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Abstract

We develop procedures for solving convex
stochastic optimization problems that exploit
the structure and geometry of the underly-
ing problem. Our procedures build on the
model-based aProx framework that we de-
velop in the paper [2], which highlights the
importance of more careful structural model-
ing; as one example of this, if we seek to min-
imize a non-negative loss, then stochastic op-
timization methods should use non-negative
approximations. We extend this earlier work
to improve adaptivity to problem geometry
via careful choices of divergence measures,
highlighting both the importance of leverag-
ing problem structure and geometry—in the
form of the divergence used to define stochas-
tic updates—for strong performance. Our ex-
periments confirm our theoretical results in a
range of problems, including deep learning.

1 Introduction

We develop and analyze a family of methods for solving
the stochastic convex optimization problem

minimize F (x) = EP [f(x;S)] =

∫
S
f(x; s)dP (s)

subject to x ∈ X , (1)

where the set S is a sample space, for each s ∈ S
the function f(·; s) : Rn → R is a closed convex
function, and X ⊂ Rn is closed convex. Such prob-
lems arise in many scenarios where one can only com-
pute a noisy estimate of the gradient and have appli-
cations in numerous fields, including machine learn-
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ing, statistical estimation, and simulation-based op-
timization [40, 18, 36]. The standard methodology
for these problems is the stochastic (sub)gradient
method [42, 40, 27, 9, 35], which begins from an initial

point x1, then iteratively draws Sk
iid∼ P and updates

xk+1 := xk − αkgk for some gk ∈ ∂f(xk;Sk). (2)

In the paper [2], we develop and analyze aProx (Ap-
proximate Proximal) framework for stochastic opti-
mization, which exhibits improved robustness over ba-
sic stochastic subgradient methods, which can be sen-
sitive to parameter specification [2, 38]. We build on
our earlier methodology to extend the aProx family
to applications in high-dimensional optimization and
estimation [27, 37] and allow adaptivity to underly-
ing problem geometry [12], extending the benefits of
better modeling to more general problems.

1.1 Approach and Contribution

Our starting point is to review the stochastic “model-
based” minimization approach [15, 10, 2] for stochastic
optimization. The key development of our paper [2] is
that such methods are robust to stepsize choice, adap-
tive to problem difficulty, and enjoy optimal conver-
gence over a range of scenarios. The aProx family
iteratively minimizes

xk+1 := argmin
x∈X

{
fxk(x;Sk) +

1

2αk
‖x− xk‖22

}
. (3)

Here fx(·; s) is the model of f(·; s) at the point x (see
examples in Section 2), satisfying the conditions

(C.i) The function y 7→ fx(y; s) is convex and sub-
differentiable on its domain.

(C.ii) The model fx satisfies the equality fx(x; s) =
f(x; s) and

fx(y; s) ≤ f(y; s) for all y.

(C.iii) At y = x, we have the containment

∂yfx(y; s)|y=x ⊂ ∂xf(x; s).
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Many optimization algorithms fall into this framework,
including stochastic subgradient methods, with the
linear model fx(y; s) = f(x; s) + 〈f ′(x; s), y − x〉, and
stochastic proximal point methods [32, 25, 7, 23, 8, 2],
which use the exact model fx(y; s) = f(y; s). In [2] we
argue that using accurate models with certain struc-
tural properties in aProx results in procedures with
improved robustness to stepsize choice, objective, and
problem difficulty. As is well-known in first-order opti-
mization [3, 27], these procedures may perform poorly
in “non-Euclidean” problems, for example, high di-
mensional problems over the `1-ball.

To that end, we extend the aProx framework to more
general divergence measures and non-Euclidean ge-
ometries, modifying the iteration (3) to

xk+1 := argmin
x∈X

{
fxk(x;Sk) +

1

αk
Dh(x, xk)

}
, (4)

Dh(x, y) := h(x)− h(y)− 〈h′(y), x− y〉.

Here Dh is the Bregman-divergence generated by h :
Rn → R ∪ {+∞}, and we assume that h is strongly
convex with respect to a norm ‖·‖ over X , meaning

that Dh(x, y) ≥ 1
2 ‖x− y‖

2
for x, y ∈ X .

