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S.1 Proof of Lemma 3

Let XTX/n = V SV T be an eigendecomposition of XTX/n. Then we can rewrite the gradient descent iteration
(2) as

β(k) = β(k−1) +
ε

n
·XT (y −Xβ(k−1)) = (I − εV SV T )β(k−1) +

ε

n
·XT y.

Rotating by V T , we get
β̃(k) = (I − εS)β̃(k−1) + ỹ,

where we let β̃(j) = V Tβ(j), j = 1, 2, 3, . . . and ỹ = (ε/n)V TXT y. Unraveling the preceding display, we find that

β̃(k) = (I − εS)kβ̃(0) +

k−1∑
j=0

(I − εS)j ỹ.

Furthermore applying the assumption that the initial point β(0) = 0 yields

β̃(k) =

k−1∑
j=0

(I − εS)j ỹ = (εS)−1(I − (I − εS)k)ỹ,

with the second equality following after a short inductive argument.

Now notice that β(k) = V β̃(k), since V V T is the projection onto the row space of X, and β(k) lies in the row
space. Rotating back to the original space then gives

β(k) = V (εS)−1(I − (I − εS)k)ỹ =
1

n
V S−1(I − (I − εS)k)V TXT y.

Compare this to the solution of the optimization problem in Lemma 3, which is

(XTX + nQk)−1XT y =
1

n
(V SV T +Qk)−1XT y.

Equating the last two displays, we see that we must have

V S−1(I − (I − εS)k)V T = (V SV T +Qk)−1.

Inverting both sides and rearranging, we get

Qk = V S(I − (I − εS)k)−1V T − V SV T ,

and an application of the matrix inversion lemma shows that (I − (I − εS)k)−1 = I + ((I − εS)−k − I)−1, so

Qk = V S((I − εS)−k − I)−1V T ,

as claimed in the lemma.
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S.2 Proof of Lemma 4

Recall that Lemma 1 gives the gradient flow solution at time t, in (6). Compare this to the solution of the
optimization problem in Lemma 4, which is

(XTX + nQt)
−1XT y.

To equate these two, we see that we must have

(XTX)+(I − exp(−tXTX/n)) = (XTX + nQt)
−1,

i.e., writing XTX/n = V SV T as an eigendecomposition of XTX/n,

V S+(I − exp(−tS))V T = (V SV T +Qt)
−1.

Inverting both sides and rearranging, we find that

Qt = V S(I − exp(−tS))−1V T − V SV T ,

which is as claimed in the lemma.

S.3 Proof of Lemma 5

For fixed β0, and any estimator β̂, recall the bias-variance decomposition

Risk(β̂;β0) = ‖E(β̂)− β0‖22 + tr[Cov(β̂)].

For the gradient flow estimator in (6), we have

E[β̂gf(t)] = (XTX)+(I − exp(−tXTX/n))XTXβ0

= (XTX)+XTX(I − exp(−tXTX/n))β0

= (I − exp(−tXTX/n))β0. (S.1)

In the second line, we used the fact that XTX and (I − exp(−tXTX/n)) are simultaneously diagonalizable, and
so they commute; in the third line, we used the fact that (XTX)+XTX = X+X is the projection onto the row
space of X, and the image of I − exp(−tXTX/n) is already in the row space. Hence the bias is, abbreviating
Σ̂ = XTX/n, ∥∥E[β̂gf(t)]− β0

∥∥2

2
= ‖ exp(−tΣ̂)β0‖22 =

p∑
i=1

|vTi β0|2 exp(−2tsi). (S.2)

As for the variance, we have

tr
(
Cov[β̂gf(t)]

)
= σ2tr

[
(XTX)+(I − exp(−tΣ̂))(XTX)(I − exp(−tΣ̂))(XTX)+

]
=
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2

]
=
σ2

n

p∑
i=1

(1− exp(−tsi))2

si
, (S.3)

where in the second line we used the fact that Σ̂+ and (I − exp(−tΣ̂)) are simultaneously diagonalizable, and
hence commute, and also the fact that Σ̂+Σ̂Σ̂+ = Σ̂+. Putting together (S.2) and (S.3) proves the result in (11).

