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Abstract
We develop a variant of multiclass logistic re-
gression that is significantly more robust to
noise. The algorithm has one weight vector
per class and the surrogate loss is a func-
tion of the linear activations (one per class).
The surrogate loss of an example with lin-
ear activation vector a and class c has the
form � logt1 expt2(ac � Gt2(a)) where the
two temperatures t1 and t2 “temper” the log
and exp, respectively, and Gt2(a) is a scalar
value that generalizes the log-partition func-
tion. We motivate this loss using the Tsallis
divergence. Our method allows transitioning
between non-convex and convex losses by the
choice of the temperature parameters. As
the temperature t1 of the logarithm becomes
smaller than the temperature t2 of the ex-
ponential, the surrogate loss becomes “quasi
convex”. Various tunings of the temperatures
recover previous methods and tuning the de-
gree of non-convexity is crucial in the exper-
iments. In particular, quasi-convexity and
boundedness of the loss provide significant
robustness to the outliers. We explain this by
showing that t1 < 1 caps the surrogate loss
and t2 > 1 makes the predictive distribution
have a heavy tail.
We show that the surrogate loss is Bayes-
consistent, even in the non-convex case. Ad-
ditionally, we provide efficient iterative algo-
rithms for calculating the log-partition value
only in a few number of iterations. Our
compelling experimental results on large real-
world datasets show the advantage of using
the two-temperature variant in the noisy as
well as the noise free case.
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1 Introduction

Consider a classification problem where every instance
x 2 Rd is labeled by one class c 2 {1, . . . , C}. The
goal of learning algorithm is to develop a classifier,
parameterized by W, which correctly predicts the class
label c of a given instance x. In order to learn the
optimal parameter W⇤ of the classifier, we minimize
the regularized empirical surrogate loss of a set of i.i.d.
examples {(xn, cn)}Nn=1 from the data distribution:

W⇤ = argmin
W

L(W) +R(W) ,

where
L(W) =

1

N

X

n

⇠(xn, cn |W) .

Here, ⇠(xn, cn |W) denotes the surrogate loss, which re-
places the 0 -1 loss associated with the example (xn, cn).
Also, W is a d⇥ C weight matrix and R(W) a regu-
larizer. The c-th column wc is the weight vector for
class c. In this paper, we consider the linear activation

models where both the parameterized classifier and the
surrogate loss ⇠(x, c |W) can be written as functions
of the linear activation vector a = W>x.

Among different properties of the surrogate functions
used in practice, convexity plays an important role since
it provides the convergence guarantee of the solution to
a global minimum [11]. Additionally, there exist many
convex optimization packages for solving the minimiza-
tion problem efficiently [10, 22]. The main drawback of
the convexity is that the loss of an individual example,
e.g., for a highly misclassified outlier point, can grow
indefinitely (at least with a linear rate) and dominate
the objective function. Therefore, it has been shown
that the convex functions are not robust to noise [13].
Specifically, Ben-David et al. [4] showed that among
the convex surrogate loss functions for linear predictors,
the hinge loss has the lowest expected misclassification
error rate and any strongly convex loss has a qualita-
tively worse guarantee when compared to the hinge loss.
To alleviate this problem, several strategies have been
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Figure 1: Generalized logarithm and exponential functions: a) logt, b) expt, and c) Different loss functions for
classification of a single example x with label c = +1 as a function of the margin a = w>x. The t-logistic loss of [6]
is non-convex (here t-logistic(a) = � log expt (a/2�Gt(a)) with t = 1.6), but goes to +1 as margin ! �1. On
the other hand, our proposed two-temperature logistic loss � logt1 expt2(ac �Gt2(a)) (for e.g. t1 = 0.6, t2 = 1.6)
is upper-bounded by 1/(1� t1) = 2.5.

proposed to intorduce non-convexity into the loss func-
tion [15, 9, 8, 19, 5]. More recently, Ding et al. [6] used
heavy-tailed properties of t-exponential distributions
to define a robust loss function for logistic regression.
The main idea behind these techniques is to eventually
“bend down” the loss and give up on those points that
are highly misclassified.

