
Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

A Proof of Theorem 3.4

The proofs of Theorem 3.2 and Theorem 3.4 rely on the main error bound for the Hilbert coreset construction
problem given in Eq. (9) (Campbell and Broderick, 2019). We restate this error bound in Lemma A.2, which
depends on several key quantities given below:

• cls :=
1
J+

cos(!
T

l
xis + bl) cos(!

T

l
xjs + bl), such that 1 s S and 1 l J+

• �̂
2
j
:=

1
S

P
S

s=1 c
2
js

=
1
S
kRjk22

• �̂
2
:=

⇣PJ+

j=1 �̂j

⌘2

Definition A.1. (Campbell and Broderick, 2019) The Hilbert construction problem is based on solving the
quadratic program,

argmin

w2RJ+
+

1

S
kr � r(w)k22 s.t.

J+X

j=1

wj �̂j = �̂. (9)

Remark. The minimizer of Eq. (9) is w
⇤
= (1, · · · , 1) since r(w

⇤
) = r. However, the goal is to find a sparse

w. Instead of adding sparsity-inducing constraints (such as L1 penalties), which would lead to computational
difficulties for large-scale problems, Campbell and Broderick (2019) minimize Eq. (9) greedily through the
Frank-Wolfe algorithm. Frank-Wolfe outputs a sparse w since the sparsity of w is bounded by the number of
iterations Frank-Wolfe is run for.
Lemma A.2. (Campbell and Broderick, 2019, Theorem 4.4) Solving Eq. (9) with J iterations of Frank-Wolfe
satisfies

1

S
kr � r(w)k22 �̂

2
⌘
2
⌘̄
2
⌫
2
J

⌘̄2⌫�2(J�2) + ⌘2(J � 1)

 ⌫
2J�2
J

,

(10)

where 0 ⌫J < 1. Furthermore, ⌫2
J
= 1 � d

2

�2⌘̄2 where d is the distance from r to the nearest boundary of the

convex hull of
n

�̂

�̂j
Rj

oJ+

j=1
and ⌘̄

2
:=

1
S
maxi,j2[J+]

���Ri
�̂i

� Rj

�̂j

���
2
, 0 ⌘̄ 2.

We prove Theorem 3.4 first since the main idea is captured in this proof. The proof of Theorem 3.2 is more
involved since we must use a number of concentration bounds to justify subsampling only S datapoint pairs
instead of all N(N�1)

2 possible datapoint pairs. Both proofs will also depend on the following constants.

• �
2
j
:=

1
V ⇤

P
V

⇤

s=1 c
2
js

=
1
V ⇤ kRjk22

• �
2
:=

⇣PJ+

j=1 �j

⌘2

Here, V ⇤
=

N(N�1)
2 , that is when all datapoint pairs above the diagonal are included. �̂

2
j

and �̂
2 are simply

unbiased estimates of �2
j

and �
2 based on sampling only S instead of all V ⇤ datapoint pairs.

While Lemma A.2 guarantees 0 < ⌫J+ < 1, it does not guarantee that ⌫J+ ! 1 as the number of random features
J+ ! 1. The following Lemma is critical in showing that ⌫J+ does not approach 1, which would result in no
compression.
Lemma A.3. Let {xi}Ki=1 be a set of points in Rp that satisfies Assumption 3.1(a). Consider the vector
v!,b = (cos(!

T
xi + b) cos(!

T
xj + b))i<j,i2[K�1] 2 R

K(K�1)
2 . Let the unit vector u!,b :=

v!,b

kv!,bk . If !j

i.i.d.⇠ F and

bj
i.i.d.⇠ G, where F has positive density on all of Rp and G has positive density on [0, 2⇡], then

d

⇣
ConvexHull{u!j ,bj}Jj=1,S

K(K�1)
2 �1

⌘
! 0 for J ! 1

s.t. d(A,B) := max
a2A,b2B

||a� b||2.
(11)

Here, S
K(K�1)

2 �1 denotes the surface of the unit sphere in R
K(K�1)

2 .

