
Anari, Haghtalab, Naor, Pokutta, Singh, Torrico

A Extensions

A.1 Knapsack constraint

Consider a knapsack constraint K = {S ✓ [n] :P
e2S ce 1}, where ce > 0 for all e 2 [n]. Our

interest is to solve the following robust problem

max
S2K

min
i2[k]

fi(S) (9)

Corollary 1. For Problem (9), there is a polynomial
time algorithm that returns a set SALG, such that for
all i 2 [k], for a given 0 < ✏ < 1,

fi(S
ALG) � (1� ✏) ·max

S2K
min
j2[k]

fj(S),

and
P

e2SALG ce ` for ` = O(ln k
✏). Moreover, SALG

can be covered by at most ` sets in K.

Instead of using the standard greedy for every ⌧ =
{1, . . . , `}, we design an extended version of the “bang-
per-buck” greedy algorithm. We formalize this proce-
dure in Algorithm 3 below. Even though the standard
“bang-per-buck” greedy algorithm does not provide any
approximation factor, if we relax the knapsack con-
straint to be

P
e2S ce 2, then the algorithm gives a

1 � 1/e factor. There are other approaches to avoid
this relaxation, see e.g. (Sviridenko, 2004).

Algorithm 3 Extended “Bang-per-Buck” Algorithm
for Knapsack Constraints
Input: ` � 1, monotone submodular function g : 2

V ! R+,
knapsack constraint K.

Output: sets S1, . . . , S` 2 K.
1: for ⌧ = 1, . . . , ` do
2: S⌧ ;
3: while V 6= ; do
4: Compute

e⇤ = argmaxe2V

g([⌧
j=1Sj + e)� g([⌧

j=1Sj)

ce
.

5: if
P

e2S⌧ ce + ce⇤ 2 then
6: S⌧ S⌧ + e⇤.
7: V V � e⇤

8: Restart ground set V .

Given a monotone submodular function g : 2V ! R+,
Algorithm 3 produces a set SALG = S1 [· · · [S` such
that g(SALG) �

�
1� 1

e`

�
· maxS2K g(S). Therefore,

Corollary 1 can be easily proved by defining g in the
same way as in Theorem 1, and running Algorithm 3
on g with ` = O(ln k

✏).

A.2 Multiple matroid constraints

Consider a family of r matroids Mj = (V, Ij) for j 2 [r].
Our interest is to solve the following robust problem

max
S2

Tr
j=1 Ij

min
i2[k]

fi(S) (10)

Corollary 2. For Problem (10), there is a polynomial
time algorithm that returns a set SALG, such that for
all i 2 [k], for a given 0 < ✏ < 1,

fi(S
ALG) � (1� ✏) · max

S2
Tr

j=1 Ij

min
i2[k]

fi(S),

where SALG is the union of O(log k
✏ / log

r+1
r) indepen-

dent sets in I.

Fisher et al. (1978) proved that the standard greedy
algorithm gives a 1/(1 + r) approximation for problem
(10) when k = 1. Therefore, we can adapt Algorithm 1
to produce a set SALG = S1 [· · · [S` such that

f(SALG) �

1�

✓
r

r + 1

◆`
!

· max
S2

Tr
j=1 Ij

f(S).

Then, Corollary 2 can be proved similarly to Theorem
1 by choosing ` = O(log k

✏ / log
r+1
r)

A.3 Distributionally robust over polyhedral
sets

Let Q ✓ �(k) be a polyhedral set, where �(k) is the
probability simplex on k elements. For q 2 Q, denote
fq := q1f1 + · · · + qkfk, which is also monotone and
submodular. Given a matroid M = (V, I), our interest
is to solve the following distributionally robust problem

max
S2I

min
q2Q

fq(S) (11)

Denote by Vert(Q) the set of extreme points of Q,
which is finite since Q is polyhedral. Then, problem
(11) is equivalent to maxS2I minq2Vert(Q) fq(S). Then,
we can easily derive Corollary 3 (below) by applying
Theorem 1 in the equivalent problem. Note that when
Q is the simplex we get the original Theorem 1.

