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1 Proofs
Theorem 1. The procedure π∗ is a Bayes procedure, that means for any other
decision procedure π we have

Ex,y[l((x, y), π
∗)] ≤ Ex,y[l((x, y), π)] . (1)

Proof. Let S ⊆ V be the set of already observed covariates, then the expected
remaining costs for a decision procedure π is given by

ExV \S ,y[l((x, y), π, S)|xS ] .

We will prove by induction that for any S ⊆ V , and any decision procedure π,
we have

ExV \S ,y[l((x, y), π
∗, S)|xS ] ≤ ExV \S ,y[l((x, y), π, S)|xS ] .

The claim then follows by setting S := ∅.

Base case: S = V . We have

π∗(xS) = argmin
i∈L

Ey[cy,i|xS ] .

Therefore π∗(xS) is a Bayes procedure, and as a consequence

Ey[cy,π∗(xS)|xS ] ≤ Ey[cy,π(xS)|xS ] .

And therefore

ExV \S ,y[l((x, y), π
∗, S)|xS ] ≤ ExV \S ,y[l((x, y), π, S)|xS ] .

(Since S = V , and we have

ExV \S ,y[l((x, y), π
∗, S)|xS ] = Ey[l((x, y), π

∗, S)|xS ] = Ey[cy,π∗(S)|xS ] ,

and the same analogously for π.)
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Induction step: S ⊂ V . Assume that for all S ∪ {i}, where i ∈ V \ S, the
induction assumptions holds, that is

ExV \(S∪{i}),y[l((x, y), π
∗, S ∪ {i})|xS∪{i}] ≤ ExV \(S∪{i}),y[l((x, y), π, S ∪ {i})|xS∪{i}] .

Let π̂ denote a Bayes procedure. Using the structure of the loss function as
de ned in the main article, we have

ExV \S ,y[l((x, y), π̂, S)|xS ] = ExV \S ,y[

{
cy,π̂(x) if π̂(x) ∈ L ,

cπ̂(x) + l((x, y), π̂, S ∪ {π̂(x)}) else.
|xS ]

≥ min
i∈L∪(V \S)

ExV \S ,y[

{
cy,i if i ∈ L ,

ci + l((x, y), π̂, S ∪ {i}) else.
|xS ]

= min
i∈L∪(V \S)

{
ExV \S ,y[cy,i|xS ] if i ∈ L ,

ci + ExV \S ,y[l((x, y), π̂, S ∪ {i})|xS ] else.

= min
i∈L∪(V \S)

{
ExV \S ,y[cy,i|xS ] if i ∈ L ,

ci + Exi

[
ExV \(S∪{i}),y

[
l((x, y), π̂, S ∪ {i})|xS∪{i}

]
|xS

]
else.

(1)

≥ min
i∈L∪(V \S)

{
ExV \S ,y[cy,i|xS ] if i ∈ L ,

ci + Exi

[
ExV \(S∪{i}),y

[
l((x, y), π∗, S ∪ {i})|xS∪{i}

]
|xS

]
else.

= min
i∈L∪(V \S)

{
ExV \S ,y[cy,i|xS ] if i ∈ L ,

ci + ExV \S ,y

[
l((x, y), π∗, S ∪ {i})|xS

]
else.

= ExV \S ,y[l((x, y), π
∗, S)|xS ] ,

where in the line marked by (1) we used the induction assumption. The last
line follows from Lemma 1. Since π̂ is a Bayes procedure, we must have equality
in the second and fth line. Therefore π∗ is also a Bayes procedure.

Lemma 1.

ExV \S ,y[l((x, y), π
∗, S)|xS ] = min

i∈L∪(V \S)

{
ExV \S ,y[cy,i|xS ] if i ∈ L ,

ci + ExV \S ,y

[
l((x, y), π∗, S ∪ {i})|xS

]
else.

Proof.

ExV \S ,y[l((x, y), π
∗, S)|xS ] = ExV \S ,y[

{
cy,π∗(xS) if π∗(xS) ∈ L ,

cπ∗(xS) + l((x, y), π∗, S ∪ {π∗(xS)}) else.
|xS ]

=

{
ExV \S ,y[cy,π∗(xS)|xS ] if π∗(xS) ∈ L ,

cπ∗(xS) + ExV \S ,y[l((x, y), π
∗, S ∪ {π∗(xS)})|xS ] else.

=

{
Ey[cy,π∗(xS)|xS ] if π∗(xS) ∈ L ,

cπ∗(xS) + ExV \S ,y[l((x, y), π
∗, S ∪ {π∗(xS)})|xS ] else.
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1. Case: π∗(xS) ∈ L. Then because of the de nition of π∗, we have

Ey[cy,π∗(xS)|xS ] = min
i∈L∪(V \S)

{
Ey[cy,i|xS ] if i ∈ L ,

ci + ExV \S ,y[l((x, y), π
∗, S ∪ {i})|xS ] else.

2. Case: π∗(xS) /∈ L. Then because of the de nition of π∗, we have

cπ∗(xS) + ExV \S ,y[l((x, y), π
∗, S ∪ {π∗(xS)})|xS ]

= min
i∈L∪(V \S)

{
Ey[cy,i|xS ] if i ∈ L ,

ci + ExV \S ,y[l((x, y), π
∗, S ∪ {i})|xS ] else.


