Supplement Material to "Efficient Bayes Risk Estimation for Cost-Sensitive Classification", AISTATS 2019

Daniel Andrade and Okajima Yuzuru Security Research Laboratories, NEC

1 Proofs

Theorem 1. The procedure π^* is a Bayes procedure, that means for any other decision procedure π we have

$$\mathbb{E}_{\mathbf{x},y}[l((\mathbf{x},y),\pi^*)] \le \mathbb{E}_{\mathbf{x},y}[l((\mathbf{x},y),\pi)].$$
(1)

Proof. Let $S \subseteq V$ be the set of already observed covariates, then the expected remaining costs for a decision procedure π is given by

$$\mathbb{E}_{\mathbf{x}_{V\setminus S},y}[l((\mathbf{x},y),\pi,S)|\mathbf{x}_S]$$

We will prove by induction that for any $S\subseteq V,$ and any decision procedure $\pi,$ we have

 $\mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S) | \mathbf{x}_S] \le \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi, S) | \mathbf{x}_S].$

The claim then follows by setting $S := \emptyset$.

Base case: S = V. We have

$$\pi^*(\mathbf{x}_S) = \operatorname*{arg\,min}_{i \in L} \mathbb{E}_y[c_{y,i} | \mathbf{x}_S].$$

Therefore $\pi^*(\mathbf{x}_S)$ is a Bayes procedure, and as a consequence

$$\mathbb{E}_{y}[c_{y,\pi^{*}(\mathbf{x}_{S})}|\mathbf{x}_{S}] \leq \mathbb{E}_{y}[c_{y,\pi(\mathbf{x}_{S})}|\mathbf{x}_{S}]$$

And therefore

$$\mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S) | \mathbf{x}_S] \le \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi, S) | \mathbf{x}_S].$$

(Since S = V, and we have

$$\mathbb{E}_{\mathbf{x}_{V \setminus S}, y}[l((\mathbf{x}, y), \pi^*, S) | \mathbf{x}_S] = \mathbb{E}_y[l((\mathbf{x}, y), \pi^*, S) | \mathbf{x}_S] = \mathbb{E}_y[c_{y, \pi^*(S)} | \mathbf{x}_S],$$

and the same analogously for π .)

Induction step: $S \subset V$. Assume that for all $S \cup \{i\}$, where $i \in V \setminus S$, the induction assumptions holds, that is

$$\mathbb{E}_{\mathbf{x}_{V \setminus (S \cup \{i\})}, y}[l((\mathbf{x}, y), \pi^*, S \cup \{i\}) | \mathbf{x}_{S \cup \{i\}}] \le \mathbb{E}_{\mathbf{x}_{V \setminus (S \cup \{i\})}, y}[l((\mathbf{x}, y), \pi, S \cup \{i\}) | \mathbf{x}_{S \cup \{i\}}].$$

Let $\hat{\pi}$ denote a Bayes procedure. Using the structure of the loss function as defined in the main article, we have

$$\begin{split} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \hat{\pi}, S) | \mathbf{x}_{S}] &= \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[\begin{cases} c_{y, \hat{\pi}(\mathbf{x})} & \text{if } \hat{\pi}(\mathbf{x}) \in L, \\ c_{\hat{\pi}(\mathbf{x})} + l((\mathbf{x}, y), \hat{\pi}, S \cup \{\hat{\pi}(\mathbf{x})\}) & \text{else.} \end{cases} \\ &\geq \min_{i \in L \cup (V \setminus S)} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[\begin{cases} c_{y, i} & \text{if } i \in L, \\ c_{i} + l((\mathbf{x}, y), \hat{\pi}, S \cup \{i\}) & \text{else.} \end{cases} \\ &= \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, i} | \mathbf{x}_{S}] & \text{if } i \in L, \\ c_{i} + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \hat{\pi}, S \cup \{i\}) | \mathbf{x}_{S}] & \text{else.} \end{cases} \\ &= \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, i} | \mathbf{x}_{S}] & \text{if } i \in L, \\ c_{i} + \mathbb{E}_{\mathbf{x}_{i}} \left[\mathbb{E}_{\mathbf{x}_{V\setminus (S \cup \{i\}), y} \left[l((\mathbf{x}, y), \hat{\pi}, S \cup \{i\}) | \mathbf{x}_{S \cup \{i\}} \right] | \mathbf{x}_{S} \right] & \text{else.} \end{cases} \\ &= \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, i} | \mathbf{x}_{S}] & \text{if } i \in L, \\ c_{i} + \mathbb{E}_{x_{i}} \left[\mathbb{E}_{\mathbf{x}_{V\setminus (S \cup \{i\}), y} \left[l((\mathbf{x}, y), \pi^{*}, S \cup \{i\}) | \mathbf{x}_{S \cup \{i\}} \right] | \mathbf{x}_{S} \right] & \text{else.} \end{cases} \\ &= \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, i} | \mathbf{x}_{S}] & \text{if } i \in L, \\ c_{i} + \mathbb{E}_{x_{i}} \left[\mathbb{E}_{\mathbf{x}_{V\setminus (S \cup \{i\}), y} \left[l((\mathbf{x}, y), \pi^{*}, S \cup \{i\}) | \mathbf{x}_{S \cup \{i\}} \right] | \mathbf{x}_{S} \right] & \text{else.} \end{cases} \\ &= \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, i} | \mathbf{x}_{S}] & \text{if } i \in L, \\ c_{i} + \mathbb{E}_{\mathbf{x}_{i}} \left[\mathbb{E}_{\mathbf{x}_{V\setminus S \cup \{i\}, y} \pi^{*}, S \cup \{i\} \right] | \mathbf{x}_{S} \right] & \text{else.} \end{cases} \\ &= \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, i} | \mathbf{x}_{S}] & \text{if } i \in L, \\ c_{i} + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y} \left[l((\mathbf{x}, y), \pi^{*}, S \cup \{i\} \right] | \mathbf{x}_{S} \right] & \text{else.} \end{cases} \\ &= \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^{*}, S) | \mathbf{x}_{S}], \end{cases} \end{cases}$$

