regular grid, the
mcpm prior covariance over the log intensities is
Cov[logλλλ(X), logλλλ(X)] =

∑Q
q=1 Kq

w ⊗ Kq
f . This is

effectively the lcm prior with Kq
w denoting the core-

gionalization matrix. Importantly, the two methods
differ substantially in terms of inference. While in lcm
a point estimate of Kq

w is generally obtained, mcpm
proceeds by optimizing the hyperparameters for Kq

w

and doing full posterior estimation for both W and F.
In addition, by adopting a process view on W, we in-
crease the model flexibility and accuracy by capturing
additional correlations across tasks while being able
to generalize over unseen task descriptors. Last but
not least, by considering our priors and approximate
posteriors over W and F separately, instead of a single
joint prior over the log intensities, we can exploit state-
of-the art inducing variable approximations (Titsias,
2009) over each W•q and F•q separately, instead of
dealing with a sum of Q Kronecker products for which
there is not an efficient decomposition when Q > 2
(Rakitsch et al., 2013).

4 Continuous mcpm formulation

Following a common approach, in this work we intro-
duce a computational grid on the spatial extend and
consider the cells’ centroids as inputs of mcpm. Here
we discuss the continuous formulation of our model.
The likelihood function for the continuous mcpm model
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can be written as:

p(Y |λ) = exp

[
−

P∑
p=1

∫
τ

λp(x)dx

]
P∏
p=1

Np∏
np

λp(xnp)

where we assume all events to be distinct and we denote
as np the location of the n-th event for the p-th task.
This implies an expected log likelihood term defined
as:

Eq(F)q(W)

− P∑
p

∫
τ

λp(x)dx +

P∑
p=1

Np∑
np

logλp(xnp)


Replacing the expression for mcpm intensity in the
previous equation we get:

Eq(F)q(W)log(p(Y |λ))

= −
P∑
p=1

∫
τ

∫
F

∫
W

exp(Wp•Fnp•)q(W)q(F)dWdFdx+

+

P∑
p=1

Np∑
np

∫
τ

∫
F

∫
W

log
[
exp(Wp•Fnp•)

]
q(W)q(F)dWdF

= −
P∑
p=1

∫
τ

E
[
exp(Wp•Fnp•)

]
dx

+

P∑
p=1

Np∑
np

∫
τ

∫
F

∫
W

Wp•Fnp•q(W)q(F)dWdFdx

= −
P∑
p=1

∫
τ

E
[
exp(Wp•Fnp•)

]
dx +

P∑
p=1

Np∑
np

E(Wp•Fnp•)

for a bounded region τ . The expected value of
exp(Wp•Fn•) can be computed as in Eq. 8 while
Eq(F)q(W)(

∑Q
q=1 wpf(xnp)) is equal to:

Eq(F)q(W)(

Q∑
q=1

wpf(xnp)) =

Q∑
q=1

ωpµq(xnp)) (11)

We are thus left with an intractabe integral of the form:

−
P∑
p=1

 Q∏
q=1

1√
1− Ω2

pqΣ
q
nn

exp

(
−
ω2
pq

2Ω2
pq

)
...

...

∫
τ

exp

(
(Ω2

pqµq(x) + ωpq)
2

Ω2
pqΣ

q
nn − 1

)
dx

]
where the posterior mean for q(F) computed in x is
defined as µq(x) = kqxz(Kzz)

−1mq.

This integral could be approximated using a series
expansion but this would result in a computationally
difficult problem.

5 Pseudo-algorithm

Algorithm 1 illustrates the mcpm algorithm:

Algorithm 1 LGCPN

1: Inputs: Observational dataset D = {x(i)
p ∈

τ,∀p = 1, ..., P}Ii=1 for bounded region τ where
I denotes the number of events. Number of latent
gps Q. Number of mini-batches b of size B.

2: Output: Optimized hyper-parameters, posterior
moments of λ

3:
4: Discretize event locations D in Y ∈ RN×P given

the grid size.
5: Initialize: i← 0, η(0) = (θ,θw,φ,νu,νw)
6: repeat
7: {Xtrain ∈ RB×D, Ytrain ∈ RB×P } →

get-next-MiniBatch(D)
8: for j=0 to b do
9: maxµµµ Lelbo(η(i)) (Eqs. (2)–(4) and (7))

10: η(i) ← η(i−1) − ρ∇ηLelbo(η(i−1))
11: i = i+ 1
12: end for
13: until convergence criterion is met.
14: η∗ ← η(i−1)

15: E [λ(x)t] = exp(tφ∗)mgfWF|η∗(t)

6 Plate diagram

Here we provide the plate diagram for mcpm with
independent prior on the mixing weights:

Figure 1: Graphical model representation of mcpm-n.

7 Algorithmic efficiency

Evaluating Lell in closed form, we are able to signif-
icanlty speed up the algorithm by getting rid of the
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Monte Carlo evaluations, see Fig. 2 and Fig. 3.

