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Abstract

The parameter space of a deep neural net-
work is a Riemannian manifold, where the
metric is defined by the Fisher information
matrix. The natural gradient method uses
the steepest descent direction in a Rieman-
nian manifold, but it requires inversion of the
Fisher matrix, however, which is practically
difficult. The present paper uses statistical
neurodynamical method to reveal the proper-
ties of the Fisher information matrix in a net
of random connections. We prove that the
Fisher information matrix is unit-wise block
diagonal supplemented by small order terms
of off-block-diagonal elements. We further
prove that the Fisher information matrix of
a single unit has a simple reduced form, a
sum of a diagonal matrix and a rank 2 ma-
trix of weight-bias correlations. We obtain
the inverse of Fisher information explicitly.
We then have an explicit form of the approxi-
mate natural gradient, without relying on the
matrix inversion.

1 INTRODUCTION

In modern deep learning, multilayer neural networks
are usually trained by using the stochastic gradient-
descent method (See Amari, 1967 for one of the earliest
proposal of stochastic gradient descent for the purpose
of applying it to multilayer networks). The parame-
ter space of multilayer networks forms a Riemannian
space equipped with Fisher information metric. Thus,
instead of the usual gradient descent method, the nat-
ural gradient or Riemannian gradient method, which
takes account of the geometric structure of the Riem-
manian space, is more effective for learning (Amari,
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1998). However, it has been difficult to apply the nat-
ural gradient descent because it needs the inversion
of the Fisher information matrix, which is computa-
tionally heavy. Many approximation methods reduc-
ing computational costs have therefore been proposed
(see Pascanu & Bengio, 2013; Ollivier, 2015; Grosse &
Martens, 2016; Martens, 2017).

To resolve the computational difficulty of the natural
gradient, we use a neural network of random connec-
tions and analyze its Fisher information matrix. We
prove that, when the number n of neural units in each
layer is sufficiently large, the subblocks of the Fisher
information matrix G corresponding to different lay-
ers are of order 1/

√
n, which is negligibly small. Thus,

G is approximated by a layer-wise diagonalized ma-
trix. Furthermore, within the same layer, the sub-
blocks among different units are also of order 1/

√
n.

This justifies the use of unit-wise diagonalized G.

This gives a justification for the unit-wise natural gra-
dient method proposed by Kurita (1994) and studied
in detail by Ollivier (2015) and Marceau-Caron and
Ollivier (2016). We further study the Fisher informa-
tion matrix of a unit —that is, a simple perceptron—
for the purpose of implementing unit-wise natural gra-
dient learning. We obtain an explicit form of the
Fisher information matrix and its inverse under the as-
sumption that inputs are subject to the standard non-
correlated Gaussian distribution with mean 0. This
assumption is approximately satisfied when we use
a residual network with ReLU activation functions.
The unit-wise natural gradient is explicitly formulated
without matrix inversion, making it possible that nat-
ural gradient learning is realized without the burden
of heavy computation. Although, our approximation
method is justified only for random networks under
the mean-field assumption, it is expected that it would
be effective for training actual deep networks, consid-
ering the good performances shown in Ollivier, 2015
and Marceau-Caron and Ollivier, 2016.

The present paper is purely theoretical. It is needless
to say that computer simulations are necessary to show
the usefulness.
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Figure 1: Deep neural network

2 DEEP NEURAL NETWORKS

We consider a deep neural network consisting of L lay-

ers. Let
l−1
x be the input vectors to the l-th layer and

l
x the output vector of the l-th layer (see Figure 1).
The input-output relation of the l-th layer is written
as

l
xi= ϕ

∑
j

l
wij

l−1
xj +

l

bi

 , (1)

where ϕ is an activation function such as a rectified
linear function (ReLU), sigmoid function, etc. Let nl
be the number of neurons in the l-th layer. We as-
sume that n1, n2, · · · , nL−1 are large, but the number
of neurons in the final layer, nL, can be small. Even

nL = 1 is allowed. The weights
l
wij and biases

l

bj are
random variables subject to independent Gaussian dis-
tributions with mean 0 and variances σ2

l /nl−1 and σ2
bl,

respectively. Note that each weight is a random vari-

able of order 1/
√
nl−1, but the weighted sum

∑ l
wij

l−1
xj

is of order 1.