In this paper, we generalize the ideas in [6] for con-
structing a non-convex surrogate loss as the negative
log-likelihood of a t-exponential distribution. Our ap-
proach is based on the Tsallis divergence which is
the natural choice of divergence for the family of t-
exponential distributions [1]. Our definition of surro-
gate loss involves a generalized logarithm and a gener-
alized exponential function. The generalization imbues
each of these functions with a different temperature
parameter. By varying the temperatures for the two
functions, we transition between the convex and more
robust quasi-convex loss functions. More importantly,
the loss function becomes bounded for certain choices
of the parameters. Figure 1 illustrates the different
loss functions used for classification along with an ex-
ample of our proposed surrogate loss. Even though
our generalization of constructing non-convex surro-
gate losses is strikingly simple, our experiments clearly
show that the tail-heaviness by itself (as introduced
in [6]) is insufficient for handling the outliers and the
label noise. More importantly, controlling the bound-
edness of the loss is an additional crucial property for
obtaining robustness to both outliers and label noise. A
similar bounded surrogate loss was recently developed
for training deep neural networks in the presence of
label noise [25]. Our contributions in this paper can
be summarized as follows:

• We generalize the ideas in [6] and [25] by introduc-

ing the two-temperature logistic regression (2TRL)
which lets us control both the tail-heaviness as well
as boundedness of the non-convex surrogate loss.

• We provide fast efficient iterative algorithms for
calculating the normalization constant in the t-
exponential probabilities.

• We discuss the properties of the surrogate loss
for different ranges of the two temperatures (the
previous methods become special cases) and the
implications of using the Tsallis divergence for
parameter estimation. More specifically, we show
that properness is achieved by switching to the
escort probability of the optimizer.

• Finally, we show that our loss is Bayes-consistent,
even in the non-convex case. While many convex
surrogate losses enjoy Bayes-consistency, achieving
Bayes-consistency for non-convex losses is a highly
non-trivial property and thus, is an important
consideration in designing the loss functions for
classification [14].

2 Tsallis Entropy and Tsallis
Divergence

The logt function with temperature parameter t >

0 is defined as a generalization of the standard log
function [17, 18]1,

logt x =
1

1� t
(x1�t � 1) . (1)

1
Note that in this section, we use x as a scalar input

and it should not be confused with the multivariate random

variable x.
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The logt function is monotonically increasing and re-
covers the standard log function in the limit t ! 1.
However, some properties of the log function do not
generalize to logt. For instance, logt ab 6= logt a+logt b
in general. Additionally, unlike the standard log func-
tion, the logt function is lower bounded by �1/(1� t)
for 0 < t < 1 and upper bounded by 1/(t� 1) for t > 1
(See Figure 1a). This property has been used to design
robust loss transformations for metric learning [2].

Using the logt function, we can generalize the notion of
the (Shannon) entropy of a probability distribution. For
a probability distribution p(x), the Tsallis entropy [21]
is defined as

Ht(p) =

R
p(x)t dx� 1

1� t
=

Z
p(x) logt

1

p(x)
dx. (2)

Note that the standard entropy is recovered when t! 1.
Similarly, the Tsallis divergence between the distribu-
tions p(x) and q(x) can be defined as a generalization
of the Kullback-Leibler (KL) divergence, that is,

Dt(pkq) = �
Z

p(x) logt
q(x)

p(x)
dx. (3)