Corollary 3. For Problem (11), there is a polynomial
time algorithm that returns a set SALG, such that for
all i 2 [k], for a given 0 < ✏ < 1,

fi(S
ALG) � (1� ✏) ·max

S2I
min
q2Q

fq(S),

with SALG = S1 [· · · [S` for ` = O(log |Vert(Q)|
✏) and

S1, . . . , S` 2 I.

Structured Robust Submodular Maximization

B Continuous Offline Algorithm

B.1 Preliminaries of Multilinear Extension

Consider a set function f , and its multilinear extension
F as in equation (4). We can state the following facts.
For more details see (Calinescu et al., 2011).
Fact 1. [Multilinear Extensions of Monotone Submodu-
lar Functions] Let f be a monotone submodular function
and F its multilinear extension.

1. By monotonicity of f , we have @F
@ye

� 0 for any
e 2 V . This implies that for any x y coordinate-
wise, F (x) F (y). On the other hand, by submod-
ularity of f , F is concave in any positive direction,
i.e., for any e1, e2 2 V we have @2F

@ye1@ye2
 0.

2. Throughout the paper we will denote by reF (y) :=
@F (y)
@ye

, and �eF (y) := ES⇠y[fS(e)]. It is easy to
see that �eF (y) = (1�ye)reF (y). Now, consider
two points x, y 2 [0, 1]V and two sets sampled
independently from these vectors: S ⇠ x and U ⇠
y. Then, by submodularity

f(S [U) f(S) +
X

e2V

1U (e)fS(e). (12)

3. By taking expectation over x and y in (12), we
obtain

F (x _ y) F (x) +
X

e2V

ye�eF (x)

 F (x) +
X

e2V

yereF (x).

Therefore, we get the following important property

F (x _ y) F (x) + y ·rF (x). (13)

B.2 Algorithm analysis

In this section, we present a continuous algorithm that
achieves a tight bi-criteria approximation for the ro-
bust submodular optimization problem (1) and prove
Theorem 6. This algorithm achieves optimal constants
for the approximation, matching the hardness result in
(Krause et al., 2008a).
Theorem 6. Let (V, I) be a matroid and let fi : 2V !
R+ be a monotone submodular function for i 2 [k].
Then, there is a randomized polynomial time algorithm
that with constant probability returns a set SALG, such
that for all i 2 [k], for a given 0 < ✏ < 1,

fi(S
ALG) � (1� ✏) ·max

S2I
min
j2[k]

fj(S),

and SALG = S1 [· · · [S` for ` = O(ln k
✏), and

S1, . . . , S` 2 I.

Our overall approach is to first find a fractional solution
with a desirable approximation guarantee and then
round it to an integral solution. We use a relaxation
of a matroid to its convex hull to accommodate the
search for a fractional solution.

For this algorithm, we need an estimate � of the value
of the optimal solution which we denote by OPT. We
prove the following lemma which solves an approximate
decision version of our optimization problem. The proof
of Theorem 6 follows from the lemma and a search over
an approximate value for OPT.
Lemma 1. There is a randomized polynomial time
algorithm that given � OPT and 0 < ✏ < 1 returns
with constant probability a set SALG such that for all
i 2 [k],

fi(S
ALG) � (1� ✏) · �,

where SALG =
S

j2[`] Sj with ` = O(ln k
✏) and Sj 2 I

for each j 2 [`].

First, we finish the proof of Theorem 6 assuming
Lemma 1.

Theorem 6. We apply the algorithm from Lemma 1
with approximation loss ✏/2 and with different values of
�, some of which may be larger than OPT, but at least
one of them is guaranteed to satisfy (1� ✏/2)OPT
� OPT. At the end we return the set SALG from
our runs with the highest value of mini2[k] fi(S

ALG).

Before describing the set of candidate values of � that
we try, note that if the algorithm succeeds for the
particular value of � satisfying (1 � ✏/2)OPT �
OPT, then we get

min
i2[k]

fi(S
ALG) � (1� ✏/2) · � � (1� ✏)OPT,

and since we return the set with the highest
mini2[k] fi(S

ALG), the algorithm’s output will have the
desired approximation guarantee.