We recapturate briefly the feedforward analysis of in-
put signals given in Poole et al., 2016 and Amari,
Karakida and Oizumi, 2018, to introduce the activ-

ity
l

A and enlargement factor
l
χ. They also play a role

in the feedback analysis obtaining the Fisher informa-
tion (Schoenholtz et al., 2016; Karakida, Akaho and
Amari, 2018).

Let us put
l
ui=

∑
j

l
wij

l−1
xj +

l

bi . (2)

Given
l−1
x ,

l
ui are independently and identically dis-

tributed (iid) Gaussian random variables with mean 0
and variance

τ2l =
σ2
l

n

∑(
l−1
xj

)2
+ σ2

bl =
l−1
A σ2

l + σ2
bl, (3)

where
l−1
A =

1

nl−1

∑ l−1
xj

2 (4)

is the total activity of input
l−1
x .

It is easy to show how
l

A develops across the layers.

Since x2j = ϕ (uj)
2

are iid when
l−1
x is fixed, the law of

large numbers guarantees that their sum is replaced by
the expectation when nl−1 is large. Putting uj = τlv
where v is the standard Gaussian variables, we have a
recursive equation,

l

A=

∫
{ϕ (τl v)}2Dv, (5)

where τl in equation (3) depends on
l−1
A and

Dv =
1√
2π

exp

{
−v

2

2

}
dv. (6)

Since equation (1) gives the transformation from
l−1
x

to
l
x, we study how a small difference d

l−1
x in the

input develops to give difference d
l
x in the output.

By differentiating equation (1), we have

d
l
x=

l

B d
l−1
x (7)

where
l

B=
∂

l
x

∂
l−1
x

(8)

is the Jacobian matrix whose (il, ii−1)-th element is
given by

Bil
il−1

= ϕ′ (uil)w
il
il−1

. (9)

It is a random variable of order 1/
√
nl−1. Here and

hereafter, we denote
l
wij by wil

il−1
, eliminating super-

fix l and using il and il−1 instead of i and j. These
index notations are convenient for showing that the
corresponding w’s belong to layer l.

We show how the square of the Euclidean length of

d
l
x,

d
l
s 2 =

∑
li

(dxli)
2
, (10)

is related to that of d
l−1
x . This relation can be seen

from

d
l
s 2 =

∑
il,il−1,i′l−1

Bil
il−1

Bil
i′l−1

dxil−1
dxi′l−1

. (11)

For any pair il−1 and i′l−1, nl random variables

Bil
il−1

Bil
i′l−1

are iid for all il when
l−1
x is fixed, so the

law of large numbers guarantees that∑
il

Bil
il−1

Bil
i′l−1

= nlE
[
ϕ′ (uil)

2
wil

il−1
wil

i′l−1

]
+Op

(
1
√
nl

)
,

(12)
where E is the expectation with respect to the weights
and biases and Op(1/

√
n) represents small terms of
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stochastic order 1/
√
n. We use the mean field property

that ϕ′ (uil) has the self-averaging property and the

average of the product of ϕ′ (uil)
2

and wil
il−1

wil
i′l−1

in

equation (12) splits as

E
[
ϕ′ (uil)

2
]

E
[
wil

il−1
wil

i′l−1

]
. (13)

This is justified in appendix I. By putting

l
χ= σ2

l

∫
{ϕ′ (τlv)}2Dv, (14)

we have from equation (11)

d
l
s 2 =

l
χ d

l−1
s2 , (15)

by using

E
[
wil

il−1
wil

i′l−1

]
=
σ2
l

nl
δil−1i′l−1

. (16)

Here
l
χ which depends on

l−1
A , is the enlargement factor

showing how d
l−1
x is enlarged or reduced across layer

l.

¿From the recursive relation (15), we have

d
L

s2 = χL
l d

l−1
s2 , (17)

χL
l =

L
χ

L−1
χ · · ·

l
χ . (18)

Assume that all the
l
χ are equal. Then, it gives the

Lyapunov exponent of dynamics equation (15). When
it is larger than 1, the length diverges as the layers
proceed, whereas when it is smaller than 1 the length

decays to 0. The dynamics of d
l

s2 is chaotic when
l
χ> 1

(Poole et al, 2016). Interesting information processing
takes place at the edge of chaos, where χL

l is nearly
equal to 1 (Yang & Schoenholz, 2017).