When β0 follows the prior in (10), the variance (S.3) remains unchanged. The expectation of the bias (S.2) (over
β0) is

E
[
βT0 exp(−2tΣ̂)β0

]
= tr

[
E(β0β

T
0 ) exp(−2tΣ̂)

]
=
r2

p

p∑
i=1

exp(−2tsi),

which leads to (12), after the appropriate definition of α.
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S.4 Derivation of (13), (14)

As in the calculations in the last section, consider for the ridge estimator in (5),

E[β̂ridge(λ)] = (XTX + nλI)−1XTXβ0 = (Σ̂ + λI)−1Σ̂β0, (S.4)

where we have again abbreviated Σ̂ = XTX/n. The bias is thus∥∥E[β̂ridge(λ)]− β0

∥∥2

2
=
∥∥(Σ̂ + λI)−1(Σ̂− I)β0

∥∥2

2

=
∥∥λ(Σ̂ + λI)−1β0

∥∥2

2

=

p∑
i=1

|vTi β0|2
λ2

(si + λ)2
, (S.5)

the second equality following after adding and subtracting λI to the second term in parentheses, and expanding.
For the variance, we compute

tr
(
Cov[βridge(λ)]

)
= σ2tr

[
(XTX + nλI)−1XTX(XTX + nλI)−1

]
=
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2

]
=
σ2

n

p∑
i=1

si
(si + λ)2

, (S.6)

the second equality following by noting that Σ̂ and (Σ̂ + λI)−1 are simultaneously diagonalizable, and therefore
commute. Putting together (S.5) and (S.6) proves the result in (13). The Bayes result (14) follows by taking an
expectation of the bias (S.5) (over β0), just as in the last section for gradient flow.

S.5 Proof of Lemma 6

First, observe that for fixed β0, and any estimator β̂,

Riskout(β̂;β0) = E‖β̂ − β0‖2Σ,

where ‖z‖2A = zTAz. The bias-variance decomposition for out-of-sample prediction risk is hence

Riskout(β̂;β0) = ‖E(β̂)− β0‖2Σ + tr[Cov(β̂)Σ].

For gradient flow, we can compute the bias, from (S.1),∥∥E[β̂gf(t)]− β0

∥∥2

Σ
= ‖ exp(−tΣ̂)β0‖2Σ = βT0 exp(−tΣ̂)Σ exp(−tΣ̂)β0, (S.7)

and likewise the variance,

tr
(
Cov[βgf(t)]

)
= σ2tr

[
(XTX)+(I − exp(−tΣ̂))(XTX)(I − exp(−tΣ̂))(XTX)+Σ

]
=
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ

]
. (S.8)

Putting together (S.7) and (S.8) proves the result in (16). The Bayes result (17) follows by taking an expectation
over the bias, as argued previously.

We note that the in-sample prediction risk is given by the same formulae except with Σ replaced by Σ̂, which
leads to

Riskin(β̂gf(t);β0) = βT0 exp(−tΣ̂)Σ̂ exp(−tΣ̂)β0 +
σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ̂

]
=

p∑
i=1

(
|vTi β0|2si exp(−2tsi) +

σ2

n
(1− exp(−tsi))2

)
, (S.9)
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and

Riskout(β̂gf(t)) =
σ2

n
tr
[
α exp(−2tΣ̂)Σ̂ + Σ̂+(I − exp(−tΣ̂))2Σ̂

]
=
σ2

n

p∑
i=1

[
αsi exp(−2tsi) + (1− exp(−tsi))2

]
. (S.10)

S.6 Derivation of (18), (19)

For ridge, we can compute the bias, from (S.4),∥∥E[β̂ridge(λ)]− β0

∥∥2

Σ
=
∥∥λ(Σ̂ + λI)−1β0

∥∥2

Σ
= λ2βT0 (Σ̂ + λI)−1Σ(Σ̂ + λI)−1β0, (S.11)

and also the variance,

tr
(
Cov[βridge(λ)]Σ

)
= σ2tr

[
(XTX + nλI)−1XTX(XTX + nλI)−1XTΣ

]
=
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ

]
. (S.12)

Putting together (S.11) and (S.12) proves (18), and the Bayes result (19) follows by taking an expectation over
the bias, as argued previously.