Note that the KL divergence is also recovered in the
limit t ! 1. We also define the expt function as the
inverse of logt (See Figure 1b):

expt(x) = [1 + (1� t)x]1/(1�t)
+ , (4)

where [ · ]+ = max( · , 0). Again the vanilla exp function
is the t! 1 limit. An important property of the expt
function is its heavier tail compared to exp for values of
t > 1 (see Figure 1b). This property leads to definition
of a class of generalized distributions under the expt
function, called the t-exponential family of distributions
with vector of sufficient statistics x,

pt(x | ✓) = expt(✓
>x�Gt(✓)), for t > 0 . (5)

Here ✓ is called the canonical parameter and the con-
vex function Gt(✓), called the log-partition function,
ensures that the distribution is normalized, that is,

Z
expt(✓

>x�Gt(✓)) dx = 1 . (6)

An important distribution related to the t-exponential
distribution (5) is called the escort distribution and is
defined as

qt(x | ✓) = 1

Zt(✓)
expt(✓

>x�Gt(✓))
t
, (7)

where

Zt(✓) =

Z
expt(✓

>x�Gt(✓))
t
dx .

Here Zt(✓) is the normalization factor. It is easy to
see that [1]

rGt(✓) = Eqt [x] =
1

Zt(✓)

Z
x expt(x

>✓�Gt(✓))
t
dx.

(8)
As (8) suggest, escort probabilities appear when cal-
culating the gradient of the loss, as we will see in the
later sections. When dealing with t-exponential distri-
butions, the Tsallis entropy and divergence take the role
of Shannon entropy and KL divergence respectively,
for the vanilla exponential family (See e.g. [1]).

3 Two-temperature Logistic
Regression

Let a = W>x. Following the discussion on the heavy-
tail properties of the t-exponential family of distribu-
tions in [6], we model the conditional probability of the
class c given input x with a t-exponential distribution
with temperature t2:

p̂t2(c |x,W) = expt2(w
>
c x�Gt2(W

>x))

= expt2 (ac �Gt2(a)) , (9)

where the log-partition function Gt2(a) ensures that
the probabilities sum up to 1, that is,

X

c

expt2(ac �Gt2(a)) = 1 . (10)

This definition for the conditional probabilities is sim-
ilar to the ones given in [6]. The definition (9) also
includes the softmax probabilities as a special case
when t2 = 1:

p̂1(c |x,W) = exp(ac �

G1(a)z }| {
log

X

j

exp(aj))

=
exp(ac)P
j exp(aj)

. (11)

In order to adopt the heavy-tail properties of t-
exponential distribution, we are mainly interested in
the values of t2 > 1. However, for values of t2 6= 1, the
log-partition function Gt2(a) does not have a closed
form solution in general and must be calculated numer-
ically: We provide an iterative method for computing
Gt2(a) efficiently (Algorithm 1).

Given the prediction probabilities (9) in the form of a
t2-exponential distribution, we can now define the loss
between the empirical label distribution pe(c |xn) =
Ic=cn , and the prediction p̂t2(c |xn) using a sum of
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Algorithm 1 Iterative algorithm for computing Gt for
multiclass 2TLR.

Input: Vector of activations a, temperature t > 1
Output: Gt(a)
µ max(a)
ã a� µ

while ã not converged do

Z(ã) 
PC

c=1 expt(ãc)
ã Z(ã)1�t(a� µ)

end while

Gt(a) � logt(1/Z(ã)) + µ

Tsallis divergences with temperature t1:

L(W) = � 1

N

X

n

X

c

pe(c |xn) logt1
p̂t2(c |xn,W)

pe(c |xn)

= � 1

N

X

n

X

c

Ic=cn logt1
p̂t2(c |xn,W)

Ic=cn

. (12)

Justified by a limit argument, 0⇥ logt 0 = 0⇥ logt1 =
0, the loss (12) simplifies to

L(W) = � 1

N

X

n

logt1 p̂t2(cn |xn,W)

=
1

N

X

n

[� logt1 expt2(w
>
cnxn�Gt2(W

>xn))]| {z }
⇠
t2
t1

(xn,cn |W)

. (13)

We refer to the classification algorithm with the loss
defined in (13) as Two-Temperature Logistic Regression

(2TLR). The gradient of the loss with respect to the
c-th parameter wc can be written as

rwcL(W) =

�
X

n

p̂t2(cn |xn,W)t2�t1
⇣
Ic=cn�q̂t2(c |xn,W)

⌘
xn,

(14)

where

q̂t2(c |x,W) =
expt2(ac �Gt2(a))

t2

P
j expt2(aj �Gt2(a))

t2
⇠ p̂t2(c |x,W)t2

is the escort distribution of p̂t2(c |x,W).