3 FISHER INFORMATION OF
DEEP NETWORKS AND
NATURAL GRADIENT
LEARNING

We study a regression model in which the output of

layer L,
L
x= ϕ(

L
u),

y =
L
x +ε, (19)

where ε ∼ N(0, I) is a multivariate Gaussian random
variable with mean 0 and identity covariance matrix
I. Then the probability of y given input x is

p(y|x;W ) =
1(√

2π
)nL

exp

{
−1

2

∣∣∣∣y− L
x

∣∣∣∣2
}
, (20)

where W consists of all the parameters
l
w, and

l

b, l =
1, · · · , L. The Fisher information matrix is given by

G = Ex,y [(∂W log p) (∂W log p)] , (21)

where Ex,y denotes the expectation with respect to
randomly generated input x and resultant y and ∂W =
∂/∂W is gradient with respect to W . By using error
vector ε in (19), we have

∂W log p = ε · ∂W
L
x . (22)

For fixed x, expectation with respect to y is replaced
by that of ε, where E [εε] = I. Hence, (21) is given by

G = Ex

[∑
iL

{∂Wϕ (uiL)} {∂Wϕ (uiL)}

]
. (23)

Here, we use the dyadic or tensor notation that ab im-
plies a matrix (aibj), instead of vector-matrix notation
abT for column vectors.

Online learning is a method of modifying the current
W such that the current loss

l =
1

2

∣∣y − xL
t

∣∣2 (24)

decreases, where (xt,yt) is the current input-output
pair. The stochastic gradient decent method (pro-
posed in Amari, 1967) uses the gradient of L to modify
W ,

∆W = −η ∂l

∂W
. (25)

Historically, the first simulation results applied to four-
layer networks for pattern classification were given in a
Japanese book (Amari, 1968). The minibatch method
uses the average of ∂l/∂W over minibatch samples.

The negative gradient is a direction to decrease the
current loss but is not steepest in a Riemannian man-
ifold. The true steepest direction is given by

∇̃l = G−1
∂l

∂W
, (26)

which is called the natural or Riemannian gradient
(Amari, 1998). The natural gradient method is given
by

∆W = −η∇̃l. (27)

It is known to be Fisher efficient for estimating W
(Amari, 1998). Although it gives excellent perfor-
mances, the inversion of G is computationally very
difficult.

To avoid difficulty, the quasi-diagonal natural gradient
method is proposed in Ollivier (2015) and is shown
to be very efficient in Marcereau-Caron and Ollivier
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(2016). A recent proposal (Ollivier, 2017) looks very
promising for realizing natural gradient learning. The
present paper analyzes the structure of the Fisher in-
formation matrix. It will give a justification of the
quasi-diagonal natural gradient method. By using it,
we propose a new method of realizing natural gradient
learning without the burden of inverting G.

4 STRUCTURE OF FISHER
INFORMATION MATRIX

To calculate elements of G, we use a new notation
combining connection weights w and bias b into one
vector,

l

w∗=

(
l
w,

l

b

)
. (28)

For the il-th unit of layer l, it is

w∗il =
(
wil

il−1
, bil
)
. (29)

For l > m, we have the recursive relation

∂
l
x

∂
m
w∗

=
∂

l
x

∂
l−1
x

∂
l−1
x

∂
m
w∗

=
l

B
∂

l−1
x

∂
m
w∗

. (30)

Starting from l = L and using

∂
m
x

∂
m
w∗

= ϕ′
(
m
u
)

m−1
x , (31)

we have

∂
L
x

∂
m
w∗

=
L

B · · ·
m+1

B ϕ′
(
m
u
)

m−1
x . (32)

Put

BL
m+1 =

L

B · · ·
m+1

B , (33)

which is a product of L − (m − 1) matrices. The ele-
ments of BL

m+1 are denoted by BiL
im

.

We calculate the Fisher information G given in equa-
tion (23). The elements of G with respect to layers l
and m are written as

G

(
m

w∗,
l

w∗
)

= Ex

 ∂
L
x

∂
m
w∗
· ∂

L
x

∂
l

w∗

 , (34)

where · denotes the innor product with respect to
L
x.