It remains to show that a set of polynomial size of
values for � exists such that one of them satisfies
(1 � ✏/2)OPT � OPT. To this end we sim-
ply try � = nfi(e)(1 � ✏/2)j for all i 2 [k], e 2 V ,
and j = 0, . . . , dln1�✏/2(1/n)e. Note that there ex-
ists an index i⇤ 2 [k] and a set S⇤ 2 I such that
OPT = fi⇤(S⇤). Now let e⇤ = argmaxe2S⇤ fi⇤(e).
Because of submodularity and monotonicity we have
1

|S⇤|fi⇤(S
⇤) fi⇤(e⇤) fi⇤(S⇤). So, we can conclude

that 1 � OPT /nfi⇤(e⇤) � 1/n, which implies that
j = dln1�✏/2(OPT /nfi⇤(e⇤))e is in the correct interval,
obtaining

(1� ✏/2)OPT nfi⇤(e
⇤)(1� ✏/2)j OPT .

This finishes the proof.

Anari, Haghtalab, Naor, Pokutta, Singh, Torrico

We remark that the dependency of the running time on
✏ can be made logarithmic by running a binary search
on j as opposed to trying all j = 0, . . . , dln1�✏/2(1/n)e.
We just need to run the algorithm from Lemma 1 for
each � polynomially many times to make the failure
probability exponentially small whenever � OPT.

The rest of this section is devoted to prove Lemma 1.
To achieve a strong concentration bound when rounding
the fractional solution, we truncate fi to min{�, fi}.
Hereafter, we use f�

i to refer to min{�, fi}. Note that
submodularity and monotonicity is preserved under this
truncation. Also, we denote by F �

i the corresponding
multilinear extension of f�

i .

We describe the continuous process counterpart of the
algorithm in this section. The discretization details
follow using standard methods (Vondrák, 2008).

Continuous Greedy. We start a continuous gradi-
ent step process where y(⌧) represents the point at
time ⌧ we are at. We start at y(0) = 0 and take con-
tinuous gradient steps in direction dy

d⌧ = vall(y), such
that vall(y) satisfies the following conditions:

(a) vall(y) ·rF �
i (y) � � � F �

i (y) for all i 2 [k],

(b) vall(y) 2 P(M), and

(c) vall(y) + y 2 [0, 1]V .

First, we show that such vall always exists. Take x⇤ to
be the indicator vector corresponding to the optimal
solution. For any y, v⇤ = (x⇤ � y) _ 0 is a positive
direction satisfying inequality (13), and for all i 2 [k]:

v⇤ ·rF �
i (y) � F �

i (y+ v⇤)�F �
i (y) = ��F �

i (y), (14)

where the last equality holds since F �
i (y) � for all

y. It is easy to check that v⇤ satisfies the rest of the
constraints (a)-(c), implying that there exists a feasi-
ble solution to the above system of linear inequalities.
Therefore, we can solve a linear program defined by
these inequalities to obtain a solution vall(y).

The above continuous process goes on until time
` = O(ln k

✏). We intentionally set ` > 1 to obtain
a (fractional) solution with a higher budget, which is
useful for achieving a bi-criteria approximation. Next
we show the following claim.
Claim 1. For any ⌧ � 0, y(⌧) 2 ⌧P(M) \ [0, 1]V and
for all i 2 [k],

F �
i (y(⌧)) � (1� e�⌧)�.

Proof. For any ⌧ � 0, we have

y(⌧) =

Z ⌧

0

vall(y(s)) ds =

Z 1

0

⌧ · vall(y(⌧s)) ds.

So, y(⌧) is a convex combination of vectors in ⌧P(M).
Moreover, (vall(y))j = 0 when yj = 1, thus y(⌧) 2
[0, 1]V proving the first part of the claim.

For the second part, observe that for all i 2 [k] we have

dF �
i (y(⌧))

d⌧
=

dy(⌧)

d⌧
·rF �

i (y(⌧))

= vall(y(⌧)) ·rF �
i (y(⌧)) � � � F �

i (y(⌧)).