We investigate the model and divergence-based itera-
tion (4), studying the effects of accurate models and
divergences on the behavior of the optimization algo-
rithms. First, we show that the robustness results for
accurate models with Euclidean distance [2] hold for
general divergences as well, motivating the importance
of model choice even with good distance measures.
Moreover, we show that even when the approximation
fx is accurate, appropriate choices of divergence Dh

can significantly improve the convergence time of our
procedures. As we show in the sequel, the best-stepsize
performance of simple models with appropriate diver-
gence can outperform those achieved by accurate mod-
els with poorly chosen divergence.

We conclude our paper with a substantial experimen-
tal investigation of our methods in multiple settings,
including deep learning. Our experiments confirm our
theoretical results, demonstrating that accurate mod-
els can improve robustness for stepsize choice, while a
proper divergence choice can enhance the best-stepsize
performance.

1.2 Related work

We situate our work in the connection to stochastic
model-based optimization methods [15, 2, 10] and mir-
ror descent methods [28]. These two lines of research
aim to solve two different questions; the former sug-
gests the model-based framework as a robust extension
of standard gradient methods, which are known to be

sensitive to stepsize choices as well as the functions
themselves being optimized [27], while in the later, re-
searchers aim to develop optimization algorithms that
more accurately reflect problem geometry [28, 3, 12].

The first and most well-known model-based minimiza-
tion approaches are the proximal point methods [32],
which minimize regularized version of the true func-
tion. In stochastic cases, proximal point methods help
to reduce some of the instability inherent to stochas-
tic optimization. We identify a few papers in this
line of work leading to ours. Bertsekas [7] analyzes
stochastic proximal point methods in an incremen-
tal framework, i.e. when S = {1, 2, . . . ,m} is a fi-
nite set, and provides convergence results similar to
subgradient methods, while Ryu and Boyd [33] in-
vestigate the same algorithm and show some cases
in which it is more stable than standard stochastic
subgradient methods. More recently, Duchi and Ruan
[14], followed by Davis and Drusvyatskiy [10] and our
work [2], develop a model-based framework allowing
for more general models than the linear model, as
in basic stochastic subgradient methods, or the exact
model, as in stochastic proximal point methods. Duchi
and Ruan [14] noted fairly extraordinary performance
gains of certain model-based methods over standard
subgradient schemes, though they could only provide
an asymptotic analysis of convergence (without rates).
Davis and Drusvyatskiy [10] developed the first con-
vergence guarantees in non-convex settings, showing
how to describe convergence of well-behaved (but po-
tentially non-smooth) non-convex optimization prob-
lems. Our earlier paper [2] follows these works and pro-
vides evidence—empirical and theoretical—that (we
believe) explains the performance benefits of model-
based schemes over conventional methods, showing
stability, convergence, and adaptivity guarantees for
methods based on accurate models.

All of this work focuses on Euclidean (low-
dimensional) settings, and in this paper, we develop
mirror-descent (non-Euclidean) analogues of our re-
sults [2]. This of course builds out of mirror descent
convergence guarantees originally developed by Ne-
mirovski and Yudin [28], which others have comple-
mented in stochastic and online optimization [3, 27].
Recently, Davis et al. [11] study model-based optimiza-
tion methods with Bregman divergences chosen to con-
trol one-sided error of the models, providing conver-
gence guarantees similar to standard mirror descent
method.

Notation For a convex function f , ∂f(x) denotes
its subgradient set at x, and f ′(x) ∈ ∂f(x) denotes
an arbitrary element of the subdifferential. Through-
out, x? denotes a minimizer of problem (1) and
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X ? = argminx∈X F (x) its optimal set. We let Fk :=
σ(S1, . . . , Sk) be the σ-field generated by the first k
random variables Si, so xk ∈ Fk−1 for all k under iter-
ation (4). We let Dh(·, ·) denote a Bregman divergence
generated by a 1-strongly convex function h(·) with re-
spect to ‖·‖h. We denote its dual norm by ‖·‖h∗ . For a
set A ⊆ Rn, we denote Dh(A, x) := infy∈A{Dh(y, x)}.

