A Verification of Iterative Algorithms for Computing G_t

In this section, we verify that the iterative algorithm for computing G_t is going to converge in the binary case. The proof for the multiclass case follows immediately as a simple extension. We only need to verify that $\tilde{a}_{(k)}$ converges to the corresponding \tilde{a} of a such that the value of G_t normalizes the sum.

First of all, given a, since t > 1 and $Z(\tilde{a}) > 1$, it is clear that $0 < \tilde{a} < a$. On the domain of 0 < u < a, it is easy to verify that $Z(u)^{1-t}a - u$ is a monotonically decreasing function and it crosses at 0 only at \tilde{a} . Therefore, when $\tilde{a}_{(k)} > \tilde{a}$, $\tilde{a}_{(k+1)} < \tilde{a}_{(k)}$; when $\tilde{a}_{(k)} < \tilde{a}$, $\tilde{a}_{(k+1)} > \tilde{a}_{(k)}$.

We then prove that $\tilde{a}_{(k)}$ is a monotonically decreasing sequence. We prove this by mathematical induction. Since $\tilde{a}_{(0)} = \hat{a}$, $\tilde{a}_{(1)} < a = \tilde{a}_{(0)}$. Next assume that in the k-th iteration, $\tilde{a}_{(k)} < \tilde{a}_{(k-1)}$. Since $Z(\tilde{a}_{(k)}) > Z(\tilde{a}_{(k-1)})$, we have $\tilde{a}_{(k+1)} < \tilde{a}_{(k)}$. Therefore, it follows that $\tilde{a}_{(k)}$ is monotonically decreasing and it is lower bounded by \tilde{a} . Furthermore, $\lim_{k\to+\infty} \tilde{a}_{(k)}$ exists.

Finally,

$$\lim_{k \to +\infty} \tilde{a}_{(k)} = \lim_{k \to +\infty} \tilde{a}_{(k+1)}$$
$$= \lim_{k \to +\infty} Z(\tilde{a}_{(k)})^{1-t} a$$
$$= Z(\lim_{k \to +\infty} \tilde{a}_{(k)})^{1-t} a, \qquad (A.1)$$

where (A.1) holds because $Z(u)^{1-t}$ is continuous in u. Therefore, it follows that $\lim_{k\to+\infty} \tilde{a}_{(k)} = \tilde{a}$.

For the binary case when t = 2, note that

$$\exp_t(x) = (1-x)^{-1}$$
 and $\log_t(x) = 1 - x^{-1}$.

The value $G_t(a)$ needs to satisfy

$$\begin{split} 1 &= \exp_t(\frac{a}{2} - G_t(a)) + \exp_t(-\frac{a}{2} - G_t(a)) \\ &= \frac{1}{1 + \frac{a}{2} + G_t(a)} + \frac{1}{1 - \frac{a}{2} + G_t(a)} \\ &= \frac{2\left(1 + G_t(a)\right)}{\left(1 + G_t(a)\right)^2 - \frac{a^2}{4}}, \end{split}$$

which yields

$$(1+G_t(a))^2 - \frac{a^2}{4} = 2(1+G_t(a)).$$

By cancelling the terms from both sides, we have

$$G_t(a)^2 = \frac{a^2}{4} + 1.$$

Since $G_t(a) \ge 0$, we have $G_t(a) = \sqrt{a^2/4 + 1}$.

B Proof of Remark 1

For the surrogate loss

$$\xi_{t_1}^{t_2}(a) = -\log_{t_1} \exp_{t_2}(a/2 - G_{t_2}(a)),$$

we have

$$\frac{\partial \xi_{t_1}^{t_2}(a)}{\partial a} = -\hat{p}_{t_2}(a)^{t_2-t_1} \left(\frac{1}{2} - \partial G_{t_2}(a)\right), \\
\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} = \hat{p}_{t_2}(a)^{t_2-t_1} \times \tag{B.1}$$

$$\left[\partial^2 G_{t_2}(a) - (t_2 - t_1) \hat{p}_{t_2}(a)^{t_2-1} \left(\frac{1}{2} - G_{t_2}(a)\right)^2 \right],$$

where we define $\hat{p}_{t_2}(a) := \exp_{t_2}(a/2 - G_{t_2}(a))$ and $\partial G_{t_2}(a)$ and $\partial^2 G_{t_2}(a)$ are given as follows.