Data-dependent compression of random features

Proof. By construction, each unit vector ui := u!i,bi lies on the boundary of the unit sphere in R
K(K�1)

2 . Hence,
F,G induce a distribution on S

K(K�1)
2 �1. It suffices to show S

K(K�1)
2 �1 has strictly positive density everywhere

since, as J ! 1, any arbitrarily small neighborhood around a collection of points that cover S
K(K�1)

2 �1 will be
hit by some ui with probability 1. By standard convexity arguments, the convex hull of the ui will arbitrarily
approach S

K(K�1)
2 �1 by taking the radius of the neighborhoods to zero. We now show S

K(K�1)
2 �1 has strictly

positive density everywhere. Since ui is the normalized vector of vi := v!i,bi and each component of vi is between
�1 and 1, it suffices to show, by the continuity of the cosine function, that for any a 2 {�1, 1}

K(K�1)
2 there exist

some !i, bi such that sign(vi) := (sign(vil))l2K(K�1)
2

equals a. Recall that

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a� b)). (12)

Take bi = 0. Then, Equation (12) implies vil =
1
2 (cos(!

T

i
(xil + xjl) + cos(!

T
(xil � xjl)). Consider the vector

ṽi = (cos(!
T

i
(xil +xjl), cos(!

T

i
(xil �xjl))l2K(K�1)

2
2 RK(K�1). It suffices to show that for any ã 2 {�1, 1}K(K�1),

there exists an !i such that sign(ṽi) = ã. Recall that the cosine function has infinite VC dimension, namely
that for any labeling y1, · · · , yM 2 {�1, 1} of distinct points x1, · · ·xM 2 Rp, there exists an !

⇤ such that
sign(cos((!⇤

)
T
xm)) = ym. Take M = K(K � 1), ym = ãm, xm = xim + xjm , and xm+1 = xim � xjm . Since all

the xm are distinct by Assumption 3.1(a), we can find an !i such that sign(ṽi) = ã as desired.

We now prove Theorem 3.4.

Proof. Each Rj 2 R
N(N�1)

2 and the Rj ’s are i.i.d. since each !j is drawn i.i.d. from Q. The induced Hilbert norm
k · kH of each Rj is given by kRjk2H =

2
N(N�1)kRjk22 (Campbell and Broderick, 2019). Hence, R̃j :=

Rj

�j
is a unit

vector in the vector space with norm k · kH . By Lemma A.3,

d
⇣
ConvexHull{R̃j}J+

j=1,S
N(N�1)

2 �1
⌘
! 0 (13)

Let r̃ :=
1
�

PJ+

j=1 �jR̃j 2 ConvexHull{R̃j}J+

j=1 and observe that r̃ =
r

�
. The distance, which we denote as dJ+ ,

between r̃ and the ConvexHull{R̃j}J+

j=1 approaches 1�kr̃kH since the ConvexHull{R̃j}J+

j=1 approaches S
N(N�1)

2 �1.
Hence,

lim
J+!1

dJ+ = 1� lim
J+!1

kr̃kH = 1�
limJ+!1 krkH
limJ+!1 �

. (14)

Now,

rs =
1

J+

J+X

j=1

cjs
J+!1�! k(xis , xjs). (15)

Hence, as J+ ! 1,

krkH !
s

2

N(N � 1)

X

i<j

(k(xi, xj))
2. (16)

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Now,

� =

J+X

j=1

�j

=

J+X

j=1

vuut 1

V ⇤

V ⇤X

s=1

c2
js

=

J+X

j=1

vuut 1

V ⇤

V ⇤X

s=1

1

J2
+

cos2(!T

j
xis + bj) cos

2(!T

j
xjs + bj)

=
1

J+

J+X

j=1

vuut 1

V ⇤

V ⇤X

s=1

cos2(!T

j
xis + bj) cos

2(!T

j
xjs + bj)

=

s
2

N(N � 1)

1

J+

J+X

j=1

k(cos(!T

j
xm + bj) cos(!

T

j
xn + bj))m<nk2

!

s
2

N(N � 1)
E!,bk(cos(wT

xm + b) cos(w
T
xn + b))m<nk2

(17)

If x 6= y and w 6= 0, then

k(x, y) = E!,b cos(w
T
x+ b) cos(w

T
y + b)

< E!i,b| cos(wT
x+ b) cos(w

T
y + b)|.