Moreover, F �
i (0) = 0. Now we solve the above differen-

tial equation to obtain

F �
i (y(⌧)) � (1� e�⌧)�

for each i 2 [k] as claimed.

Thus, by setting ` = ln k
✏ + ln 1

c , we obtain F �
i (y(`)) ��

1� ✏
k · c

�
·� for all i 2 [k] and a desired constant c < 1.

We next show how to obtain an integral solution.

Rounding. The next lemma summarizes our round-
ing. We first show that the fractional solution at time
` is contained in the matroid polytope of the `-fold
union of matroid M. We then do randomized swap
rounding, introduced by Chekuri et al. (2010), in this
matroid polytope. The truncation of the submodular
functions, as well as properties of randomized swap
rounding, play a crucial role in the proof.
Lemma 2. Let ` = dln k

✏ + ln 1
c e be an integer and

y(`) be the output of the continuous greedy algorithm
at time ` such that F �

i (y(`)) �
�
1� ✏

k · c
�
· � for each

i 2 [k] and some constant c < 1. Then, there exists a
polynomial time randomized algorithm that outputs a
set S such that with probability ⌦(1), for each i 2 [k]
we have

fi(S) � (1� ✏) · �.

Moreover, S is a union of at most ` independent sets
in M.

Proof. Let M` =
W

` M be the `-fold union of matroid
M, i.e., I is an independent set in M` if and only if I
is a union of ` independent sets of M. We denote by I`
the set of independent sets of M`. The rank function
of M` is given by rM`(S) = minA✓S |S \A|+ ` ·rM(A)
(see (Schrijver, 2003)). We first show that y = y(`) is in
the convex hull of independent sets of matroid M`, i.e.,
P(M`). This polytope is given by P(M`) = {x 2 RV

+ |
x(S) rM`(S) 8 S ✓ V }, where x(S) =

P
e2S xe.

We now prove that y 2 P(M`). For any S ✓ V
and A ✓ S, we have y(S) =

P
e2S\A ye + y(A)

|S\A|+`·rM(A), where the last inequality is due to the
fact that ye 1 for all e, and y(A) ` ·rM(A) because
y 2 ` · P(M) by Claim 1. Therefore, y 2 P(M`).

Next, we apply a randomized swap rounding (see
(Chekuri et al., 2010)) in matroid M` to obtain the

Structured Robust Submodular Maximization

solution. A feature of the randomized swap rounding
is that it is oblivious to the specific function fi used,
and it is only a randomized function of the matroid
space and the fractional solution.

Applying Theorem 5 to fractional solution y(`) and
matroid M`, we obtain a random set S 2 I` such that

E[f�
i (S)] � F �

i (y(`)) �
⇣
1� ✏

k
· c
⌘
· �

for all i 2 [k].

Due to the initial truncation, we have that f�
i (S) �

with probability one. Thus, using Markov’s inequality
for each i 2 [k], we obtain that with probability at least
1 � c

k , we have f�
i (S) � (1 � ✏)�. Therefore, taking

a union bound over k functions, we obtain f�
i (S) �

(1 � ✏)� for all i 2 [k] with probability at least 1 � c,
and since fi(S) � f�

i (S) we get an integral solution S
with max-min value at least (1� ✏)� as claimed.

B.3 Necessity of monotonicity

In light of the approximation algorithms for non-
monotone submodular function maximization under
matroid constraints (see, for example, (Lee et al.,
2009)), one might hope that an analogous bi-criteria
approximation algorithm could exist for robust non-
monotone submodular function maximization. How-
ever, we show that even without any matroid con-
straints, getting any approximation in the non-
monotone case is NP-hard.

Lemma 3. Unless P = NP , no polynomial time algo-
rithm can output a set S̃ ✓ V given general submodular
functions f1, . . . , fk such that mini2[k] fi(S̃) is within
a positive factor of maxS✓V mini2[k] fi(S).