Figure 2: Synthetic data. MC estimate of ELL vs.
Closed form evaluation of ELL. Left: Negative elbo
values over time. Right: nlpl values for one task over
time. S denotes the number of samples used in the MC
evaluation.

Figure 3: crime data. MC estimate of ELL vs. Closed
form evaluation of ELL. Left: Negative elbo values
over time. Right: nlpl values for one task over time.
S denotes the number of samples used in the MC
evaluation.

8 Additional experimental results

Synthetic experiments Here we report additional
performance metrics for the two synthetic experiments
included in the text. Tab. 1 gives the coverage numbers
for the first synthetic experiment while Tab. 2 and Tab.
3 display the rmse and coverage performances for the
second synthetic dataset. Fig. 4 gives the predicted
counts distributions for the second synthetic dataset.

Table 1: s1 dataset. In-sample/Out-of-sample 90% ci
coverage for the predicted event counts distributions.

Empirical Coverage (ec)

1 2 3 4

mcpm-n 0.80/0.12 0.99/0.58 0.92/0.57 0.94/0.83
mcpm-gp 0.95/0.19 0.72/0.67 1.00/0.78 0.92/0.75
icm 0.75/0.03 0.66/0.60 0.62/0.50 0.93/0.42

Table 2: s2 dataset. rmse performance when making
predictions on the interval [80, 100].

rmse

1 2 3 4 5 6 7 8 9 10

mcpm-n 1.10 1.15 0.89 0.17 0.95 0.99 1.10 0.63 1.50 0.55
mcpm-gp 1.15 1.43 0.91 0.13 0.94 0.97 1.19 0.58 1.43 0.70
mtpp 1.20 1.70 1.12 0.17 0.91 1.05 1.05 1.11 1.61 0.49

Table 3: s2 dataset. In-sample/Out-of-sample 90% ci
coverage for the predicted event counts distributions.

Empirical Coverage

1 2 3 4 5 6 7 8 9 10

mcpm-n 1.00/1.00 1.00/1.00 0.95/0.99 0.66/1.00 1.00/0.86 0.97/1.00 0.99/1.00 0.88/1.00 0.92/0.95 1.00/1.00
mcpm-gp 0.99/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.99/1.00 1.00/1.00 1.00/1.00 1.00/1.00
mtpp 0.77/0.77 0.82/0.73 0.86/1.00 0.93/1.00 0.75/0.83 0.96/0.84 0.78/0.54 0.99/1.00 0.66/0.88 0.74/0.95

8.1 Crime data experiments

Here we report the rmse performances for mcpm and
competing models on the crime dataset (Tab. 4). In
Fig. 5 and Fig. 6 we give the estimated intensities and
conditional probabilities for the crime complete data
experiment. Finally, in Fig. 7 we show the conditional
probabilities for the missing data experiment.

8.2 BTB data experiments

In Fig. 8 we show the estimated conditional probabili-
ties on the origin color scale used by Diggle et al. (2013).
In Fig. 9 we give the estimated intensity surfaces for
the complete data experiment. Finally, in Fig. 10 we
show the estimated intensity surfaces for the missing
data experiment.
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Figure 4: Predicted empirical distributions of event counts in [80, 100] for the second synthetic dataset.

Table 4: crime dataset. Performance on the missing
regions. Standard errors in parentheses.

Standardized rmse

1 2 3 4 5 6 7

mcpm
1.74 2.91 3.00 2.75 3.57 11.70 1.54
(0.42) (1.06) (1.22) (0.82) (1.99) (2.32) (0.29)

mcpm-gp
1.71 1.91 3.40 2.96 2.00 12.18 1.62
(0.39) (0.33) (1.80) (1.03) (0.47) (2.76) (0.33)

lgcp
5.16 4.68 8.93 3.09 7.69 36.96 5.19
(1.81) (0.99) (5.22) (0.50) (3.68) (5.43) (1.21)

icm
3.36 3.64 3.70 2.97 3.05 12.36 2.82
(1.04) (0.83) (1.89) (1.22) (0.97) (1.99) (0.62)

Figure 5: crime dataset. Estimated intensity surface
with mcpm (first row) and mlgcp (second row). The
color scale used for each crime is given in Fig. (5).

Figure 6: crime dataset. Estimated conditional prob-
abilities in the complete data setting. Row 1: mcpm
Row 2: mlgcp.

Figure 7: crime dataset. Estimated conditional prob-
abilities when introducing missing data regions. Row
1: mcpm Row 2: lgcp.

Figure 8: mlgcp- btb dataset. Estimated conditional
probabilities plotted on the color scale used by Diggle
et al. (2013) and Taylor et al. (2015). The first plots
corresponds to gt 9, the second to gt 12, the third to
gt 15 and the fourth to gt 20.
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Figure 9: Estimated intensity surfaces in the complete
data setting. First row: Training data. Second row:
mcpm Third row: mlgcp

Figure 10: Estimated intensity surfaces in the missing
data (shaded regions) setting. First row: Training data.
Second row: mcpm Third row: icm
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