The (im, im−1) elements of ∂
L
x /∂

m

w∗ are, for fixed
iL,

BiL
im
ϕ′ (uim)xim−1

. (35)

Hence, (34) is written in the component form as[
G

(
m

w∗,
l

w∗
)]imil

im−1il−1

=
∑
iL

BiL
im
BiL

il
ϕ′ (uim)ϕ′ (uil)xim−1

xil−1
.(36)

We first consider the case m = l, that is, two neurons
are in the same layer m. The following lemma is useful
for evaluating

∑
BiL

im
BiL

i′m
.

Domino Lemma We assume that all nl are of order
n.∑

iL,i′L

δiLi′L
BiL

im
B

i′L
i′m

= χL
m+1δimi′m

+Op

(
1√
n

)
. (37)

Proof. We first prove the case with m = L − 1. We
have∑

δiLi′L
BiL

iL−1
B

i′L
i′L−1

=
∑
iL

{ϕ′ (uiL)}2 wiL
iL−1

wiL
i′L−1

.

(38)
When iL−1 = i′L−1, this is a sum of nL iid random

variables {ϕ′ (uiL)}2
(
wiL

iL−1

)2
, when input x is fixed.

Therefore, the law of large numbers guarantees that,
as nL goes to infinity, their sum converges to the ex-
pectation,

nLEx

[
{ϕ′ (uiL)}2

(
wiL

iL−1

)2]
=

L
χ (39)

under the mean field approximation for any iL. For
fixed iL−1 6= i′L−1, the right-hand side of equation (38)
is also a sum of iid variables with mean 0. Hence, its
mean is 0. We evaluate its variance, proving that the
variance is

nLE

[
{ϕ′ (uiL)}4

(
wiL

iL−1

)2 (
wiL

i′L−1

)2]
(40)

which is of order 1/nL, because E

[(
wiL

iL−1

)2]
is of

order 1/nL. Hence we have∑
δiLi′L

BiL
iL−1

B
i′L
i′L−1

=
L
χ δiL−1i′L−1

+Op

(
1
√
nL

)
.

(41)
When m < L − 1, we repeat the process L − 1, · · · .
Then δiLi′L

in the left-hand side of equation (37) prop-
agates to give δimi′m

like the domino effect, leaving

multiplicative factors
l
χ. This proves the theorem.

Remark: The domino lemma holds irrespective of
nl > nl−1 or nl < nl−1, provided they are large.
However, matrix BL

m is not of full rank, its rank
being min {nL, · · · , nm}.
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By using this result, we evaluate off-diagonal blocks of
G under the mean field approximation (39).

Theorem 1. The Fisher information matrix G is
unit-wise diagonal except for terms of stochastic or-
der Op(1/

√
n).

Proof. We first calculate the off-diagonal blocks of the
Fisher information matrix within the same layers. The
Fisher information submatrix within layer m is

G

(
m

w∗,
m

w
′∗

)
= Ex

[∑
δiLi′L

BiL
im
BiL

i′m

×ϕ′ (uim)ϕ′
(
ui′m
)
xim−1

xi′m−1

]
, (42)

which are elements of submatrix of G corresponding
to neurons im and i′m both in the same layer m. By
the domino lemma, we have

G

(
m

w∗,
m

w
′∗

)
= Ex

[
χL
m {ϕ′ (uim)}2 xim−1

xi′m−1

]
δimi′m

,

(43)
except for terms of order 1/

√
n. This shows that the

submatrix is unit-wise block diagonal: That is, the
blocks of different neurons im and i′m (im 6= i′m) are 0
except for terms of order 1/

√
n.

We next study the blocks of different layers l and
m (m < l). We have

BiL
im

=
∑
il

BiL
il
Bil

im
. (44)

By using the domino lemma, G is written as

Ex

[
χL
l B

il
im
ϕ′ (uil)ϕ

′ (uim)
l−1
x

m−1
x

]
. (45)

When m = l − 1,

Bil
im−1

= ϕ′ (uil)w
il
im−1

(46)

and hence it is of order 1/
√
n. In general, Bil

im
is a sum

of nl−m 0 mean iid random variables with variance of
order 1/nl−m+1. Hence, its mean is 0 and variance is
of order 1/n, proving that (45) is of order 1/

√
n.

Inspired from this, we define a new metric G∗ as an ap-
proximation of G, such that all the off-diagonal block
terms of G are discarded, putting them equal to 0.
We study the natural (Riemannian) gradient method
which uses G∗ as the Riemannian metric. Note that
G∗ is an approximation of G, G tending to G∗ for
n→∞ in the max-norm, but G∗−1 is not a good ap-
proximation to G−1. This is because the max-norm
of a matrix is not sub-multiplicative. In other words,

when G is approximately block-diagonal, G2 and G−1

do not have this property.