2 Models and divergences

We give a brief introduction for the models and di-
vergences we use throughout the paper, adapting the
models we introduce [2, Sec. 2] for stochastic optimiza-
tion with Euclidean distance. We also mention a few
divergences we will use later in our examples.

Stochastic subgradient: The model is

fx(y; s) := f(x; s) + 〈f ′(x; s), y − x〉. (5)

Truncated subgradient: The model is

fx(y; s) :=
(
f(x; s)+〈f ′(x; s), y−x〉

)
∨ inf
z∈X

f(z; s). (6)

More generally, we can consider models that satisfy
the following condition.

(C.iv) For all s ∈ S, the models fx(·; s) satisfy

fx(y; s) ≥ inf
z∈X

f(z; s).

As a simple example of Condition (C.iv), consider any
loss function known to be non-negative, for example,
the hinge, logistic, or squred loss. Then the trun-
cated model (6) is simply the positive part fx(y; s) =
[f(x; s) + 〈f ′(x; s), y − x〉]+.

Proximal point: The model

fx(y; s) := f(y; s). (7)

We also consider relatively accurate models, such as
the bundle model (see [2]), which satisfy

(C.v) For some ε > 0, there exists C : S → R+ with
E[C(S)] <∞ such that for x0 ∈ X , the point
xα = argminx∈X {fx0

(x; s) + 1
αDh(x, x0)} sat-

isfies

f(xα; s) ≤ fx0
(xα; s) +

1− ε
α

Dh(xα, x0) + C(s)α.

Now, we discuss a few well-known divergences which
will be useful for our development.

Euclidean distance: The function h(x) = 1
2 ‖x‖

2
2

generates the Euclidean divergence

Dh(x, y) =
1

2
‖x− y‖22 . (8)

Clearly h is strongly convex with respect to ‖·‖2.

Mahalanobis distance: The function h(x) =
1
2x

THx, for a matrix H � 0, generates the divergence

Dh(x, y) =
1

2
(x− y)TH(x− y) (9)

In this case, h is strongly convex with respect to the
Mahalanobis norm ‖x‖H :=

√
xTHx. The AdaGrad

algorithms [12] adaptively choose

Hk = diag

( k∑
i=1

f ′(xi;Si)f
′(xi;Si)

T

) 1
2

(10)

and use hk(x) = 1
2x

THkx in the kth update (4).

The p-norm divergences: When the optimization
domain X is a subset of the `1-ball or an `p-ball,
1 < p ≤ 2, is is natural to use the p-norm diver-
gences [16, 34, Sec. 5.1.4 and Ex. 5], where one takes

h(x) = 1
2 ‖x‖

2
p, which are (p− 1)-strongly convex with

respect to themselves. For later use, we note that

h′(x) =
[sign(xj)|xj |p−1]nj=1

‖x‖p−2p

and ‖h′(x)‖q = ‖x‖p

where 1/p+1/q = 1. In addition, they have the strong
convexity and smoothness(-like) properties

(p− 1)

2
‖x− y‖2p ≤ Dh(x, y) ≤ q − 1

2
· . . . (11)((

‖x‖p ∨ ‖y‖p
)2−p ‖x− y‖p−1p + (2− p) ‖x− y‖p

)2
.

(See the supplemental Appendix for a proof.)

From inequality (11), we see that h(x) = 1
2(p−1) ‖x‖

2
p

is strongly convex with respect to itself; moreover,
choosing p = 1 + 1/ log(2d) yields the lower bound
‖x‖1 ≥ c ‖x‖p for a numerical constant c. Alterna-
tive choices are possible; if the domain is the simplex
X = {x ∈ Rn | x ≥ 0,1Tx = 1}, the negative entropy
h(x) =

∑n
i=1 xi log xi yields Dh(x, y) = Dkl (x||y),

which is strongly convex with respect to the `1-norm.

3 Stability and convergence
guarantees

We now investigate the effects of models and diver-
gences on the behavior of the method (4). We start
with a simple example that illustrates the influence of
the model, discussing the importance of the divergence
subsequently.