$$\partial G_{t_2}(a) = \frac{1}{2} \frac{\sum_c c \exp_{t_2}(\frac{c}{2}a - G_{t_2}(a))^{t_2}}{\sum_c \exp_{t_2}(\frac{c}{2}a - G_{t_2}(a))^{t_2}}, \qquad (B.2)$$

$$\partial^2 G_{t_2}(a) = \frac{t_2 \sum_c \exp_{t_2}(\frac{c}{2}a - G_{t_2}(a))^{2t_2 - 1} \left[\frac{c}{2} - \partial G_{t_2}(a)\right]^2}{\sum_c \exp_{t_2}(\frac{c}{2}a - G_{t_2}(a))^{t_2}}$$
(B.3)

For $t_2 = t_1 \ge 1$, we have

$$\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} = \partial^2 G_{t_2}(a) \ge 0 \,,$$

which can be verified from (B.3). Moreover, for $t_1 \ge 1$ and $t_1 \ge t_2$, we have

$$\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} = \frac{1}{\hat{p}_{t_2}(a)^{t_1 - t_2}} \times \left[\partial^2 G_{t_2}(a) + (t_1 - t_2) \, \hat{p}_{t_2}(a)^{t_2 - 1} \left(\frac{1}{2} - G_{t_2}(a) \right)^2 \right]$$
$$\geq \partial^2 G_{t_2}(a) + (t_1 - t_2) \, \hat{p}_{t_2}(a)^{t_2 - 1} \left(\frac{1}{2} - G_{t_2}(a) \right)^2$$
$$\geq \partial^2 G_{t_2}(a) \geq 0. \tag{B.4}$$

Thus, the loss is convex, similar to the latter case.

Now, consider the case $t_2 \ge t_1$. Suppose $\hat{p}_{t_2}(-a) = (1 - \hat{p}_{t_2}(a)) = \lambda \, \hat{p}_{t_2}(a)$ for some $\lambda \ge 0$. Substituting for $\hat{p}_{t_2}(-a)$ in (B.2) and (B.3), we can write (B.1) as

$$\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} = \hat{p}_{t_2}(a)^{t_2 - 1} \frac{1}{(1 + \lambda^{t_2})^2} \times \left[t_2 \left(\frac{1 + \frac{1}{\lambda}}{1 + \lambda^{t_2}} \right) - (t_2 - t_1) \right].$$

For sufficiently small (respectively, large) value of λ , we have $\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} > 0$ (respectively, $\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} < 0$). The inflection point happens when $t_2(1+\frac{1}{\lambda}) = (t_2-t_1)(1+\lambda^{t_2})$, i.e. $\frac{\partial^2 \xi_{t_1}^{t_2}(a)}{\partial a^2} = 0$.

Finally, we show the case $t_1 < 1$. We only need to consider the case $t_2 \leq t_1 < 1$. Note that for the binary case,

$$\exp_{t_2}(a/2 - G_{t_2}(a)) + \exp_{t_2}(-a/2 - G_{t_2}(a)) = 1.$$
(B.5)

Using the definition of \exp_{t_2} , we can write (B.5) as

$$[1 + (1 - t_2) (a/2 - G_{t_2}(a))]_+^{1/(1 - t_2)} + [1 + (1 - t_2) (-a/2 - G_{t_2}(a))]_+^{1/(1 - t_2)} = 1.$$
 (B.6)

For a = 0, (B.6) yields

$$[1 + (1 - t_2) (-G_{t_2}(0))]_+^{1/(1 - t_2)} = \frac{1}{2}.$$

From $t_2 < 1$, we have $(1 - t_2) > 0$ and therefore, $G_{t_2}(0) > 0$. From convexity and symmetry $(G_{t_2}(a) = G_{t_2}(-a))$ conditions, we conclude $G_{t_2}(a) \ge G_{t_2}(0) \ge 0$, $\forall a$. Consequently, for values of $a \le -\frac{1}{(1-t_2)}$, $G_{t_2}(a) = -\frac{a}{2}$ satisfies (B.5). This implies that for $a \le -\frac{1}{(1-t_2)}$, we have $\hat{p}_{t_2}(a) = 0$ and thus, $\xi_{t_1}^{t_2}(a) = -\log_{t_1}(0) = -\frac{1}{1-t_1}$ is a constant. From (B.4), we conclude that the loss is convex for $a > -\frac{1}{(1-t_2)}$ and is a constant for $a \le -\frac{1}{(1-t_2)}$ Thus, it is quasi-convex.