
Two-temperature logistic regression based on the Tsallis divergence

A Verification of Iterative Algorithms
for Computing Gt

In this section, we verify that the iterative algorithm for
computing Gt is going to converge in the binary case.
The proof for the multiclass case follows immediately
as a simple extension. We only need to verify that ã(k)
converges to the corresponding ã of a such that the
value of Gt normalizes the sum.

First of all, given a, since t > 1 and Z(ã) > 1, it is
clear that 0 < ã < a. On the domain of 0 < u < a,
it is easy to verify that Z(u)1�t

a � u is a monotoni-
cally decreasing function and it crosses at 0 only at ã.
Therefore, when ã(k) > ã, ã(k+1) < ã(k); when ã(k) < ã,
ã(k+1) > ã(k).

We then prove that ã(k) is a monotonically decreasing
sequence. We prove this by mathematical induction.
Since ã(0) = â, ã(1) < a = ã(0). Next assume that
in the k-th iteration, ã(k) < ã(k�1). Since Z(ã(k)) >

Z(ã(k�1)), we have ã(k+1) < ã(k). Therefore, it follows
that ã(k) is monotonically decreasing and it is lower
bounded by ã. Furthermore, limk!+1 ã(k) exists.

Finally,

lim
k!+1

ã(k) = lim
k!+1

ã(k+1)

= lim
k!+1

Z(ã(k))
1�t

a

= Z( lim
k!+1

ã(k))
1�t

a, (A.1)

where (A.1) holds because Z(u)1�t is continuous in u.
Therefore, it follows that limk!+1 ã(k) = ã.

For the binary case when t = 2, note that

expt(x) = (1� x)�1 and logt(x) = 1� x
�1

.

The value Gt(a) needs to satisfy

1 = expt(
a

2
�Gt(a)) + expt(�

a

2
�Gt(a))

=
1

1 + a/2 +Gt(a)
+

1

1� a/2 +Gt(a)

=
2 (1 +Gt(a))

(1 +Gt(a))2 � a2
/4

,

which yields

(1 +Gt(a))
2 � a

2

4
= 2 (1 +Gt(a)) .

By cancelling the terms from both sides, we have

Gt(a)
2 =

a
2

4
+ 1 .

Since Gt(a) � 0, we have Gt(a) =
p

a2
/4 + 1.

B Proof of Remark 1

For the surrogate loss

⇠
t2
t1 (a) = � logt1 expt2(a/2�Gt2(a)),

we have

@⇠
t2
t1 (a)

@a
= �p̂t2(a)

t2�t1

✓
1

2
� @Gt2(a)

◆
,

@
2
⇠
t2
t1 (a)

@a2
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t2�t1 ⇥ (B.1)
"
@
2
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t2�1

✓
1

2
�Gt2(a)

◆2
#
,

where we define p̂t2(a) := expt2(a/2 � Gt2(a)) and
@Gt2(a) and @

2
Gt2(a) are given as follows.

@Gt2(a)=
1

2

P
c c expt2(

c
2a�Gt2(a))

t2

P
c expt2(

c
2a�Gt2(a))

t2
, (B.2)

@
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c
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t2
.

(B.3)

For t2 = t1 � 1, we have

@
2
⇠
t2
t1 (a)

@a2
= @

2
Gt2(a) � 0 ,

which can be verified from (B.3). Moreover, for t1 � 1
and t1 � t2, we have

@
2
⇠
t2
t1 (a)

@a2
=

1

p̂t2(a)
t1�t2

⇥
"
@
2
Gt2(a) + (t1 � t2) p̂t2(a)

t2�1

✓
1
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2
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✓
1
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� @
2
Gt2(a) � 0 . (B.4)

Thus, the loss is convex, similar to the latter case.

Now, consider the case t2 � t1. Suppose p̂t2(�a) =
(1� p̂t2(a)) = � p̂t2(a) for some � � 0. Substituting for
p̂t2(�a) in (B.2) and (B.3), we can write (B.1) as

@
2
⇠
t2
t1 (a)

@a2
= p̂t2(a)

t2�1 1

(1 + �t2)2

⇥

t2

✓
1 + 1

�

1 + �t2

◆
� (t2 � t1)

�
.

For sufficiently small (respectively, large) value of �,

we have
@2⇠

t2
t1

(a)

@a2 > 0 (respectively,
@2⇠

t2
t1

(a)

@a2 < 0). The



Ehsan Amid, Manfred K. Warmuth, Sriram Srinivasan

inflection point happens when t2(1+
1
� ) = (t2 � t1)(1+

�
t2), i.e.

@2⇠
t2
t1

(a)

@a2 = 0.

Finally, we show the case t1 < 1. We only need to
consider the case t2  t1 < 1. Note that for the binary
case,

expt2(a/2�Gt2(a)) + expt2(�a/2�Gt2(a)) = 1 .
(B.5)

Using the definition of expt2 , we can write (B.5) as

[1 + (1� t2) (a/2�Gt2(a))]
1/(1�t2)
+

+ [1 + (1� t2) (�a/2�Gt2(a))]
1/(1�t2)
+ = 1 . (B.6)

For a = 0, (B.6) yields

[1 + (1� t2) (�Gt2(0))]
1/(1�t2)
+ =

1

2
.

From t2 < 1, we have (1 � t2) > 0 and there-
fore, Gt2(0) > 0. From convexity and symmetry
(Gt2(a) = Gt2(�a)) conditions, we conclude Gt2(a) �
Gt2(0) � 0, 8a. Consequently, for values of a 
� 1

(1�t2)
, Gt2(a) = �a

2 satisfies (B.5). This implies
that for a  � 1

(1�t2)
, we have p̂t2(a) = 0 and thus,

⇠
t2
t1 (a) = � logt1(0) = � 1

1�t1
is a constant. From (B.4),

we conclude that the loss is convex for a > � 1
(1�t2)

and
is a constant for a  � 1

(1�t2)
Thus, it is quasi-convex.
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