Proof. We use a reduction from Sat. Suppose that we
have a Sat instance with variables x1, . . . , xn. Consider
V = {1, . . . , n}. For every clause in the Sat instance
we introduce a nonnegative linear (and therefore sub-
modular) function. For a clause

W
i2A xi _

W
i2B xi

define

f(S) := |S \A|+ |B \ S|.

It is easy to see that f is linear and nonnegative. If we
let S be the set of true variables in a truth assignment,
then it is easy to see that f(S) > 0 if and only if
the corresponding clause is satisfied. Consequently,
finding a set S such that all functions f corresponding
to different clauses are positive is as hard as finding a
satisfying assignment for the Sat instance.

C Preliminaries for the Online
Algorithm

C.1 Properties of the Soft-Min function

Consider a set of k twice differentiable, real-valued
functions g1, . . . , gk. Let gmin be the minimum among
these functions, i.e., for each point x in the domain,
define gmin(x) := mini2[k] gi(x). This function can be
approximated by using the so-called soft-min function
H defined as

H(x) = � 1

↵
ln
X

i2[k]

e�↵gi(x),

where ↵ > 0 is a fixed parameter. We now present some
of the key properties of this function in the following
lemma.
Lemma 4. For any set of k twice differentiable, real-
valued functions g1, . . . , gk, the soft-min function H
satisfies the following properties:

1. Bounds:

gmin(x)�
ln k

↵
 H(x) gmin(x). (15)

2. Gradient:

rH(x) =
X

i2[k]

pi(x)rgi(x), (16)

where pi(x) := e�↵gi(x)/
P

j2[k] e
�↵gj(x). Clearly,

if rgi � 0 for all i 2 [k], then rH � 0.

3. Hessian:

@2H(x)

@xe1@xe2

=
X

i2[k]

pi(x)

✓
�↵

@gi(x)

@xe1

@gi(x)

@xe2

+
@2gi(x)

@xe1@xe2

◆
+ ↵re1H(x) ·re2H(x)

(17)

Moreover, if for all i 2 [k] we have
��� @gi
@xe1

��� L1,

and
��� @2gi
@xe1@xe2

��� L2, then
��� @2H
@xe1@xe2

��� 2↵L2
1+L2.

4. Comparing the average of the gi functions with H:
given T > 0 we have

H(x)
X

i2[k]

pi(x)gi(x)

 H(x) +
n+ lnT

↵
+

ln k

↵
+

ke�n

T
. (18)

So, for ↵ > 0 sufficiently large
P

i2[k] pi(x)gi(x)
is a good approximation of H(x).

Anari, Haghtalab, Naor, Pokutta, Singh, Torrico

Proof. We will just prove properties 1 and 4, since the
rest is an straightforward calculation.

1. First, for all i 2 [k] we have e�↵gi(x) e�↵gmin(x).
Thus,

H(x) = � 1

↵
ln
X

i2[k]

e�↵gi(x) � � 1

↵
ln
⇣
ke�↵gmin(x)

⌘

= gmin(x)�
ln k

↵

On the other hand,
P

i2[k] e
�↵gi(x) � e�↵gmin(x).

Hence,

H(x) � 1

↵
ln
⇣
e�↵gmin(x)

⌘
= gmin(x).

4. Let us consider sets A1 = {i 2 [k] : gi(x)
gmin(x) + (n + lnT)/↵} and A2 = {i 2 [k] :
gi(x) > gmin(x) + (n + lnT)/↵}. Our intuitive
argument is the following: when ↵ is sufficiently
large, those pi(x)’s with i 2 A2 are exponentially
small, and pi(x)’s with i 2 A1 go to a uniform
distribution over elements in A1. First, observe
that for each i 2 A2 we have

pi(x) =
e�↵gi(x)

P
i2[k] e

�↵gi(x)
<

e�↵[gmin(x)+(n+lnT)/↵]

e�↵gmin(x)

=
e�n

T
,

so
P

i2A2
pi(x)gi(x) ke�n

T . On the other hand,
for any i 2 A1 we have

X

i2A1

pi(x)gi(x)
✓
gmin(x) +

n+ lnT

↵

◆ X

i2A1

pi(x)

 H(x) +
n+ lnT

↵
+

ln k

↵

where in the last inequality we used the approxima-
tion property of the soft-min function. Therefore,

X

i2[k]

pi(x)gi(x) H(x) +
n+ lnT

↵
+

ln k

↵
+

ke�n

T
.