where in the line marked by (1) we used the induction assumption. The last line follows from Lemma 1. Since $\hat{\pi}$ is a Bayes procedure, we must have equality in the second and fifth line. Therefore π^* is also a Bayes procedure.

Lemma 1.

$$\mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S) | \mathbf{x}_S] = \min_{i \in L \cup (V\setminus S)} \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y,i} | \mathbf{x}_S] & \text{if } i \in L, \\ c_i + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}\left[l((\mathbf{x}, y), \pi^*, S \cup \{i\}) | \mathbf{x}_S\right] & \text{else.} \end{cases}$$

Proof.

$$\begin{split} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S) | \mathbf{x}_S] &= \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[\begin{cases} c_{y, \pi^*(\mathbf{x}_S)} & \text{if } \pi^*(\mathbf{x}_S) \in L \,, \\ c_{\pi^*(\mathbf{x}_S)} + l((\mathbf{x}, y), \pi^*, S \cup \{\pi^*(\mathbf{x}_S)\}) & \text{else.} \end{cases} \\ &= \begin{cases} \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[c_{y, \pi^*(\mathbf{x}_S)} | \mathbf{x}_S] & \text{if } \pi^*(\mathbf{x}_S) \in L \,, \\ c_{\pi^*(\mathbf{x}_S)} + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S \cup \{\pi^*(\mathbf{x}_S)\}) | \mathbf{x}_S] & \text{else.} \end{cases} \\ &= \begin{cases} \mathbb{E}_y[c_{y, \pi^*(\mathbf{x}_S)} | \mathbf{x}_S] & \text{if } \pi^*(\mathbf{x}_S) \in L \,, \\ c_{\pi^*(\mathbf{x}_S)} + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S \cup \{\pi^*(\mathbf{x}_S)\}) | \mathbf{x}_S] & \text{else.} \end{cases} \end{split}$$

1. Case: $\pi^*(\mathbf{x}_S) \in L$. Then because of the definition of π^* , we have

$$\mathbb{E}_{y}[c_{y,\pi^{*}(\mathbf{x}_{S})}|\mathbf{x}_{S}] = \min_{i \in L \cup (V \setminus S)} \begin{cases} \mathbb{E}_{y}[c_{y,i}|\mathbf{x}_{S}] & \text{if } i \in L \,, \\ c_{i} + \mathbb{E}_{\mathbf{x}_{V \setminus S}, y}[l((\mathbf{x}, y), \pi^{*}, S \cup \{i\})|\mathbf{x}_{S}] & \text{else.} \end{cases}$$

2. Case: $\pi^*(\mathbf{x}_S) \notin L$. Then because of the definition of π^* , we have

$$c_{\pi^*(\mathbf{x}_S)} + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S \cup \{\pi^*(\mathbf{x}_S)\}) | \mathbf{x}_S]$$

=
$$\min_{i \in L \cup (V\setminus S)} \begin{cases} \mathbb{E}_y[c_{y,i} | \mathbf{x}_S] & \text{if } i \in L, \\ c_i + \mathbb{E}_{\mathbf{x}_{V\setminus S}, y}[l((\mathbf{x}, y), \pi^*, S \cup \{i\}) | \mathbf{x}_S] & \text{else.} \end{cases}$$

г	-	-	_	
L				
L				
L				