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A Dealing with di↵erent samples sizes

and dimensions

In the general case where we consider collections of po-
tentially di↵erent size (n 6= m) of vectors of potentially
di↵erent dimensionality (dx 6= dy), we have thatX and
Y are matrices of size dx⇥m and dy⇥n, respectively,
while P is of size dx ⇥ dy.

Note that for the transportation problem in (10), i.e.,

max
�2⇧(p,q)

h�,X>
PYi,

the dimensions dx, dy are irrelevant. While the trans-
portation coupling ��� is now of size m⇥n, the problem
is equally meaningful as before, i.e., DOT is well for-
mulated and solved analogously in this case (n 6= m)
as in the case of equal-sized marginals.

On the other hand, the transformation problem in
(10), namely

max
P2F

hX�Y>,Pi,

is oblivious to n and m. However, when dx 6= dy,
the problem no longer admits a closed form solution
in general, so in this case this step requires optimiza-
tion too. However, there exist various iterative al-
gorithms to solve this problem—known as unbalanced
Procrustes—e�ciently (Gower and Dijksterhuis, 2004;
Park, 1991; Viklands, 2006).

B The case p = 1

Recall that the Schatten `1-norm is the nuclear norm
kAk⇤ =

Pn
i=1 �i(A). Therefore, the invariance set of

interest is now

F1 = {P | kPk⇤ = d} , (17)

which, as before, contains the identity matrix. Note
that adding either condition in Lemma 4.1 yields,
again, the set of orthonormal matrices.6 Therefore,
in the case one wants to rely on Lemma 4.2 to solve
the problem e�ciently, this choice of invariance ends
up being equivalent to the p = 1 case described in
Section 4.1. However, we remark that this equivalence
is a consequence of the simplifying assumptions, and
that one could still solve this problem with the Frank-
Wolfe approach described in Section 4.3, in which case
the two cases p = 1 and p = 1 would indeed lead to
di↵erent solutions.

6
The intersection of the Schatten `2 and `1 norm balls,

defined in terms of that of the `2 and `1 vector norm balls,

occurs in the extreme points of the latter (see Fig. 1).

C Further Extensions

The framework proposed here can be further extended
by considering other transformations that can be easily
incorporated into the Procrustes problem framework.
For example, scaling and translation can be added on
top of orthogonal Procrustes and still yield a closed
form solution (Gower and Dijksterhuis, 2004).

D Proofs

Lemma 4.1. If any of the following conditions holds;

1. 8P 2 F , P is angle-preserving

2. 9k � 0 : kPkF = k 8P 2 F and the matrix Y

is ⌫-whitened (i.e., Y diag (q)2 Y0 = Id).

then problem (9) is equivalent to

max
�2⇧(µ,q)

max
P2F

h�,X0
PYi = max

�2⇧(p,q)
max
P2F

hX�Y0,Pi

(18)

Proof. Suppose (1) holds, i.e., hPx,Pyi = hx,yi for
every x,y 2 Rd. Then, in particular kPyk2 = kyk2
for every y

(j), and therefore:

hv,qi =
mX

j=1

kPy
(j)
k2 = ky(j)

k2

and therefore only the first term in (10) depends on P

or �, from which the conclusion follows. On the other
hand, suppose (2) holds, and let Ỹ = Y diag (q), so
that ỸỸ

0 = Id. We have:

hv,qi =
mX

i=1

qjkPy
(j)
k
2
2

=
mX

j=1

kPy
(j)qjk

2
2

= kPỸk
2
2

= hPỸ,PỸi = hP,PỸỸ
0
i = kPk2F = k2,

that is, hv,qi again does not depend on P. This con-
cludes the proof.

Lemma 4.2. Let M be a matrix with SVD decompo-
sition M = U⌃V0 and let ⌃ = diag (���), then

argmax
P:kPkpk

hP,Mi = U diag (s)V0 (19)

where s is such that kskp  k and attains s0��� = kk���kq,
for k · kq the dual norm of k · kp.
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Proof. Suppose P is such that kPkp  k, and let
UP diag (s)V0

P be its singular value decomposition.
This implies that kskp = kPk  k. In addition,

hP,Mi = hP,U⌃V0
i

= hU0
PV,⌃i

=
dX

i=1

[U0
PV]ii�i(M)

=
dX

i=1

uiPvi�i(M) 
dX

i=1

si�i(M) = hs,���i

Here, the inequality holds because, by definition of
the SVD decomposition, for every i it must hold that
kuik2 = kvik2 = 1 and

uiPvi  sup
u?span{u1,...,ui�1}

v?span{v1,...,vi�1}

u
0
Pv

kukkvk
 �i(P) = si

(20)
Therefore:

sup
P:kPkpk

hP,Mi  sup
s:kskpk

hs,���i

= k sup
s:kskp1

hs,���i = kk���kq

where the last equality follows from the definition of
dual norm for vectors.

Conversely, take any vector s with kskp = k, and define
P̃(s) = U diag (s)V0. Clearly, kP̃(s)kp = k, so the
supremum must satisfy:

sup
P
hP,Mi � sup

s:kskpk
hP̃(s),Mi

= sup
s:kskpk

hU diag (s)V0,U⌃V0
i

= sup
s:kskpk

hdiag (s) ,⌃i = kk���kq

Therefore, we conclude that the optimal value of (19)
is exactly kk���kq.

Furthermore, (20) holds with equality if and only if
(ui,vi) coincide with the left and right singular vectors
ofP. Thus, anyPmaximizing (19) must have the form
P = U diag (s)V0, with kskp  k and hs,���i = kk���kq,
as stated.