Finally, the other inequality is clear sinceP
i2[k] pi(x)gi(x) � gmin(x) � H(x).

Now, we prove a lemma which is used to prove Theorem
2. This is done via a simple Taylor approximation.
Lemma 5. Fix a parameter � > 0. Consider T
collections of k twice-differentiable functions, namely
{g1i }i2[k], . . . , {gTi }i2[k]. Assume 0 gti(x) 1 for

any x in the domain, for all t 2 [T] and i 2 [k].
Define the corresponding sequence of soft-min func-
tions H1, . . . , HT , with a common parameter ↵ > 0.
Then, any two sequences of points {xt}t2[T], {yt}t2[T] ✓
[0, 1]V with |xt � yt| � satisfy
X

t2[T]

Ht(yt)�
X

t2[T]

Ht(xt)

�
X

e2V

X

t2[T]

reH
t(xt)(yte � xt

e)�O(Tn2�2↵).

Proof. For every t 2 [T] define a matroid Mt =
(V ⇥ {t}, I ⇥ {t}) = (Vt, It). Given this, the union
matroid is given by a ground set V [T] =

ST
t=1 Vt, and

independent set family I [T] = {S ✓ V 1:T : S \ Vt 2
It}. Define H(X) :=

P
t2[T] H

t(xt) for any matrix
X 2 P(M)T , where xt denotes the t-th column of
X. Clearly, r(e,t)H(X) = reHt(xt). Moreover, the
Hessian corresponds to

r2
(e1,t),(e2,s)

H(X) =

⇢
0 if t 6= s

r2
e1,e2H

t(xt) if t = s

Consider any X,Y 2 P(M)T with |yte�xt
e| �. There-

fore, a Taylor’s expansion of H gives

H(Y) = H(X) +rH(X) · (Y �X)

+
1

2
(Y �X)>r2H(⇠) · (Y �X)

where ⇠ is on the line between X and Y . If we expand
the previous expression we obtain

H(Y)�H(X) =
X

e2V

X

t2[T]

reH
t(xt)(yte � xt

e)

+
1

2

X

e1,e22V

X

t2[T]

(yte1 � xt
e1)r

2
e1,e2H

t(⇠)(yte2 � xt
e2)

Finally, by using property 3 in Lemma 4 and by bound-
ing the Hessian (and ussing the fact that gti(x) 2 [0, 1])
we get

H(Y)�H(X) �
X

e2V

TX

t=1

reH
t(xt)(yte�xt

e)�O(Tn2�2↵),

which is equivalent to
X

t2[T]

Ht(yt)�
X

t2[T]

Ht(xt)

�
X

e2V

X

t2[T]

reH
t(xt)(yte � xt

e)�O(Tn2�2↵).

Structured Robust Submodular Maximization

C.2 Proof of Theorem 2

In order to get sub-linear regret for the FPL algorithm 4,
Kalai and Vempala (2005) assume a couple of conditions
on the problem (see Appendix C.3). Similarly, for our
online model we need to consider the following for any
t 2 [T]:

1. bounded diameter of P(M), i.e., for all y, y0 2
P(M), ky � y0k1 D;

2. for all x, y 2 P(M), we require |y ·�Ht(x)| L;

3. for all y 2 P(M), we require k�Ht(y)k1 A,

Now, we give a complete proof of Theorem 2 for any
given learning parameter ⌘ > 0, but the final result
follows with ⌘ =

p
D/LAT and assuming L n,

A n and D
p
n, which gives a O(n5/4) dependency

on the dimension in the regret.