Again, we note that the in-sample prediction risk expressions is given by replacing Σ replaced by Σ̂, yielding

Riskin(β̂ridge(λ);β0) = λ2βT0 (Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1β0 +
σ2

n
tr
[
Σ̂(Σ̂ + λI)−2Σ̂

]
=

p∑
i=1

(
|vTi β0|2

λ2si
(si + λ)2

+
σ2

n

s2
i

(si + λ)2

)
, (S.13)

and

Riskin(β̂ridge(λ)) =
σ2

n
tr
[
λ2α(Σ̂ + λI)−2Σ̂ + Σ̂(Σ̂ + λI)−2Σ̂

]
=
σ2

n

p∑
i=1

αλ2si + s2
i

(si + λ)2
. (S.14)

S.7 Proof of Theorem 1, Part (c)

As we can see from comparing (11), (13) to (S.9), (S.13), the only difference in the latter in-sample prediction
risk expressions is that each summand has been multiplied by si. Therefore the exact same relative bounds apply
termwise, i.e., the arguments for part (a) apply here. The Bayes result again follows just by taking expectations.

S.8 Proof of Lemma 9

As in the proof of Lemma 8, because all matrices here are simultaneously diagonalizable, the claim reduces to one
about eigenvalues, and it suffices to check that e−2x + (1− e−x)2/x ≤ 1.2147/(1 + x) for all x ≥ 0. Completing
the square and simplifying,

e−2x +
(1− e−x)2

x
=

(1 + x)e−2x − 2e−x + 1

x

=
(
√

1 + xe−x − 1√
1+x

)2

x
+

x

1 + x
.

Now observe that, for any constant C > 0,

(
√

1 + xe−x − 1√
1+x

)2

x
+

x

1 + x
≤ (1 + C2)

1

1 + x
(S.15)

⇐⇒ |(1 + x)e−x − 1| ≤ C
√
x

⇐⇒ 1− (1 + x)e−x ≤ C
√
x,
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the last line holding because the basic inequality ex ≥ 1 + x implies that e−x ≤ 1/(1 + x), for x > −1. We see
that for the above line to hold, we may take

C = max
x≥0

[
1− (1 + x)e−x

]
/
√
x = 0.4634,

which has been computed by numerical maximization, i.e., we find that the desired inequality (S.15) holds with
(1 + C2) = 1.2147.

S.9 Proof of Theorem 3, Part (b)

The lower bounds for the in-sample and out-of-sample prediction risks follow by the same arguments as in the
estimation risk case (the ridge estimator here is the Bayes estimator in the case of a normal-normal likelihood-prior
pair, and the risks here do not depend on the specific form of the likelihood and prior).

For the upper bounds, for in-sample prediction risk, we can see from comparing (12), (14) to (S.10), (S.14), the
only difference in the latter expressions is that each summand has been multiplied by si, and hence the same
relative bounds apply termwise, i.e., the arguments for part (a) carry over directly here.

And for out-of-sample prediction risk, the matrix inside the trace in (17) when t = α is

α exp(−2αΣ̂) + Σ̂+(I − exp(−αΣ̂))2,

and the matrix inside the trace in (19) when λ = 1/α is

1/α(Σ̂ + (1/α)I)−2 + Σ̂(Σ̂ + (1/α)I)−2 = α(αΣ̂ + I)−1.

By Lemma 9, we have

α exp(−2αΣ̂) + Σ̂+(I − exp(−αΣ̂))2 � 1.2147α(αΣ̂ + I)−1.