(18)

by Jensen’s inequality. Hence, Eq. (18) and Assumption 3.1(a-b) together imply

limJ+!1 krk2
limJ+!1 �

< 1. (19)

By Eq. (16) and Eq. (17),
limJ+!1 krkH
limJ+!1 �

 kKkF
E!,bku(!, b)k2

, (20)

where u(!, b) is defined in Theorem 3.4. Lemma A.2 says that ⌫
2
J+

= 1� d
2

�2⌘̄2 , where d is the distance from r

to the nearest boundary of the convex hull of
n

�

�j
Rj

oJ+

j=1
. Hence, d = �dJ+ and ⌫

2
J+

= 1�
d
2
J+

⌘̄2 . Eq. (14) and

Eq. (20) together imply,

lim inf
J+!1

dJ+ 1� kKkF
E!,bku(!, b)k2

. (21)

Therefore, since 0 ⌘̄
2 2 by Lemma A.2,

lim sup
J+!1

⌫
2
J+

 lim sup
J+!1

1�
d
2
J+

2

= 1� lim inf
J+!1

d
2
J+

2

 1�

⇣
1� kKkF

E!,bku(!,b)k2

⌘2

2
.

(22)

Data-dependent compression of random features

B Proof of Theorem 3.2

The following technical lemma is needed to derive the probability bound in Theorem 3.2.

Lemma B.1. Suppose �
2

J
2
+�

2
i
 M for some 1 M < 1 for all i 2 [J+]. For S � 8

M
2

�4 log

⇣
2J+

�2

⌘

P

�̂
2

J2
+�̂i

2 � 5M

!
 � (23)

for all i 2 [J+].

Proof. Notice that

Eis,js �̂l

2
=

1

S

SX

s=1

Eis,jsc
2
ls

=
1

N2

N
2X

s=1

c
2
ls

= �
2
l
.

Hence, �̂l

2 is an unbiased estimator of �2
l
. Each c

2
ls
 1

J+
2 is a bounded random variable, and the collection of

random variables {c2
ls
}S
s=1 are i.i.d. since is, js

i.i.d.⇠ ⇡. Hence, by Hoeffding’s inequality,

P
�
|�̂2

l
� �

2
l
| � t

�
 2 exp

�
�2SJ

4
+t

2
�
. (24)

Define the event At := [J+

i=1{|�̂2
i
� �

2
i
| < t} and pick t such that t mini2[J+] �

2
i
. Since �

2
i
� �

2

M
by assumption,

it suffices to pick 0 < t �
2

M
. Conditioned on At, �̂i

p
�2
i
+ t �i +

p
t, which implies �̂

2 (� + J+

p
t)

2.
Therefore,

P

�̂
2

J2
+�̂i

2 � cM

!
= P

A

c

t
[
(

�̂
2

J2
+�̂i

2 � cM

)!
+ P

At [

(
�̂
2

J2
+�̂i

2 � cM

)!

 P (A
c

t
) + P

At,

(
�̂
2

J2
+�̂i

2 � cM

)!

 P (A
c

t
) + P

�̂
2

J2
+�̂i

2 � cM | At

!

 P (A
c

t
) + P

✓
(� +

p
tJ+)

2

J2
+(�

2
i
� t)

� cM | At

◆
.

(25)

Notice that P
⇣

(�+
p
tJ+)2

�
2
i�t

� cM
2 | At

⌘
is either 0 or 1 since �i and � are constants. We pick t so that this

probability is 0. To pick t, notice that,

(� +
p
tJ+)

2

J2
+(�

2
i
� t)

=

⇣
�

�i
+

p
tJ+

�i

⌘2

J2
+(1� t

�
2
i
)

⇣
J+

p
M +

J+

p
tMJ+

�

⌘2

J2
+(1� t

�
2
i
)

M

⇣
1 +

p
tJ+

�

⌘2

1� MJ
2
+t

�2

,

(26)

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

where the last inequality holds as long as 0 < t <
�
2

MJ
2
+

and follows by noting that 1
�
2
i
 MJ

2
+

�2 by assumption.

Pick t =
�
2

4J2
+M

. Since 0 � 1, this choice of t implies
M

✓
1+

p
tJ+
�

◆2

1�
MJ2

+t

�2

 5M . Hence, for c = 5 and this choice of

t, P
⇣

(�+
p
tJ+)2

J
2
+(�2

i�t)
� 5M | At

⌘
= 0. Combining Eq. (25) and Eq. (24), we have by a union bound that,

P

�̂
2

J2
+�̂i

2 � 5M

!
 2J+ exp

✓
�1

8
S

�
4

M2

◆
, (27)

for all i 2 [J+]. Solving for S by setting the right hand side above to � yields the claim.