We are mainly interested in 0 < t1 < 1 because for this
range, the loss of each individual observation becomes
capped by the constant 1/(1�t1). As we show in the ex-
periments, the boundedness of loss provides significant
improvement in handling noisy observations. Note that
the gradient of the loss of the n-th observation contains
an importance factor of the form p̂t2(cn |xn,W)t2�t1

that depends on the conditional probability of the n-th
observation and the temperature gap t2� t1. Note that
for t2 > t1, the temperature gap is non-negative and

the importance factors dampen the gradient of those
observations that have small probabilities towards zero.
Also the loss of each observation is bounded only for val-
ues of 0 < t1 < 1. On the other hand, the importance
factors vanish when t1 = t2. In particular, it vanishes
for standard logistic regression (i.e. when t1 = t2 = 1).

Next we focus on the binary classification and analyze
the properties of the surrogate loss in this case.

4 Binary Classification

For C = 2, we use the classes c 2 {±1} and denote
the parameter vector as W = [w+,w�] and linear
activations as a = [w>

+x, w>
�x]> = [a+, a�]>. Similar

to (9), we can define the probabilities as

p̂t2(c = ±1|x) = expt2(w
>
±x�Gt2(W

>x))

= expt2(a± �Gt2(a)) . (15)

The log-partition function Gt2(a) ensures that the two
probabilities sum to 1. It is easy to see that for any
constant b, Gt2(a+ b1) = Gt2(a) + b1. Therefore we
can simplify the margin vector a by subtracting the
mean of the inner-products w>

+x+w>
�x

2 , that is, a =

[ (w+�w�)>x
2 , � (w+�w�)>x

2 ]> = [w
>x
2 , �w>x

2 ]> =
[a2 ,�

a
2 ]

>, where we define w = w+ � w�. Thus, we
can write the probabilities in the following compact
form

p̂t2(c |x,w) = expt2(
c

2

az }| {
w>x�Gt2(w

>x)) .

This definition contains the logistic probabilities as the
special case when t2 = 1:

p̂1(c |x) =
exp( c2 a)

exp( c2 a) + expt2(
�c
2 a)

=
1

1 + exp(�c a) ,

since G1(a) = log
�
exp a

2 + exp �a
2

�
. For t2 6= 1, Gt2(a)

does not have a closed form solution2 and we provide a
variant of the iterative algorithm for calculating Gt(a)
for the binary case (Algorithm 2).

Following similar steps as in (12), we can write the loss
for the binary case as

L(w) =
X

n

� logt1 expt2(
cn

2
an �Gt2(an))

| {z }
⇠
t2
t1

(xn,yn |w)

. (16)

where an = w>xn. For t1 = t2 = 1, the above loss is
the standard logistic regression loss. Also for t1 = 1
and t2 = t > 1, the above becomes the t-logistic loss

2
Except for t2 = 2.
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Algorithm 2 Iterative algorithm for computing Gt for
binary 2TLR.

Input: Activation a > 0, temperature t > 1
Output: Gt(a)
if t == 2 then

Gt(a) 
p

a2
/4 + 1

return

end if

ã a

while ã not converged do

Z(ã) 1 + expt(�ã)
ã Z(ã)1�t

a

end while

Gt(a) � logt(1/Z(ã)) + a/2

of [6]. The gradient of the loss (16) wrt w is

rL(w) =

� 1

2

X

n

p̂t2(cn |xn,w)t2�t1
⇣
cn �

X

c

c q̂t2(c |x,w)
⌘
xn ,

where q̂t2(c |x,w) ⇠ p̂t2(c |x,w)t2 is the escort distri-
bution.