Letting A,B denote the matrices on the left- and right-hand sides above, since A � B and Σ � 0, it holds that
tr(AΣ) ≤ tr(BΣ), which gives the desired result.

S.10 Proof of Theorem 6

Denote C− = {z ∈ C : Im(z) < 0}. By Lemma 2 in Ledoit and Peche (2011), under the conditions stated in the
theorem, for each z ∈ C−, we have

lim
n,p→∞

1

p
tr
[
(Σ̂ + zI)−1Σ

]
→ θ(z) :=

1

γ

(
1

1− γ + γzm(FH,γ)(−z)
− 1

)
, (S.16)

almost surely, where m(FH,γ) denotes the Stieltjes transform of the empirical spectral distribution FH,γ ,

m(FH,γ)(z) =

∫
1

u− z
dFH,γ(u). (S.17)

It is evident that (S.16) is helpful for understanding the Bayes prediction risk of ridge regression (19), where the
resolvent functional tr[(Σ̂ + zI)−1Σ] plays a prominent role.

For the Bayes prediction risk of gradient flow (17), the connection is less clear. However, the Laplace transform is
the key link between (17) and (S.16). In particular, defining g(t) = exp(tA), it is a standard fact that its Laplace
transform L(g)(z) =

∫
e−tzg(t) dt (meaning elementwise integration) is in fact

L(exp(tA))(z) = (A− zI)−1. (S.18)

Using linearity (and invertibility) of the Laplace transform, this means

exp(−2tΣ̂)Σ = L−1
(
(Σ̂ + zI)−1Σ

)
(2t), (S.19)
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Therefore, we have for the bias term in (17),

σ2α

n
tr
[

exp(−2tΣ̂)Σ
]

=
σ2α

n
tr
[
L−1

(
(Σ̂ + zI)−1Σ

)
(2t)

]
=
σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t), (S.20)

where in the second line we again used linearity of the (inverse) Laplace transform. In what follows, we will
show that we can commute the limit as n, p→∞ with the inverse Laplace transform in (S.20), allowing us to
apply the Ledoit-Peche result (S.16), to derive an explicit form for the limiting bias. We first give a more explicit
representation for the inverse Laplace transform in terms of a line integral in the complex plane

σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t) =

σ2pα

n

1

2πi

∫ a+i∞

a−i∞
tr
[
p−1(Σ̂ + zI)−1Σ

]
exp(2tz) dz,

where i =
√
−1, and a ∈ R is chosen so that the line [a− i∞, a+ i∞] lies to the right of all singularities of the

map z 7→ tr[p−1(Σ̂ + zI)−1Σ]. Thus, we may fix any a > 0, and reparametrize the integral above as

σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t) =

σ2pα

n

1

2π

∫ ∞
−∞

tr
[
p−1
(
Σ̂ + (a+ ib)I

)−1
Σ
]

exp(2t(a+ ib)) db

=
σ2pα

n

1

π

∫ 0

−∞
Re
(

tr
[
p−1
(
Σ̂ + (a+ ib)I

)−1
Σ
]

exp(2t(a+ ib))
)
db. (S.21)

The second line can be explained as follows. A straightforward calculation, given in Lemma S.1, shows that the
function hn,p(z) = tr[p−1

(
Σ̂ + zI

)−1
Σ] exp(2tz) satisfies hn,p(z) = hn,p(z); another short calculation, deferred to

Lemma S.2, shows that for any function with such a property, its integral over a vertical line in the complex
plane reduces to the integral of twice its real part, over the line segment below the real axis. Now, noting that
the integrand above satisfies

|hn,p(z)| ≤ ‖(Σ̂ + zI)−1‖2‖Σ‖2 ≤ C2/a,

for all z ∈ [a− i∞, a+ i∞], we can take limits in (S.21) and apply the dominated convergence theorem, to yield
that almost surely,

lim
n,p→∞

σ2pα

n
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2t)