The present study focuses on the approximated metric
G∗. It enables us to give an explicit form of the Fisher
information matrix, directly applicable to natural gra-
dient methods, as follows.

5 UNIT-WISE FISHER
INFORMATION

Because G∗ is unit-wise block-diagonal, it is enough
to calculate the Fisher information matrices of single
units. We assume that its input vector x is subject to
N(0, I). This does not hold in general. However, it
holds approximately for a randomly connected resnet,
as is shown in the next section.

Let us introduce a new (n+ 1)-dimensional vectors for
a single unit:

w∗ = (w, w0), (47)

x∗ = (x, x0), (48)

where w0 = b and x0 = 1. Then, the output of the
unit is ϕ(u) = ϕ(w∗ · x∗), u = w∗ · x∗. The Fisher
information is an (n+ 1)× (n+ 1) matrix written as

G = Ex

[
{ϕ′(u)}2 x∗x∗

]
. (49)

We introduce a set of new n + 1 orthonormal basis
vectors in the space of x∗ = (x, x0) as

e∗0 = (0, · · · , 0, 1), (50)

e∗i = (ai, 0), i = 1, 2, · · · , n− 1, (51)

e∗n =
1

w
(w, 0), w2 = w ·w, (52)

where ai, i = 1, · · ·n, are arbitrary orthogonal unit
vectors, satisfying ai ·w = 0, ai · aj = δij . That is,
{e∗1, · · · , e∗n} is a rotation of {e1, · · · , en} and we put
e0 = e∗0.

Here {e∗i } , i = 0, 1, · · · , n, n + 1 are mutually orthog-
onal unit vectors and e∗n is the unit vector in the di-
rection of w. Since x∗ and w∗ are represented in the
new basis as

x∗ =

n∑
i=0

x∗i e
∗
i , w∗ = be∗0 + we∗n, (53)

we have

G = E
[
{ϕ′ (w∗ · x∗)}2 x∗x∗

]
. (54)

Moreover, (x∗1, · · · , x∗n) are orthogonal transformation
of x = (x1, · · · , xn). Hence, x∗i , i = 1, · · · , n, are
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jointly independent Gaussian, subject to N(0, 1), and
x∗0 = 1.

In order to obtain G, let us put

G =

n∑
i,j=0

Aije
∗
i e
∗
j (55)

in the dyadic notation. Then, the coefficients Aij are
given by

Aij = e∗iGe∗j , (56)

which are (i, j) elements of G in the coordinate system
{e∗i }. From w∗ ·x∗ = wxn +w0 and equation (54), we
have

A00 =

∫
{ϕ′ (wx∗n + w0)}2Dx∗n, (57)

A0n =

∫
x∗n {ϕ′ (wx∗n + w0)}2Dx∗n, (58)

Ann =

∫
x∗2n {ϕ′ (wx∗n + w0)}2Dx∗n, (59)

which depend on (w, w0). We further have, for i =
1, · · · , n− 1,

Aii = e∗iGe∗i = A00, (60)

Aij = e∗iGe∗j = 0 (j 6= i), (61)

Ai0 = e∗iGe∗0 = 0 (i 6= n). (62)

¿From these we obtain G in the dyadic form

G = A00

n∑
i=0

e∗i e
∗
i + (Ann −A00) e∗ne

∗
n

+A0n (e∗0e
∗
n + e∗ne

∗
0) . (63)

The elements of G in the basis {e∗1, · · · , e∗n, e∗0} are

G =


A00 0

. . .

0 A00

0

0 Ann An0

An0 A00.

 , (64)

which shows that G is a sum of a diagonal matrix and
a rank 2 matrix.

The inverse of G has the same block form as equations
(63) and (64). Note that∑

e∗i e
∗
i = I, (65)

e∗ne
∗
n =

1

w2
ww, (66)

e∗0e
∗
n + e∗ne

∗
0 =

1

w
(e0w̃ + w̃e0) , (67)

where w̃ = (w, 0).

By using these relations, G is expressed in the original
basis as

G =
∑

A00 I+
(Ann −A00)

w2
w̃w̃+

A0n

w
(e0w̃ + w̃e0) .