We have all the pieces to prove Theorem 3.2. We follow the proof strategy in (Campbell and Broderick, 2019,
Theorem 5.2).

Proof. Let R
⇤
=
⇥
z+

T

1 � z+T

1 , · · · z+T

N�1 � z+T

N
, z+

T

N
� z+T

N

⇤
2 RJ+⇥N

2

. Notice,

1

N2
kZ+Z+

T � Z(w)Z(w)
T k2

F
= (1� w)

T
R

⇤

N

R
⇤T

N
(1� w). (28)

We approximate Eq. (28) with (1� w)
T Rp

S

R
T

p
S
(1� w) and bound the error. Suppose

D
⇤
:= max

i,j2[J+]

�����

✓
R

⇤

N

R
⇤T

N

◆

ij

�
✓

Rp
S

R
T

p
S

◆

ij

�����
✏

2
.

Then,

(1� w)
T
R

⇤

N

R
⇤T

N
(1� w)� (1� w)

T
Rp
S

R
T

p
S
(1� w)

X

i,j2[J+]

|wi � 1||wj � 1|D⇤

 kw � 1k21
✏

2
.

(29)

Notice,

Eis,js

"✓
Rp
S

R
T

p
S

◆

ij

#
= Eis,js

"
1

S

SX

s=1

ciscjs

#

=
1

S

SX

s=1

Eis,js [ciscjs]

= Eis,js [ciscjs]

=
1

N2

N
2X

s=1

ciscjs

=

✓
R

⇤

N

R
⇤T

N

◆

ij

.

(30)

Hence, the i.i.d. collection of random variables {ciscjs}Ss=1 yields an unbiased estimate of
⇣

R
⇤

N

R
⇤T

N

⌘

ij

. Each ciscjs

is bounded by 1
J

2
+

. Therefore, by Hoeffding’s inequality and a simple union bound,

P
⇣
D

⇤ � ✏

2

⌘
 2J

2
+ exp

�
�2SJ

4
+✏

2
�
. (31)

Setting the right-hand side to �
⇤

2 and solving for ✏

2 implies with probability at least 1� �
⇤

2 ,

✏

2
 1p

SJ+
2
log

4J

2
+

�⇤

� 1
2

. (32)

Data-dependent compression of random features

Hence, with probability at least 1� �
⇤

2 ,

1

N2
kZ+Z+

T � Z(w)Z(w)
T k2

F
 (1� w)

T
Rp
S

R
T

p
S
(1� w) + k1� wk21

1p
SJ2

+

log

4J

2
+

�⇤

� 1
2

=
1

S
kr � r(w)k22 + k1� wk21

1p
SJ2

+

log

4J

2
+

�⇤

� 1
2

Lemma A.2 implies that there exists a 0 ⌫ < 1 such that 1
S
kr � r(w)k22 ⌫

2J�2. Since ⌫ depends on the pairs
il, jl picked, we can take ⌫

⇤ to be the largest ⌫ possible. Since the set of all possible S pairs is finite, that implies
0 ⌫

⇤
< 1. Hence, setting J =

1
2 log⌫⇤

�
✏

2

�
+ 2 guarantees that 1

S
kr � r(w)k22 ✏

2 for any collection of drawn
il, jl, 1 l S. Assume for any a 2 (0, 1] and � > 0, we can find an M such that

P
✓
max

j

�
2
/(J2

+�
2
j) > M

◆
< a�. (33)

If Eq. (33) holds, we may assume maxj
�
2
/(J2

+�
2
j) < M by setting M large enough since we just need a 1 � �

probabilistic guarantee. By the polytope constraint in Eq. (9), w
⇤
i
 �̂

�̂i
for all i 2 [J+]. Without loss of

generality, assume the first J components of w⇤ can be the only non-zero values since w
⇤ is at least J sparse. For

S � 8
M

4

�4 log

⇣
2J+

�2

⌘
, Lemma B.1 implies with probability at least 1� �

⇤

2 ,

k1� w
⇤k21

✓
�̂

�̂i

J + (J+ � J)