= σ2γα0
1

π

∫ 0

−∞
lim

n,p→∞
Re
(

tr
[
p−1
(
Σ̂ + (a+ ib)I

)−1
Σ
]

exp(2t(a+ ib))
)
db

= σ2γα0
1

π

∫ 0

−∞
Re
(
θ(a+ ib) exp(2t(a+ ib))

)
db

= σ2γα0
1

2π

∫ ∞
−∞

θ(a+ ib) exp(2t(a+ ib)) db

= σ2γα0L−1(θ)(2t). (S.22)

In the second equality, we used the Ledoit-Peche result (S.16), which applies because a+ ib ∈ C− for b in the
range of integration. In the third and fourth equalities, we essentially reversed the arguments leading to (S.20),
but with h(z) = θ(z) exp(2tz) in place of hn,p (note that h must also satisfy h(z) = h(z), as it is the pointwise
limit of hn,p, which has this same property).

As for the variance term in (17), consider differentiating with respect to t, to yield

d

dt

σ2

n
tr
[
Σ̂+(I − exp(−tΣ̂))2Σ

]
=

2σ2

n
tr
[
Σ̂+Σ̂(I − exp(−tΣ̂)) exp(−tΣ̂)Σ

]
=

2σ2

n
tr
[
(I − exp(−tΣ̂)) exp(−tΣ̂)Σ

]
,
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with the second line following because the column space of I − exp(−tΣ̂) matches that of Σ̂. The fundamental
theorem of calculus then implies that the variance equals

2σ2

n

∫ t

0

tr
[
(exp(−uΣ̂)− exp(−2uΣ̂))Σ

]
du =

2σ2p

n

∫ t

0

[
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(u)− L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2u)

]
du,

where the equality is due to inverting the Laplace transform fact (S.18), as done in (S.19) for the bias. The same
arugments for the bias now carry over here, to imply

lim
n,p→∞

2σ2

n

∫ t

0

[
L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(u)− L−1

(
tr
[
p−1(Σ̂ + zI)−1Σ

])
(2u)

]
du =

2σ2γ

∫ t

0

(
L−1(θ)(u)− L−1(θ)(2u)

)
du. (S.23)

Putting together (S.22) and (S.23) completes the proof.

S.11 Supporting Lemmas

Lemma S.1. For any real matrices A,B � 0 and t ≥ 0, define

f(z) = tr
[
(A+ zI)−1B

]
exp(2tz),

over z ∈ C+ = {z ∈ C : Im(z) > 0}. Then f(z) = f(z).

Proof. First note that exp(2tz) = exp(2tz) by Euler’s formula. As the conjugate of a product is the product of
conjugates, it suffices to show that tr[(A+ zI)−1B] = tr[(A+ zI)−1B]. To this end, denote Cz = (A+ zI)−1,
and denote by C∗z its adjoint (conjugate transpose). Note that tr(CzB) = tr(C∗zB); we will show that C∗z = Cz,
which would then imply the desired result. Equivalent to C∗z = Cz is 〈Czx, y〉 = 〈x,Czy〉 for all complex vectors
x, y (where 〈·, ·〉 denotes the standard inner product). Observe

〈Czx, y〉 = 〈Czx, (A+ zI)Czy〉
= 〈(A+ zI)∗Czx, Czy〉
= 〈(A+ zI)Czx, Czy〉
= 〈x,Czy〉,

which completes the proof.

Lemma S.2. If f : C→ C satisfies f(z) = f(z), then for any a ∈ R,∫ ∞
−∞

f(a+ ib) db = 2

∫ 0

−∞
Re(f(a+ ib)) db.

Proof. The property f(z) = f(z) means that Re(f(a− ib)) = Re(f(a+ ib)), and Im(f(a− ib)) = −Im(f(a+ ib)).
Thus ∫ ∞

−∞
f(a+ ib) db =

∫ ∞
−∞

Re(f(a+ ib)) db+ i

∫ ∞
−∞

Im(f(a+ ib)) db

= 2

∫ 0

−∞
Re(f(a+ ib)) db+ 0,

which completes the proof.
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S.12 Asymptotics for Ridge Regression

Under the conditions of Theorem 5, for each λ ≥ 0, the Bayes risk (14) of ridge regression converges almost surely
to

σ2γ

∫
α0λ

2 + s

(s+ λ)2
dFH,γ . (S.24)

This is simply an application of weak convergence of FΣ̂ to FH,γ (as argued the proof of Theorem 5), and can
also be found in, e.g., Chapter 3 of Tulino and Verdu (2004).