4.1 Properties

The curvature of the two-temperature loss function
⇠
t2
t1 (x, y | ✓) depends on the choice of the temperature

parameters t1 and t2. For certain choices, we still have
convex losses while for the others, the loss function
shows a quasi-convex behavior. The properties of the
loss function are summarized below. Without loss of
generality, we assume c = +1.
Remark 1. The loss function ⇠

t2
t1 (x, c |w) =

� logt1 expt2(
a
2 �Gt2(a)) has the following properties:

1. For values of t1 � t2 and t1 � 1, the loss function
is convex. Specifically, for t1 = t2 = t � 1, we
have the convex loss

⇠
t
t(x, c | ✓) = Gt(a)�

a

2
. (17)

Moreover, the curvature of the function increases
with the temperature gap t1 � t2 > 0.

2. The function is quasi-convex for t1 < t2 or for any
t2 � 0 when t1 < 1.

The proof is provided in the Appendix B.

5 Implications of Using the Tsallis
Divergence

We briefly discuss the implicit assumptions behind
using the Tsallis divergence for parameter estima-

tion. Consider modeling the (unknown) posterior
distribution p(c |x) for the set of random variables
(x, c) 2 Rd ⇥ {1, . . . , C} using a discriminative model
p̂M(c |x). For this purpose, consider minimizing the
expected Tsallis divergence between the class posterior
distribution of the data and the predicted posterior
probabilities, that is,

Ex

"
�
X

c

p(c |x) logt
p̂M(c |x)
p(c |x)

#
(18a)

= Ex

X

c

p(c |x)t
h
logt p(c |x)� logt p̂M(c |x)

i�

(18b)

= �Ht �
Z X

c

p(c |x)t logt p̂M(c |x) p(x) dx (18c)

⇡ �Ht �
X

n

X

c

Ic=cn logt p̂M(cn |xn) (18d)

= �Ht �
X

n

logt p̂M(cn |xn) , (18e)

in which Ht = �
R P

c p(c |x)t logt p(c |x) p(x) dx =

Ex

hP
c p(c |x) logt

1
p(c |x)

i
is the expected Tsallis en-

tropy of the posterior distribution p(c |x) and is a con-
stant. Note that from (18a) to (18b) we use the prop-
erty logt(u/v) = u

t(logt u� logt v) of the logt function
and from (18c) to (18d) we perform a Monte Carlo
approximation of the integral and sum using a set
of samples {xn, cn}. Therefore, we can eliminate the
second sum in (18d) and only keep the terms corre-
sponding to the observed labels, as in (18e). However,
indeed, minimizing the sum in (18e) involves the im-
plicit assumption that the c samples are drawn from the
tempered conditional distribution ⇠ p(c |x)t and there-
fore, the minimizer solves p̂

⇤
M(c |x) ⇠ p(c |x)1/t. Thus,

as a consequence of using the Tsallis divergence in (18e),
the surrogate loss ⇠

t2
t1 (xn, cn |w) is not proper [23],

i.e., p̂t2(c |x,W⇤) 6= p(c |x). However, simply enough,
the escort probabilities ⇠ p̂t2(c |x,W⇤)t1 match to
the correct conditional probabilities. In the case of
t = 1, the Tsallis divergence reduces to the KL-
divergence and we recover the maximum-likelihood
estimation �

P
n log p̂M(cn|xn) = � log

Q
n p̂M(cn|xn)

and p̂
⇤
M(c|x) = p(c|x).