◆2

 (JMJ+ + J+))
2

 (2JM
p
5J+)

2

 10J
2
+M

2
J
2

 10J
2
+M

2 (log
2
✏
)
2

(log ⌫)2

(34)

Therefore, with probability at least 1� �
⇤,

1

N2
kZ+Z+

T � Z(w)Z(w)
T k2

F
 ✏

2
+

10M
2
(log

2
✏
)
2

p
S(log ⌫)2

log

4J

2
+

�⇤

� 1
2

. (35)

Finally, setting S � max

✓
100
✏2

h
M

(log 2
✏)

(log ⌫)

i4
log

h
4J+

2

�⇤

i
, 8

M
4

�4 log

⇣
2J+

�2

⌘◆
implies 1

N2 kZ+Z+
T � Z(w)Z(w)

T k2
F
 ✏

with probability at least 1� �
⇤ which matches the rate provided in Theorem 3.2. It remains to show Eq. (33).

Notice that
�

J+�j

=
1

J+
+

1

J+

X

i 6=j

�̃ij , (36)

where �ij :=
�i
�j

. Notice that each �ij are i.i.d. for i 6= j. Let the µj = E�ij and sj be the standard deviation of
�ij . Since each �j is i.i.d. that implies µj and sj are both constant across j so we drop the subscript. By a union
bound, it suffices to show for any ⌧ > 0 we can find an M such that

P

0

@ max
1jJ+

1

J+

X

i 6=j

�̃ij > M

1

A < ⌧. (37)

By Chebyshev’s inequality,

P

0

@ 1

J+

X

i 6=j

�̃ij � µ >
cs

J+

1

A 1

c2
. (38)

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Take c = J+⌧ . Then,

P

0

@ 1

J+

X

i 6=j

�̃ij � µ >
cs

J+

1

A 1

J2
+⌧

< ⌧. (39)

By a union bound, Eq. (38) implies

P

0

@ max
1jJ+

1

J+

X

i 6=j

�̃ij > M

1

A <
1

⌧J+
< ⌧

for M = µ+ s⌧ as desired.

The proof showing that lim sup
J+!1 ⌫J+ < 1 is the same as the proof Theorem 3.4.

C Runtime analysis of methods

The ridge regression and PCA runtimes depend on the number of features used, as specified in Table 1, and
therefore follow from the first column of the table.

First, we show that using RFM with J+ = O
�
1
✏
log

1
✏

�
number of random features ensures that 1

N2 kK�K̂k2
F
= O(✏)

with high probability. By a union bound, P
⇣

1
N2 kK � K̂k2

F
 ✏

⌘
� P

⇣
maxi,j2[N] |Kij � K̂ij |

p
✏

⌘
. Now, Claim

1 of Rahimi and Recht (2007) implies

P
✓

max
i,j2[N]

|Kij � K̂ij | �
p
✏

◆
= O

✓
1

✏
e
�J+✏

◆
. (40)

Setting the right-hand side of Eq. (40) to some fixed probability threshold �
⇤ implies J+ = O

�
1
✏
log
�

1
✏�⇤

��
. Since

�
⇤ is some fixed constant, J+ = O

�
1
✏
log

1
✏

�
number of random features suffices for an O(✏) error guarantee. Hence,

it suffices to use J+ = O
�
1
✏
log

1
✏

�
as the up-projection dimension for both RFM-FW and RFM-JL.

To prove the bounds for RFM-FW, take S = ⌦(J
2
+(log J+)

2
). It is straightforward to check that this choice

of S satisfies the requirements of Theorem 3.2. By Theorem 3.2, it suffices to set J = O (log J+) for an O(✏)

error guarantee. Hence, Algorithm 1 takes O(SJ+ log J+) time to compute the random feature weights w since
Frank-Wolfe has to be run for a total of O(log J+) iterations. Finally, it takes O(N log J+) to apply these O(log J+)

weighted random features to the N datapoints. We conclude by proving the time complexity of RFM-JL.