(68)
The inverse of G has also the same form, so we have
an explicit form of G−1

G−1 = Ā00I +
X

w2
w̃w̃ +

Y

w
(e∗0w̃ + w̃e∗0) (69)

+Ze∗0e
∗
0, (70)

where

Ā00 =
1

A00
, X =

1

D
A00 − Ā00, (71)

Y =
−An0

D
, Z =

Ann

D
− Ā00, (72)

D = A00Ann −A2
n0. (73)

By using the above equations, G−1x∗ is obtained
explicitly, so we do not need to calculate back-
propagated G and its inverse for the natural gradient
update of W .

The natural gradient method for each unit is written
by using the back-propagated error e as

∆w∗ = −ηeG−1x∗, (74)

which splits as

∆w = −ηe
[
Ā00x +

(
X

w2
w · x +

Y

w

)
w

]
,(75)

∆w0 = −ηe
(
Ā00 +

w · x
w

Y + Z
)
w0. (76)

We can implement the unit-wise natural gradient
method using equations (75) and (76) without calcu-
lating G∗−1. We will see that a residual network auto-
matically makes the input x to each layer be subject
to a 0-mean Gaussian distribution approximately.

Obviously, W is no more random Gaussian with mean
0 after learning. However, since the unit-wise natural
gradient proposed here is computationally so easy, it
is worth trying for practical applications even in the
process of learning.

Except for a rank 1 term w̃w̃ = (wiwj) and bias terms
e0w̃+ w̃e0, G−1 is a diagonal matrix. In other words,
as is seen in equation (67), it is diagonal except for a
raw and column corresponding to the bias terms and
the rank 1 term w̃w̃. Except for the rank 1 term w̃w̃,
it has the same structure as that of the quasi-diagonal
matrix of Ollivier (2015).
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1l−

x W
l

xV

ϕ

Figure 2: Residual network

6 FISHER INFORMATION OF
RESIDUAL NETWORK

The residual network has direct paths from its input
to output in each layer. We treat the following block

of layer l: The layer l transforms input
l−1
x to output

l
x by

l
xi =

∑
j

l
vij ϕ

(
l
uj

)
+ α

l−1
xi , (77)

l
uj =

∑
k

l
wjk

l−1
xk +

l

bj (78)

(see Figure 2). Here α ≤ 1 is a decay factor, (α = 1 is

conventionally used), and
l
vij are randomly generated

iid Gaussian variables subject to N(0, σ2
v/n).

We show how the activity develops in a residual net-
work (Yang and Schoenholtz, 2017). We easily have
the recursive relation,

l

A= σ2
vĀ

l + α2
l−1
A , (79)

where

Āl =

∫
{ϕ (τlv)}2Dv (80)

Eq (79) shows that
l

A diverges to infinity as l increase
when α ≥ 1. Therefore, we recommend to use α < 1.

The layer l consists of two sublayers. One is the ordi-

nary neural network with weights
l

wjk, bias
l

bj and ac-
tivation function ϕ. The other is a linear network that
randomizes the outputs ϕ (uj) of the first layer, trans-
forming them to asymptotically independent 0-mean
Gaussian random variables. Therefore, mean 0 quasi

independent Gaussianity is guaranteed for
l
x. Since the

second linear network is used for the purpose making

output
l
x subject to 0-mean independent Gaussian dis-

tributions, we fix them throughout the learning. That

is,

{
l
wij ,

l

bi

}
are subject only to stochastic gradient

learning. Therefore, we study the Fisher information

with respect to

{
l
wij ,

l

bi

}
only. It is redundant to train

both vij and wij . The role of vij is to Gaussianize the

outputs of layers. We recommend to fix
l
vij throughout

learning processes once they are randomly assigned in
the initial stage.