Although the properness of the loss function may be
important in density estimation applications, for the
classification problem, the estimated posterior proba-
bilities are irrelevant as long as the class label is pre-
dicted correctly. Thus, we are mainly interested in the
Bayes-consistency property of the loss [3, 20], which
guarantees that at the solution, the correct label can
be predicted using the argmax of the margin vector a.
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Figure 2: The classification accuracy in the presence of instance noise. The errorbars are small and not shown to
avoid clutter.

Dataset

(#instances, #dim) Noise Type Classification Accuracy (%)

hinge logistic t-LR 2TLR

Fashion MNIST

(20K, 784)

random 96.42± 0.59 96.42± 0.59 94.09± 0.48 99.80± 0.12
small-margin 98.50± 0.26 98.50± 0.26 97.35± 0.42 99.13± 0.37
large-margin 96.42± 0.59 96.42± 0.59 94.09± 0.48 99.80± 0.12

CIFAR-10

(10.8K, 1024)

random 84.27± 1.12 84.39± 1.17 82.11± 1.01 87.75± 1.40
small-margin 84.94± 0.97 84.94± 0.99 84.22± 0.79 86.28± 1.18
large-margin 77.79± 1.20 77.77± 1.20 72.58± 1.44 88.56± 1.20

Fonts

(143K, 411)

random 83.78± 0.28 83.78± 0.28 84.14± 0.27 84.14± 0.27
small-margin 83.60± 0.34 83.60± 0.34 83.38± 0.36 83.60± 0.34
large-margin 72.39± 0.32 72.39± 0.32 72.61± 0.30 72.61± 0.30

Covertype

(287K, 54)

random 97.52± 0.88 97.52± 0.88 99.26± 0.05 99.26± 0.05
small-margin 96.79± 0.11 96.79± 0.11 97.25± 0.05 97.25± 0.05
large-margin 83.59± 0.24 83.59± 0.24 84.79± 0.20 94.03± 0.13

Table 1: Classification accuracy with 10% label noise. The noise is added by selecting the points in three different
manners: 1) Random: points are selected uniformly at random, 2) Small-Margin (SM): the points having smallest
margin are selected, 3) Large-Margin (LM): the points having largest margin are selected.

6 Bayes-consistency

We use the results from Zhang et al. [24] to show the
Bayes-consistency of the multiclass class case.
Definition 2 (Zhang et al. [24]). A surrogate loss
⇠(a, c) w.r.t. a margin a = [a1, . . . , am]> with the
additional constraint

P
c ac = 0 is said to be Bayes-

consistent if for all possible label probability distribu-
tions p(c |x) the following conditions are satisfied:

1. The minimization problem a⇤ =
argmina

P
c p(c|x) ⇠(a, c) has a unique solu-

tion for all x 2 Rd, and

2. argmaxc a⇤c = argmaxc p(c |x) for all x 2 Rd.

We now prove the following.
Theorem 3. The multiclass surrogate loss

⇠
t2
t1 (x, c|W) = � logt1 expt2(ac � Gt2(a)) is Bayes-

consistent.

Proof. The minimizer of the expectation

�
X

c

p(c |x) logt1 expt2(ac �Gt2(a)) (19)

has the unique solution a⇤ such that expt2(a
⇤
c �

Gt2(a
⇤)) / p(c |x)1/t1 . Note that the minimizer is

unique because expt2 is an injective function and there-
fore any other minimizer a⇤⇤ must satisfy the following:
a
⇤
c � Gt2(a

⇤) = a
⇤⇤
c � Gt2(a

⇤⇤) for all c 2 {1, . . . , C}.
Enforcing the constraint3

P
c a

⇤
c =

P
c a

⇤⇤
c = 0 yields

a⇤ = a⇤⇤. Finally, monotonicity of expt2 function im-
plies

argmax
c

a
⇤
c =argmax

c
expt2(a

⇤
c �Gt2(a

⇤))