Denote x̃i := (Z+)i 2 RJ+ as the mapped datapoints from RFM. Let A 2 RJ⇥J+ for J J+ be a matrix filled
with i.i.d. N(0,

1
J
) random variables for the JL compression step. Let f(x) := Ax. It suffices to pick a J such

that,

P
✓

max
i,j2[N]

��x̃i
T
x̃j � f(x̃i)

T
f(x̃j)

�� �
p
✏

◆
 �

⇤ (41)

for RFM-JL. We use the following corollary from Kakade and Shakhnarovich (2009, Corollary 2.1) to bound the
above probability.
Lemma C.1. Let u, v 2 Rd and such that kuk 1 and kvk 1. Let f(x) = Ax, where A is a k ⇥ d, k d

matrix of i.i.d. N(0,
1
k
) random variables. Then,

P
�
| uT

v � f(u)
T
f(v) |

�
 4e

� 1
4 (✏

2�✏
3)k

. (42)

kx̃ik2 = 1 since x̃i =
1p
J+

⇣
cos(!

T

1 xi + b), · · · , cos(!T

J+
xi + b)

⌘
. Hence, we may apply Lemma C.1 to x̃i. By a

union bound and an application of Lemma C.1, Eq. (41) is bounded by O
�
N

2
e
�J✏
�
. Setting N

2
e
�J✏ equal to

�
⇤ and solving for J implies that J = ⌦

⇣
1
✏
log

⇣
N

2

�⇤

⌘⌘
. Hence, J = O

�
1
✏
logN

�
. Now, O

�
1
✏

�
= O

⇣
J+

log 1
✏

⌘
which

implies J = O

⇣
J+ logN

log 1
✏

⌘
. Since N > J+ > O

�
1
✏

�
, J = ⌦(J+) suffices for an for an O(✏) error guarantee. While

the JL algorithm typically takes O (NJ+k) time to map a N ⇥ J+ matrix to a N ⇥ k matrix, the techniques in
Hamid et al. (2014, Section 3.5) show that only O (NJ+ log J) time is required by using the Fast-JL algorithm.

Data-dependent compression of random features

D Impact of kernel approximation

Here we provide the precise error bound and runtimes for kernel ridge regression, kernel SVM, and kernel PCA
when using a low-rank factorization ZZ

T of K. We denote X ⇢ Rp as the input space and define c > 0 such that
K(x, x) c and K̂(x, x) c for all x 2 X. This condition is verified with c = 1 for Gaussian kernels for example.
All the bounds provided follow from Cortes et al. (2010); Talwalkar (2010), where we simply replace the spectral
norm with the Frobenius norm since the Frobenius norm upper bounds the spectral norm.

D.1 Kernel ridge regression

Exact kernel ridge regression takes O(N
3
) since K must be inverted. Suppose K ⇡ ZZ

T
:= K̂, where Z could be

found using RFM for example. Running ridge regression with the feature matrix Z just requires computing and
inverting the covariance matrix Z

T
Z 2 R

J⇥J which takes ⇥(max(J
3
, NJ

2
)) time. Proposition D.1 quantifies the

error between the regressor obtained from K and the one from K̂.
Proposition D.1. (Proposition 1 of Cortes et al. (2010)) Let f̂ denote the regression function returned by kernel
ridge regression when using the approximate kernel matrix K̂ 2 RN⇥M , and f

⇤ the function returned when using
the exact kernel matrix K. Assume that every response y is bounded in absolute value by M for some 0 < M < 1.
Let � := N�0 > 0 be the ridge parameter. Then, the following inequality holds for all x 2 X:

|f̂(x)� f
⇤
(x)| cM

�2
0N

kK̂ �Kk2

 cM

�2
0N

kK̂ �KkF

= O

✓
1

N
kK̂ �KkF

◆

D.2 Kernel SVM

Kernel SVM regression takes O(N
3
) using K since K must be inverted. Again suppose K ⇡ ZZ

T
:= K̂.

Then, training a linear SVM via dual-coordinate decent on Z has time complexity O (NJ log ⇢), where ⇢ is the
optimization tolerance Hsieh et al. (2008).
Proposition D.2. (Proposition 2 of Cortes et al. (2010)) Let f̂ denote the hypothesis returned by SVM when
using the approximate kernel matrix K̂, f⇤ the hypothesis returned when using the exact kernel matrix K, and C0

be the penalty for SVM. Then, the following inequality holds for all x 2 X:

|f̂(x)� f
⇤
(x)|

p
2c

3
4C0kK̂ �Kk

1
4
2

"
1 +

kK̂ �Kk
1
4
2

4c

#

p
2c

3
4C0kK̂ �Kk

1
4
F

"
1 +

kK̂ �Kk
1
4
F

4c

#
.

= O

⇣
kK̂ �Kk

1
2
F

⌘
.