We calculate the following recursive formula,

∂
l
xi

∂
m
wst

=
∑
j,k

l
vij ϕ

′
(

l
uj

)
wl

jk

∂
l−1
xk

∂
m
wst

+ α
∂

l−1
xi

∂
m
wst

(81)

=
∑
k

l

Bik
∂

l−1
xk

∂
m
wst

, (82)

where
l

Bik=
∑
j

l
vij ϕ

′
(

l
uj

)
l

wjk +αδik (83)

in the case of a residual net. Note that
l

Bik is of order
1/
√
n when i 6= k, and

l

Bii= α+Op(1/
√
n). (84)

¿From this we have

∂
L
xi

∂
m
wst

=
∑
k

Bi
k

m
vks ϕ

′
(

m
us

)
m−1
xt , (85)

G
(

m
wst,

l
ws′t′

)
= Ex

[∑
i

Bi
km
Bi

kl

m
vkms

l
vkls′ (86)

× ϕ′
(

m
us

)
ϕ′
(

l
us′
)

m−1
xt

l−1
xt′
]
. (87)

Here we again use the domino theorem, where previous
χ is replaced by

χ̄ = σ2
vχ+ α. (88)

Since
m
vks and

l
vk′s′ are independent when m 6= l,

G
(

m
wst,

l
ws′t′

)
is of order 1/

√
n. This is true when

m = l, s 6= s′. So we have the following theorem.

Theorem 2. The Fisher information matrix G of a
residual net is unit-wise diagonal to within terms of
order 1/

√
n.

We suggest the following approximate learning algo-
rithm for a residual network with the ReLU activation
function:

1. Fix σ2
v and σ2

w and α < 1.

2. Given a training example (yt,xt), calculate the
back-propagated error eim for each unit im of the
m-th layer.
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3. Using the current w∗im , calculate Ā∞, X, Y and Z
from equations (71)–(73) and Appendix II.

4. Update the current w∗im by using equations (75)–
(76).

5. We may use the Polyak averaging (Polyak & Judit-
sky, 1992) after learning.

It is interest to compare the result of the present
algorithm with that of the quasi-diagonal method
(Marceau-Caron & Ollivier, 2016).

7 CONCLUSIONS

The paper applies the statistical neurodynamical
method for studying the Fisher information matrix of
deep random networks. The Fisher information is cal-
culated from back-propagated errors. The main result
of the paper is to show that the Fisher information ma-
trix in a large random network is neuron-wise block
diagonalized approximately. This justifies the unit-
wise natural gradient method (Ollivier, 2015). The
unit-wise Fisher information is a tensor product of the
Fisher information matrices of single neurons. We cal-
culated the Fisher information and its inverse explic-
itly, showing its peculiar structure. The present pa-
per is purely theoretical, waiting for its applications
to practical networks.

APPENDIX I: SELF-AVERAGING
PROPERTY

Let us treat a simple case

u =
∑

wixi, (89)

where xi are fixed and wi ∼ N
(
0, σ2/n

)
. We consider

E [f(u)wiwj ] , (90)

where we put f(u) = {ϕ′(u)}2 and il−1 = i, i′l−1 = j.
Put

ũ =
∑
i6=1,2

wixi. (91)

Then

u = ũ+ w1x1 + w2x2, (92)

f(u) = f (ũ) + f ′ (ũ) (wixi + wjxj) . (93)

We have, neglecting higher-order terms,

E [f(u)wiwj ] = E [f (ũ)wiwj ] + E
[
f ′ (ũ)wiwj (94)

× (wixi + wjxj)
]
. (95)

Since ũ and w1w2 are independent,

E [f(u)wiwj ] = E [f (ũ)]E [wiwj ] (96)

= E [f(u)]E [wiwj ] (97)

except for higher-order terms.

APPENDIX II: FISHER
INFORMATION FOR RELU

The ReLU activation function is given by

ϕ(u) =

{
u, u > 0,
0, u ≤ 0.

(98)

We calculate Aij (w, w0) given by equations (57)–(59).
Since

ϕ′ (wx∗1 + w0) =

{
1, wx∗1 + w0 > 0,
0, otherwise,

(99)

we have

A00 =
1√
2π

∫ ∞
−w0

w

exp

{
−u

2

2

}
du (100)

= erf
(w0

w

)
, (101)

erf(u) =
1√
2π

∫ u

−∞
exp

{
−u

2

2

}
dv. (102)

Similarly,

A0n =
1√
2π

∫ ∞
−w0

w

u exp

{
−u

2

2

}
du (103)

=
1√
2π

exp

{
−1

2

(w0

w

)2}
(104)

Ann =
1√
2π

∫ ∞
−w0

w

u2 exp

{
−u

2

2

}
du (105)

= erf
(w0

w

)
− 1√

2π

w0

w
exp

{
−1

2

(w0

w

)2}
.

(106)
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