Example 1 (choice of model): Consider the func-
tion f(x) = ex + e−x with Dh(x, y) = 1

2 (x − y)2.
A calculation shows that the iterates of the gradient
method, without noise (i.e. the linear model (5)) sat-

isfy |xk| > 22
k |x1| if α1 is large enough; while Corollary
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3.2 of our paper [2] shows that the iterates (4) using
the proximal model (7) are bounded by a constant, no
matter the value of the initial stepsize α1. 3

Example 1 illustrates some of the benefits of more care-
ful and accurate choices for the model; after present-
ing our main stability and convergence results, we will
show how better choices of the divergence can yield
similarly important benefits over the Euclidean model-
based methods (3).

3.1 Stability

Now we start our theoretical investigation of the effects
of divergence and model choice on the stability of the
iterates. First, we extend our definitions of stability [2]
to any Bregman divergence Dh(·, ·). Let A denote the
set of positive stepsize sequences {αk} with

∑
k α

2
k <

∞. The pair (F ,P) is a collection of problems if P is a
collection of probability measures on a sample space S,
and F is a collection of functions f : X×S → R, where
f(·; s) is convex. We have the following definition of
stability.

Definition 3.1. An algorithm generating iterates xk
according to the model-based update (4) is stable in L2

for the divergence Dh(·, ·) for the collection of problems
(F ,P) if for all f ∈ F and P ∈ P defining F (x) =
EP [f(x;S)] and X ? = argminx∈X F (x),

sup
α∈A

sup
k∈N

E[Dh(X ?, xk, )]∑
k α

2
k

<∞. (12a)

It is stable in probability for the divergence Dh(·, ·) if
for all stepsize sequences {αk} ∈ A,

sup
k
Dh(X ?, xk) <∞ with probability 1. (12b)

We have previously shown [2] how the iterates of accu-
rate models are stable (in both notions) when one uses

Euclidean divergences Dh(x, y) = 1
2 ‖x− y‖

2
2. In what

follows, we show that this remains true for any Breg-
man divergence, where the stability bound depends on
the choice of divergence. The following theorem pro-
vides our basic recursion for proving stability of our
methods.

Theorem 1. Let xk be generated by the iteration (4)
with any model satisfying Conditions (C.i)–(C.iii)
and (C.v). Then for all x? ∈ X ?,

E [Dh(x?, xk+1) | Fk−1]

≤ Dh(x?, xk) + α2
k

E
[
‖f ′(x?;Sk)‖2h∗

]
ε

+ E[C(S)]

 .

By applying the recursion in Theorem 1 iteratively and
using standard martingale convergence theorems we
have the following stability corollary.

Corollary 3.1. Let the conditions of Theorem 1 hold.
Assume further that E[‖f ′(x?;S)‖2h∗ ] ≤ σ2

h for all x? ∈
X ?. Then, for each k ∈ N,

E [Dh(X ?, xk+1)]

≤ E [Dh(X ?, x1)] +

(
σ2
h

ε
+ E[C(S)]

) k∑
i=1

α2
i .

If
∑
k α

2
k <∞, then

sup
k∈N

Dh(X ?, xk) <∞

and Dh(X ?, xk) converges to some finite value with
probability 1.

Corollary 3.1 shows that the iterates are stable
(Def. 3.1) in both senses for the Bregman divergence
whenever the model is accurate. In particular, when-
ever E[‖f ′(x?;S)‖2h∗ ] < ∞, we obtain stability. This
dependence on the norm ‖·‖h∗ is important, as some
choice of divergence may not yield finite bounds on the
“variance” of f ′(x?;S). Indeed, consider the following

Example 2 (Mean-like estimation under p-
norms): Consider the space `p(N) = {x ∈
RN | ‖x‖p < ∞}, and let X be the 1-ball in `p(N),
that is, X = {x ∈ `p(N) | ‖x‖p ≤ 1}, and consider

f(x; s) = ‖x− s‖2p. Then the p-norm divergences (re-

call inequality (11)), generated by h(x) = 1
2(p−1) ‖x‖

2
p,

yield dual norms ‖·‖h∗ = ‖·‖q for q = p
p−1 conjugate

to p. For x ∈ `p(N) we have

‖f ′(x; s)‖q = ‖x− s‖p ,

while ‖f ′(x; s)‖22 ≥ ‖x− s‖
2−p
p

∑
i(|xi|p−1 − |si|p−1)2.