The limiting Bayes prediction risk is a more difficult calculation. It is shown in Dobriban and Wager (2018) that,
under the conditions of Theorem 6, for each λ ≥ 0, the Bayes prediction risk (19) of ridge regression converges
almost surely to

σ2γ
[
θ(λ) + λ(1− α0λ)θ′(λ)

]
, (S.25)

where θ(λ) is as defined in (S.16). The calculation (19) makes use of the Ledoit-Peche result (S.16), and Vitali’s
theorem (to assure the convergence of the derivative of the resolvent functional in (S.16)).

It is interesting to compare the limiting Bayes prediction risks (S.25) and (21). For concreteness, we can rewrite
the latter as

σ2γ

[
α0L−1(θ)(2t) + 2

∫ t

0

(L−1(θ)(u)− L−1(θ)(2u)) du

]
. (S.26)

We see that (S.25) features θ and its derivative, while (S.26) features the inverse Laplace transform L−1(θ) and
its antiderivative.

In fact, a similar structure can be observed by rewriting the limiting risks (S.24) and (20). By simply expanding
s = (s+ λ)− λ in the numerator in (S.24), and using the definition of the Stieltjes transform (S.17), the limiting
Bayes risk of ridge becomes

σ2γ
[
m(FH,γ)(−λ)− λ(1− α0λ)m(FH,γ)′(−λ)

]
. (S.27)

By following arguments similar to the treatment of the variance term in the proof of Theorem 6, in Section S.10,
the limiting Bayes risk of gradient flow becomes

σ2γ

[
α0L(fH,γ)(2t) + 2

∫ t

0

(L(fH,γ)(u)− L(fH,γ)(2u)) du

]
, (S.28)

where fH,γ = dFH,γ/ds denotes the density of the empirical spectral distribution FH,γ , and L(fH,γ) its Laplace
transform. We see (S.27) features m(FH,λ) and its derivative, and (S.28) features L(fH,γ) and its antiderivative.
But indeed L(L(fH,γ))(λ) = m(FH,λ)(−λ), since we can (in general) view the Stieltjes transform as an iterated
Laplace transform. This creates a symmetric link between (S.27), (S.28) and (S.25), (S.26), where m(FH,γ)(−λ)
in the former plays the role of θ(λ) in the latter.

S.13 Additional Numerical Results

Here we show the complete set of numerical results comparing gradient flow and ridge regression. The setup is as
described in Section 7. Figure S.1 shows the results for Gaussian features in the low-dimensional case (n = 1000,
p = 500). The first row shows the estimation risk when Σ = I, with the left plot using λ = 1/t calibration, and
the right plot using `2 norm calibration (details on this calibration explained below). The second row shows the
estimation risk when Σ has all off-diagonals equal to ρ = 0.5. The third row shows the prediction risk for the
same Σ (n.b., the prediction risk when Σ = I is the same as the estimation risk, so it is redundant to show both).
The conclusions throughout are similar to that made in Section 7. Calibration by `2 norm gives extremely good
agreement: the maximum ratio of gradient flow to ridge risk (over the entire path, in any of the three rows) is
1.0367. Calibration by λ = 1/t is still quite good, but markedly worse: the maximum ratio of gradient flow to
ridge risk (again over the entire path, in any of the three rows) is 1.4158.