Lemma 4.3. Consider the Gromov-Wasserstein prob-
lem for discrete measures µ and ⌫ (Peyré et al., 2016):

min
�2⇧(p,q)

X

i,j,k,l

L(Cx
ik,C

y
jl)�ij�kl, (21)

where (Cx,p) and (Cy,q) are (intra-space) measured
similarity matrices and L is a loss function. For the

choice of cosine similarity and squared loss L(a, b) =
1
2 |a� b|2, Problems (15) and (14) are equivalent.

Proof. For the choice of cosine metric, and assuming
without loss of generality that the columns of X and
Y are normalized, the similarity matrices are given by
C

x = X
>
X and C

y = Y
>
Y. In addition, let L be

the `2 loss, i.e., L(a, b) = |a� b|2. Then the objective
in problem (21) becomes:

L(�) =
X

i,j,k,l

�
C

x
ik �C

y
jl

�2
�ij�kl

=
X

i,j,k,l

�
C

x
ik)

2�ij�kl � 2
X

i,j,k,l

�
C

x
ikC

y
jl

�
�ij�kl

+
X

i,j,k,l

�
C

y
jl

�2
�ij�kl

Since � 2 ⇧(p,q), the first of these terms becomes

X

i,k

�
C

x
ik)

2
X

j,l

�ij�jl =
X

i,k

�
C

x
ik)

2
pipk = p

>(Cx)2p

where p is the vector of probabilities in empirical dis-
tribution µ, and the last equation follows from the def-
inition of the transportation polytope. Crucially, this
term does not depend on � anymore. Analogously, the
last term in L(�) does not depend on � either, so

argmin
�2⇧(p,q)

L(�) = argmax
�2⇧(p,q)

X

i,j,k,l

�
C

x
ikC

y
jl

�
�ij�kl (22)

On the other hand, consider problem (14). The objec-
tive it seeks to maximize is

kX�Y>
k
2
F = hX�Y>,X�Y>

i

= hX>
X�,�YY

>
i

=
nX

i=1

mX

l=1

⇥
X

>
X�
⇤
il

⇥
�Y>

Y
⇤
il

=
nX

i=1

mX

l=1

⇥
C

x�
⇤
il

⇥
�Cy

⇤
il

=
nX

i=1

mX

l=1

 
nX

k=1

C
x
ik�kl

!0

@
mX

j=1

�ijC
y
jl

1

A

=
nX

i=1

mX

l=1

nX

k=1

mX

j=1

C
x
ik�kl�ijC

y
jl

which is exactly the objective in (22). Hence, Problems
(14) and (21) are indeed equivalent.
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E The Algorithm

Algorithm 1 Optimal Transport with Invariances

Inputs:

• Data matrices and histograms (X,p), (Y,q)
• Order of invariance p and radius kp
• Initial/final entropy regularization �0 and �,
decay rate ⌘

// Initialize feasible transformation in Fp

U,⌃⌃⌃,V>
 SVD(RandomMatrix(d⇥ d))

���  diag (⌃⌃⌃)
s kp · ���/k���kp
P = U diag (s)V>

� �0

while not converged do

// Compute distances w.r.t. current mapping P

CP  PairwiseDistances(X,PY)
// Solve regularized OT via Sinkhorn iterations
b , K exp{�CP/�}
while not converged do

a p↵Kb

b q↵K
>
a

end while

��� diag (a)K diag (b)
// Solve generalized Procrustes problem
U,⌃⌃⌃,V>

 SVD(X���Y>)
���  diag (⌃⌃⌃)
q  p

p�1

s kp · ���q�1/k���q�1
kp

P = U diag (s)V>

// Anneal entropy regularization
� max{� ⇤ ⌘,�}

end while

return ���,P

F Solving very large problems

While direct application of Algorithm 1 leads to high-
quality solutions for small and mid-sized problems,
scaling up to very large sets of points—e.g., hundreds
of thousands of word embeddings in the word transla-
tion application—can be prohibitive.

We address this issue by dividing the problem into two
phases. In the first stage, we solve a smaller problem
(by taking a subsample of k points on each domain
thus leading to smaller � and faster OT solution, but
same size of P). Once the first phase reaches con-
vergence, we use the solution P

⇤ of the first stage to
initialize the full-size problem. Note that while this
might resemble other approaches that also consider a
reduced set of points in their initialization step (Con-
neau et al., 2018; Grave et al., 2018), a crucial dif-

ference is that here we rely on the same optimization
problem (16) in both stages, although with di↵erent
problem sizes.

We experimented with various choices of parameter k,
and observed that the algorithm is remarkably robust
to the choice of this parameter. We conjecture that
the ordering in which word embeddings are provided
(higher-frequency words first, in every language) helps
ensure that the solution of the initial problem of re-
duced size is consistent with the full-size problem.7

While the end performance is consistent regardless of
the choice of sub-sample size k, there is naturally a
trade-o↵ in run time of the two stages. While solv-
ing a smaller initial problem is obviously faster, we
observed that in such cases the second stage required
more iterations to converge, suggesting that the ini-
tial P⇤ fed into the second stage was of lower quality
(further from the optimal for the full-size problem).
In the results presented in Section 5.2, we take k as
large as possible while keeping the time-per-iteration
reasonable: k = 5000.

Note that this strategy of bootstrapping solutions of
smaller problems can be applied repeatedly, to in-
creasingly grow the problem size over multiple stages.
While we did not require to do so in our experiments, it
might be an appealing approach for solving extremely
large problems.

7
This, in fact, points to an issue mostly ignored in

previous work on this task: the order of the word em-

beddings leaks important—albeit noisy—correspondence

information, which various methods presented as ’fully-

unsupervised’ seem to rely on one way or another, yet

rarely acknowledge it.