=argmax
c

p(c |x)1/t1 =argmax
c

p(c |x) . ⇤
3
Note that we can always enforce the constraint

P
c ac =

0 by adding and subtracting the constant vector of mean

value
�

1
C

P
c ac

�
1 without changing the probabilities since

Gt2(a+ b1) = Gt2(a) + b1 for any constant b.
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The result of Theorem 3, i.e. p̂t2(x, c|W⇤) / p(c|x)1/t1 ,
is the direct consequence of using the sum of Tsallis
divergences between the observed class distributions
and the predicted class probabilities, as discussed in
the previous section. However, the argmax operator is
invariant with respect to the positive powers and thus,
we still achieve Bayes-consistency.
Corollary 4. The binary surrogate loss ⇠

t2
t1 (x, c|w) is

Bayes-consistent.

Note that because of the form of the margin vector
a = [a,�a]> in the binary case, the argmax operator is
equivalent to sign(a). Therefore, the given new points
can simply be classified using the sign of the activation,
without explicitly calculating the probabilities.

7 Experiments

We compare the binary classification accuracy when
minimizing the following losses: our two-temperature
surrogate loss (2TLR), vanilla logistic regression (LR),
hinge loss, and t-logistic regression (t-LR). We do not
compare our results to the method recently proposed by
Feng et al. [7] which is based on detecting and removing
the outliers in the dataset. The method in [7] makes
strict assumptions about the type of the generative
distribution, the availability of the noise variance and
requires an upper-bound on the number of outliers.
These assumptions make their method impractical for
real-world applications.

Our experiments are for the following data sets: 1)
Fashion MNIST 4, 2) CIFAR-10 5, 3) Character Font
Images 6, and 4) Covertype6. For each dataset, we ran-
domly pick two classes such that the number instances
from each class are roughly the same. The size and
number of dimensions of each dataset is shown in the
first column of Table 1.

For each dataset, we randomly consider 10% of the
instances for test and perform 10-fold cross validation
on the remaining part to find the optimal set of param-
eters for each method. These parameters include the
L2-regularizer values for all methods and temperature
values for t-LR and 2TLR. The regularizer values are
selected from the range [10�5

, 10�1]. The range of tem-
perature values for t-LR is chosen to be [1.12, 1.9] and
the range for t1 and t2 temperatures are set to [0.1, 1]
and [1.12, 1.9], respectively. The values of all parame-
ters are chosen using cross-validation. More specifically,
the value of temperature for t-LR is set to 1.12 for the

4
Available at: https://github.com/zalandoresearch/

fashion-mnist
5
Available at: https://www.cs.toronto.edu/~kriz/

cifar.htmlt
6

From the UCI repository.

CIFAR-10, Covertype, and Fashion MNIST, and 1.3
for the Fonts dataset. For 2TLR, we set t2 to be the
same as in t-LR and for t1, we use 0.1 for CIFAR-10,
Covertype and Fashion MNIST, and 0.9 for the Fonts
dataset. The results are averaged over 10 random train-
test splits. We perform experiments in the presence
of instance and label noise. All experiments are done
on a 24 core cluster with 128 GB of RAM. We use a
parallel implementation which utilizes all the cores in
a machine.

We use the L-BFGS method for minimizing the losses.
The initial weights are set to values sampled from a
zero-mean Gaussian distribution with std = 0.001. In
general, t-LR and our 2TLR method are non-convex
and converge to a local minimum. However, the re-
sults are consistent over multiple random initializations.
This can be verified by the std of the accuracy results in
Table 1. Note that we observed the method to converge
to bad local minima for std > 0.01.

7.1 Instance Noise

For the instance noise experiments, we consider the
case where a subset of the training instances, chosen
uniformly at random are replaced by instances from the
remaining set of classes (i.e. those classes other than
the two selected classes for the binary classification).
This resembles the case of a multiclass dataset where
a subset of the instances from each class are mislabled
as instances of other classes. Therefore these mislabled
instances often become extreme outliers for the class
they are wrongly labeled with.