Figures S.2 shows analogous results for Gaussian features in the high-dimensional case (n = 500, p = 1000).
Figures S.3–S.6 show the results for Student t and Bernoulli features. The results are similar throughout: the
maximum ratio of gradient flow to ridge risk, under `2 norm calibration (over the entire path, in any setting),
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is 1.0371; the maximum ratio, under λ = 1/t calibration (over the entire path, in any setting), is 1.4154. (One
noticeable, but unremarkable difference between the settings is that the finite-sample risks seem to be converging
slower to their asymptotic analogs in the case of t features. This is likely due to the fact that the tails here are
very fat—they are as fat as possible for the t family, subject to the second moment being finite.)

It helps to give further details for a few of the calculations. For `2 norm calibration, note that we can compute
the expected squared `2 norm of the ridge and gradient flow estimators under the data model (9) and prior (10):

E‖β̂ridge(λ)‖22 =
1

n

(
tr
[
α(Σ̂ + λI)−2Σ̂2

]
+ tr

[
(Σ̂ + λI)−2Σ̂

])
=

1

n

p∑
i=1

αs2
i + si

(si + λ)2
,

E‖β̂gf(t)‖22 =
1

n

(
tr
[
α(I − exp(−tΣ̂))2

]
+ tr

[
(I − exp(−tΣ̂))2Σ̂+

])
=

1

n

p∑
i=1

(
α(1− exp(−tsi))2 +

(1− exp(−tsi))2

si

)
.

We thus calibrate according to the square root of the quantities above (this is what is plotted on the x-axis in
the left columns of all the figures). The above expressions have the following limits under the asymptotic model
studied in Theorem 5:

E‖β̂ridge(λ)‖22 → γ

∫
α0s

2 + s

(s+ λ)2
dFH,γ(s),

E‖β̂gf(t)‖22 → γ

∫ (
α0(1− exp(−ts))2 +

(1− exp(−ts))2

s

)
dFH,γ(s).

Furthermore, we note that when Σ = I, the empirical spectral distribution from Theorem 4 abbreviated as Fγ ,
sometimes called the Marchenko-Pastur (MP) law and has a closed form. For γ ≤ 1, its density is

dFγ(s)

ds
=

1

2πγs

√
(b− s)(s− a),

and is supported on [a, b], where a = (1−√γ)2 and b = (1 +
√
γ)2. For γ > 1, the MP law Fγ has an additional

point mass at zero of probability 1− 1/γ. This allows us to evaluate the integrals in (20), (S.24) via numerical
integration, to compute limiting risks for gradient flow and ridge regression. (It also allows us to compute the
integrals in the second to last display, to calibrate according to limiting `2 norms.)
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Figure S.1: Gaussian features, with n = 1000 and p = 500.
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Figure S.2: Gaussian features, with n = 500 and p = 1000.
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Figure S.3: Student t features, with n = 1000 and p = 500.
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Figure S.4: Student t features, with n = 500 and p = 1000.



Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani

1e−03 1e−01 1e+01 1e+03

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Bernoulli, rho = 0

1/lambda or t

R
is

k

Ridge (finite−sample)
Grad flow (finite−sample)
Ridge (asymptotic)
Grad flow (asymptotic)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Bernoulli, rho = 0

L2 Norm

R
is

k

1e−03 1e−01 1e+01 1e+03

1.
0

1.
5

2.
0

Bernoulli, rho = 0.5

1/lambda or t

R
is

k

Ridge (finite−sample)
Grad flow (finite−sample)

0.0 0.5 1.0 1.5

1.
0

1.
5

2.
0

Bernoulli, rho = 0.5

L2 Norm

R
is

k

1e−03 1e−01 1e+01 1e+03

0.
4

0.
6

0.
8

1.
0

Bernoulli, rho = 0.5

1/lambda or t

P
re

di
ct

io
n 

R
is

k

Ridge (finite−sample)
Grad flow (finite−sample)

0.0 0.5 1.0 1.5

0.
4

0.
6

0.
8

1.
0

Bernoulli, rho = 0.5

L2 Norm

P
re

di
ct

io
n 

R
is

k

Figure S.5: Bernoulli features, with n = 1000 and p = 500.
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Figure S.6: Bernoulli features, with n = 500 and p = 1000.
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