Proof. Consider the sequence of multilinear exten-
sions {F 1

i }i2[k], . . . , {FT
i }i2[k] derived from the mono-

tone submodular functions f t
i obtained during the dy-

namic process. Since f t
i ’s have value in [0, 1], we have

0 F t
i (y) 1 for any y 2 [0, 1]V and i 2 [k]. Con-

sider the corresponding soft-min functions Ht for col-
lection {F t

i }i2[k] with ↵ = n2T 2 for all t 2 [T]. Denote
` = dln 1

✏ e and fix ⌧ 2 {�, 2�, . . . , `} with � = n�6T�3.
According to the update in Algorithm 2, {yt⌧}t2[T] and
{yt⌧��}t2[T] satisfy conditions of Lemma 5. Thus, we
obtain
X

t2[T]

Ht(yt⌧)�Ht(yt⌧��)

�
X

t2[T]

rHt(yt⌧��) · (yt⌧ � yt⌧��)�O(Tn3�2↵).

Then, since the update is yt⌧,e = yt⌧��,e + �(1 �
yt⌧��,e)z

t
⌧,e, we get

X

t2[T]

Ht(yt⌧)�Ht(yt⌧��)

� �
X

t2[T]

X

e2V

reH
t(yt⌧��)(1� yt⌧��,e)z

t
⌧,e �O(Tn3�2↵)

= �
X

t2[T]

�Ht(yt⌧��) · zt⌧ �O(Tn3�2↵). (19)

Observe that an FPL algorithm is implemented for
each ⌧ , so we can state a regret bound for each ⌧ by

using Theorem 4. Specifically,

E

2

4
X

t2[T]

�Ht(yt⌧��) · zt⌧

3

5 �

max
z2P(M)

E

2

4
X

t2[T]

�Ht(yt⌧��) · z

3

5� R⌘,

where R⌘ = ⌘LAT + D
⌘ is the regret guarantee for a

given ⌘ > 0. By taking expectation in (19) and using
the regret bound we just mentioned, we obtain

E

"
X

t2[T]

Ht(yt⌧)�Ht(yt⌧��)

#
(20)

� �

0

@ max
z2P(M)

E

2

4
X

t2[T]

�Ht(yt⌧��) · z

3

5

1

A� �R⌘ (21)

�O(Tn3�2↵)

� �E

0

@
X

t2[T]

2

4Ht(x⇤)�
X

i2[k]

pti(y
t
⌧��)F

t
i (y

t
⌧��)

3

5

1

A

� �R⌘ �O(Tn3�2↵), (22)

where x⇤ is the true optimum for
maxx2P(M)

P
t2[T] mini2[k] F

t
i (x). Observe that

(20) follows from monotonicity and submodularity of
each f t

i , specifically we know that

�Ht(y) · z =
X

i2[k]

pti(y)�F t
i (y) · z

�
X

i2[k]

pti(y)F
t
i (x

⇤)�
X

i2[k]

pti(y)F
t
i (y) (eq. (13))

� F t
min(x

⇤)�
X

i2[k]

pti(y)F
t
i (y)

� Ht(x⇤)�
X

i2[k]

pti(y)F
t
i (y).

By applying property (18) of the soft-min in expression
(20) we get

E

2

4
X

t2[T]

Ht(yt⌧)�Ht(yt⌧��)

3

5 �

�E

0

@
X

t2[T]

Ht(x⇤)�Ht(yt⌧��)

1

A� �R⌘ �O(Tn3�2↵)

� �T

✓
n+ lnT

↵
� ln k

↵
� ke�n

T

◆
, (23)

Given the choice of ↵ and �, the last two terms in the
right-hand side of inequality (23) are small compared to

Anari, Haghtalab, Naor, Pokutta, Singh, Torrico

R⌘, so by re-arranging terms we can state the following

X

t2[T]

Ht(x⇤)� E

2

4
X

t2[T]

Ht(yt⌧)

3

5

 (1� �)

0

@
X

t2[T]

Ht(x⇤)� E

2

4
X

t2[T]

Ht(yt⌧��)

3

5

1

A

+ 2�R⌘

By iterating `
� times in ⌧ , we get

X

t2[T]

Ht(x⇤)� E

2

4
X

t2[T]

Ht(yt`)

3

5

 (1� �)
`
�

0

@
X

t2[T]

Ht(x⇤)�
X

t2[T]