Assuming x? = 0, then we have ‖f ′(x?; s)‖22 =

‖s‖2−pp

∑
i |si|2(p−1). This may be infinite even when

s ∈ `p(N), so that standard bounds based on Euclidean
distances yield no guarantees in this case. 3

Evidently the choice of divergence can have strong ef-
fects on the stability properties of the algorithms.

3.2 Divergence based convergence guarantees

In the previous section, we demonstrated the effects of
model and divergence on the stability of the iterates.
In this section, we provide convergence guarantees for
our models, which show the dependence on the model
and divergence. We start with a general convergence
result, showing that our family of methods converge
under extremely weak assumptions for stable models
with general Bregman divergences.

Proposition 1. Assume there exists an increasing
function Gbig : R+ → [0,∞) such that for all x ∈



Hilal Asi, John C. Duchi

X , E[‖f ′(x;S)‖2] ≤ Gbig(Dh(X ?, x)). Let the iter-
ates xk be generated by any method satisfying Condi-
tions (C.i)–(C.iii), and additionally assume that the it-
erates are bounded: with probability 1, supk ‖xk‖ <∞.
Then

∑
k αk(F (xk)− F (x?)) <∞. If in addition

Γ(ε) := inf
x∈X
{F (x)− F (x?) | Dh(X ?, x) ≥ ε} > 0

for all ε > 0, then Dh(X ?, xk)
a.s.→ 0.

Proposition 1 also implies an asymptotic convergence
rate on (weighted averages of) the iterates xk. Indeed,
we get the following corollary using Jensen’s inequality.

Corollary 3.2. Let the conditions of Proposition 1
hold. Let {γk}∞k=1 ⊂ R+ be a non-decreasing sequence
with γk ≥ 0. Then define the weighted averages xk =∑k
i=1 γiαixi/(

∑k
i=1 γiαi). Then with probability 1,

lim sup
k→∞

1

γk

( k∑
i=1

γiαi

)
[F (xk)− F ?] = 0.

In particular, if γk = α−1k then xk = 1
k

∑k
i=1 xi satis-

fies
kαk (F (xk)− F ?) a.s.→ 0.

We proceed now to provide convergence guarantees for
any general model that depends on the chosen diver-
gence Dh(·, ·). As we demonstrate next, choosing bet-
ter divergences can result in convergence rates with
improved dependence on certain problem parameters
such as the dimension. We have the following conver-
gence result for general models and divergences if the
functions f(·; s) are Lipschitz.

Proposition 2. Let the iterates xk be generated by
algorithm (4) by any model satisfing Conditions (C.i)–

(C.iii). Define xk = (
∑k
i=1 αi)

−1∑k
i=1 αixi. Then

E[F (xk)]− F (x?)

≤ Dh(x?, x1)∑k
i=1 αi

+
1

2
∑k
i=1 αi

k∑
i=1

α2
iE
[
‖f ′(xk;Sk)‖2h∗

]
.

If X is bounded with R := supx∈X Dh(x?, x), and

f(·;S) satisfies E[‖f ′(x;S)‖2h∗ ] ≤ M2
h for all x ∈ X ,

then the average xk := 1
k

∑k
i=1 xi satisfies

E[F (xk)]− F (x?) ≤ R

kαk
+
M2
h

2k

k∑
i=1

αi.

Proposition 2 provides divergence dependent conver-
gence rates for any general model that satisfies Condi-
tions (C.i)–(C.iii). Thus, we have recovered the typical
convergence guarantees for stochastic mirror descent
methods [27], in complete analogy with the Euclidena
case, but applying to this our more general model-
based framework.