D.3 Kernel PCA

We follow Talwalkar (2010) to understand the effect matrix approximation has on kernel PCA. For a more
in-depth analysis, see pg. 92-98 of Talwalkar (2010). Without loss of generality, we assume the data are mean
zero.

Let �(·) be the unique feature map such that k(x, y) = h�(x),�(y)i. Let the feature covariance matrix be
denoted as ⌃� := �(XN)�(XN)

T , where �(XN) := [�(x1) · · ·�(xn)]. Since the rank of ⌃� is at most N , let
vi 1 i N be the N singular vectors of ⌃�. For certain kernels, e.g., the RBF kernel, the vi are infinite
dimensional. However, the projection of �(x) onto each vi is tractable to compute via the kernel trick:

�(x)
T
vi = �(x)

�(XN)uip
�i

=
k
T

x
uip
�i

, (43)

Raj Agrawal, Trevor Campbell, Jonathan Huggins, Tamara Broderick

Figure 7: Kernel matrix approximation errors. Lower is better. Each point denotes the average over 20 simulations
and the error bars represent one standard deviation. The HALTON sequence was used to generate the quasi
random features.

where kx := (K(x1, x), · · · ,K(xN , x)) and ui is the ith singular vector of K with associated eigenvalue �i. Often,
the goal is to project �(x) onto the first l eigenvectors of ⌃� for dimensionality reduction. To analyze the error of
the projection, let PVl be defined as the subspace Vl spanned by the top l eigenvectors of ⌃�. Then, the average
empirical residual Rl(K) of a kernel matrix K is defined as,

Rl(K) :=
1

N

NX

n=1

k�(xn)k2 �
1

N

NX

n=1

kPVl(�(xn))k2

=

X

i>l

�i

(44)

Rl(K) is simply the spectral error of a low-rank decomposition of ⌃� using the SVD. If we instead use K̂ for the
eigendecomposition, the following proposition bounds the difference between Rl(K) and Rl(K̂).
Proposition D.3. (Proposition 5.4 of Talwalkar (2010)) For Rl(K) and Rl(K̂) defined as above,

|Rl(K)�Rl(K̂)|
✓
1� l

N

◆
kK � K̂k2

✓
1� l

N

◆
kK � K̂kF .

E Additional Experiments

As stated in Section 4, our method may be applied on top of other random feature methods. In particular,
many previous works have reduced the number of random features needed for a given level of approximation by
sampling them from a different distribution (e.g., through importance sampling or Quasi-Monte-Carlo techniques).
Regardless of the way the random features are sampled, our method can still be used for compression.

Data-dependent compression of random features

Figure 8: Classification accuracy. Higher is better. Each point denotes the average over 20 simulations and the
error bars represent one standard deviation. The HALTON sequence was used to generate the Quasi random
features.

To demonstrate this point further, we consider generating random features using Quasi-Monte-Carlo (Avron et al.,
2016). Quasi random features work by generating a sequence of points from a (low-discrepancy) grid of points
in [0, 1]

p. Points are sampled from the target random-features distribution Q by applying the inverse CDF of
Q on each of these points in the sequence. In Avron et al. (2016), the authors showed that generating random
features in this way improved performance over the classical random features method provided in Rahimi and
Recht (2007). In Fig. 7 and Fig. 8, we see that our method is able to compress the number of quasi random
features, which is similar to the behavior in Fig. 1 and Fig. 2. Note that the experimental setup is exactly the
same as in Section 4 except that the random features are now generated using Quasi-Monte-Carlo.

	Introduction
	Preliminaries and related work
	Random feature compression via coresets
	Algorithm derivation
	Theoretical results

	Experiments
	Conclusion
	Proof of thm:asymcompcoef
	Proof of thm:approxnorm
	Runtime analysis of methods
	Impact of kernel approximation
	Kernel ridge regression
	Kernel SVM
	Kernel PCA

	Additional Experiments