Ht(yt0)

1

A

+O

✓
R⌘ ln

1

✏

◆

 ✏

2

4
X

t2[T]

Ht(x⇤) +
ln k

n2T

3

5+O

✓
R⌘ ln

1

✏

◆
,

where in the last inequality we used (1 � �) e��.
Given that the term ✏ ln(k)n2T is small (for T and n suffi-
ciently large) we can bound it by O(R⌘ ln

1
✏). Since ↵

is sufficiently large, we can apply the approximation
property of soft-min function to obtain the following
regret bound

(1� ✏) ·
X

t2[T]

min
i2[k]

F t
i (x

⇤)� E

2

4
X

t2[T]

min
i2[k]

F t
i

�
yt`
�
3

5

 O

✓
R⌘ ln

1

✏

◆
.

Since we are doing randomized swap rounding on each
yt`, Theorem 5 shows that there is a random set St that
is independent in M` (i.e., St is the union of at most
` independent sets in I) such that E [f t

i (S
t)] � F t

i (y
t
`)

for all t 2 [T] and i 2 [k]. Thus, we finally obtain

(1� ✏) ·max
S2I

X

t2[T]

min
i2[k]

f t
i (S)�

X

t2[T]

min
i2[k]

E
⇥
f t
i (S

t)
⇤

 O

✓
R⌘ ln

1

✏

◆
.

Observation 1. Theorem 2 could be easily extended
to an adaptive adversary by sampling in each stage
t 2 [T] a different perturbation qt ⇠ [0, 1/⌘]V as shown
in (Kalai and Vempala, 2005).

C.3 Follow-the-Perturbed-Leader algorithm

In this section, we briefly recall the well-known Follow-
the-Perturbed-Leader (FPL) algorithm introduced in
(Kalai and Vempala, 2005) and used in many online
optimization problems (see e.g., (Rakhlin, 2009)). The
classical online learning framework is as follows: Con-
sider a dynamic process over T time steps. In each
stage t 2 [T], a decision-maker has to choose a point
dt 2 D from a fixed (possibly infinite) set of actions
D ✓ Rn, then an adversary chooses a vector st from
a set S. Finally, the player observes vector st and
receives reward st · dt, and the process continues. The
goal of the player is to maximize the total rewardP

t2[T] st · dt, and we compare her performance with
respect to the best single action picked in hindsight, i.e.,
maxd2D

PT
t=1 st · d. This performance with respect to

the best single action in hindsight is called (expected)
regret, formally:

Regret(T) = max
d2D

X

t2[T]

st · d� E

2

4
X

t2[T]

st · dt

3

5 .

Kalai and Vempala (2005) showed that even if one has
only access to a linear programming oracle for D, i.e.,
we can efficiently solve maxd2D s · d for any s 2 S,
then the FPL algorithm 4 achieves sub-linear regret,
specifically O(

p
T).

In order to state the main result in (Kalai and Vempala,
2005), we need the following. We assume that the
decision set D has diameter at most D, i.e., for all
d, d0 2 D, kd � d0k1 D. Further, for all d 2 D and
s 2 S we assume that the absolute reward is bounded
by L, i.e., |d · s| L and that the `1-norm of the reward
vectors is bounded by A, i.e., for all s 2 S, ksk1 A.
Theorem 7 ((Kalai and Vempala, 2005)). Let
s1, . . . , sT 2 S be a sequence of rewards. Running
the FPL algorithm 4 with parameter ⌘ 1 ensures
regret

Regret(T) ⌘LAT +
D

⌘
.

Moreover, if we choose ⌘ =
p
D/LAT , then

Regret(T) 2
p
DLAT = O(

p
T).

Algorithm 4 Follow-the-Perturbed-Leader (FPL),
(Kalai and Vempala, 2005)
Input: Parameter ⌘ > 0
Output: Sequence of decisions d1, . . . , dT
1: Sample q ⇠ [0, 1/⌘]n.
2: for t = 1 to T do
3: Play dt = argmaxd2D

⇣Pt�1
j=1 sj + q

⌘>
d.