Figure 2 shows the results in the presence of different
amounts of this type of instance noise. The new 2TLR
method is significantly more robust to this noise than
all the other methods and its performance is not con-
siderably affected by up to 33% noise. The main reason
for robustness of our method is the fact that by capping
the surrogate loss, the total loss of the method is not
affected much by the loss of each individual instance.
This also validates our claim that tail-heaviness of the
distribution by itself (as used in t-LR) cannot handle
the outliers as well: In some case t-LR provides even
worse results than LR and all are beaten by 2TLR.

7.2 Label Noise

We consider the label noise experiments where the la-
bels of a subset of the training instances is flipped.
Note that unlike the instance noise which alters the
input distribution p(x), the labels noise targets the
distribution of the labels p(c |x). Therefore, the label
noise is generally handled by first approximating the
label inversion rates and then, correcting the data dis-
tribution by reweighting the loss of individual instances

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.htmlt
https://www.cs.toronto.edu/~kriz/cifar.htmlt
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Dataset

(#instances, #dim) Runtime (s)

hinge logistic t-LR 2TLR

Fashion MNIST

(20K, 784) 4.40± 0.28 4.57± 0.12 7.02± 0.29 7.35± 1.21

CIFAR-10

(10.8K, 1024) 31.90± 0.22 31.86± 0.29 35.08± 0.81 28.34±10.56

Fonts

(143K, 411) 49.47± 4.92 49.75± 4.99 82.85± 4.98 58.78± 6.14

Covertype

(287K, 54) 6.45± 0.17 6.42± 0.18 66.66± 1.20 24.53± 1.24

Table 2: Runtime of the different algorithms in seconds.

or considering a label-dependent surrogate loss [12, 16].
Nevertheless, the noise can be alleviated to some extent
by the tail-heaviness of the modeling distribution [6].
In addition to tail-heaviness, we show that in some
cases, tuning the level of non-convexity and bounding
the loss function also improves the performance.

We consider the “random” label noise where the label
of a uniformly sampled subset of points is flipped. The
subset of the noisy instances can also be selected by
an adversarial mechanism that targets the training
instances based on a certain notion of “importance”.
We also consider “small-margin” and “large-margin”
label noise in which we first train a LR classifier on
the noise free data and calculate the margin c · (w>x)
of each datapoint. Next, we select the desired portion
of the correctly classified datapoints that receptively
have the smallest and largest margins. Therefore, these
two noise mechanisms target different type of instances,
i.e. those closer to the decision boundary and those
that are far away. Table 1 shows the results under 10%
noise. 2TLR consistently has superior performance in
all cases on all datasets. In some cases, the optimal
value of the temperatures coincides with the values for
LR (t1 = t2 = 1) and t-LR (t1 = 1, t2 > 1). However,
in most cases, the optimal performance is achieved
when 0 < t1 < 1.

7.3 Runtime

Table 2 shows the runtime of the optimization step of
the methods. In general, the runtime of the 2TLR is
comparable to the other methods, and in some cases
the convergence time is faster than the vanilla logistic
regression (LR). However, in some cases (e.g. Cover-
type dataset), 2TLR takes considerably longer time to
converge. In particular, the overhead from calculating
the Gt values is negligible;7; the iterative algorithm

7
This was validated empirically by comparing to the

fzero function in MATLAB, but the results are omitted.

takes around 20 iterations to converge to an accuracy
of 10�10.

8 Conclusions

We developed a generalized loss function for logistic
regression which provides two temperatures to tune the
properties of the loss. The first temperature tunes the
level of non-convexity and the boundedness of the loss
while the second one controls the tail-heaviness of the
probabilities. Our experiments indicate that tuning the
level of the non-convexity and boundedness is a crucial
property for obtaining robustness to both instance and
label noise while the computation time is comparable
to logistic regression.
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