3.3 Convergence with adaptive divergences

While not without controversy [38], there is theo-
retical and empirical evidence [12, 26, 13, 29] that
adaptive methods—which modify the divergence Dh

throughout their iterations—can yield strong perfor-
mance for stochastic gradient methods. Consequently,
in this section, we show how to develop convergence
guarantees for such scenarios in the model-based set-
ting (4). In particular, we consider the setting where
the function hk is Fk-measurable, Dhk(x, y) = 1

2 (x −
y)THk(x− y). We show that any model in our frame-
work enjoys the typical convergence guarantees asso-
ciated with AdaGrad and related algorithms [12, 26].
In particular, we consider updates

xk+1 := argmin
x∈X

{
fxk(x;Sk) +

1

2α
(x− xk)THk(x− xk)

}
.

(13)

Recalling that ‖x‖2H = xTHx for symmetric H, we
have have the following convergence guarantee.

Proposition 3. Let xk follow algorithm (13) with any
model satisfing Conditions (C.i)–(C.iii). Then

1

k

k∑
i=1

f(xi;Si)− f(x?;Si)

≤ 1

2kα
‖x1 − x?‖2H1

+
1

2kα

k∑
i=1

‖xi − x?‖2Hi−Hi−1

+
α

2k

k∑
i=1

‖f ′(xi;Si)‖
2
H−1
i
.

If Hk = diag(
∑k
i=1 f

′(xi;Si)f ′(xi;Si)T )1/2 and X is
bounded with R∞ := supx∈X ‖x− x?‖∞, the average

xk := 1
k

∑k
i=1 xi satisfies

E [F (xk)]− F (x?) ≤
(
R2
∞

2kα
+
α

k

)
E[tr(Hk)].

As a consequence of this proposition, we see, for ex-
ample, that model-based methods may use the Ada-
Grad [12] stepping with Hk = diag(

∑k
i=1 gig

T
i )1/2 for

gi ∈ ∂f(xi;Si), achieving adaptive minimax optimal
rates when the domain is an `∞-box [13].

4 Fast convergence on easier problems

We now study the performance of the mirror ex-
tension of the aProx family on problems with ad-
ditional structure—strong convexity or interpolating
solutions—that allow more efficient solution methods.
For these, we show that the model based methods
exhibit stronger adaptivity properties than standard
stochastic gradient methods.
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4.1 Problems with consistent solutions

We begin by investigating what we term “easy
problems,” investigating convergence properties of
Bregman-based updates. By an easy problem, we
mean a problem for which there exists a shared mini-
mizer for all samples s ∈ S; given the success of ma-
chine learning and engineering applications in which
there exist interpolating solutions (for example, in
deep learning) [39, 4, 5], it is important to investigate
algorithm performance in these regimes. As in our
earlier paper [2], we show that models satisfying Con-
ditions (C.i)–(C.iii), and additionally the lower bound
Condition (C.iv), enjoy fast (sometimes linear) con-
vergence for these instances. In contrast to our ear-
lier analysis [2], which proves similar results for the
Euclidean distance, we allow growth with respect to
nontrivial powers of Bregman divergences. These ex-
tensions are of interest in situations similar to those
for which mirror descent proves effective: when Eu-
clidean distance introduces inappropriate geometry for
the problem. We begin with our definition of easy
problems [2].

Definition 4.1. Let F (x) := EP [f(x;S)]. Then F
is easy to optimize if for X ? := argminx∈X F (x), for
each x? ∈ X ? and P -almost all s ∈ S we have

inf
x∈X

f(x; s) = f(x?; s).

The following lemma, which generalizes [2, Lemma
4.1], provides a single-step progress guarantee for mod-
els satisfying Conditions (C.i)–(C.iv). The lemma
shows that our iterates always make progress to-
wards the optimal set for easy problems. Perhaps
the most compelling example in this case comes from
situations with non-negative losses and a consistent
solution—evidently a situation of growing frequency
in large-scale machine learning [39, 4, 5]. Here,
the truncated model that simply uses the positive
part fxk(x;Sk) = [f(xk;Sk) + 〈gk, x− xk〉]+ for gk ∈
∂f(xk;Sk) is enough to achieve the guarantees.

Lemma 4.1. Let F be easy to optimize (Defini-
tion 4.1). Let xk be generated by the updates (4) using
a model satisfying Conditions (C.i)–(C.iv). Let γk =

min{αk, f(xk;Sk)−f(x
?;Sk)

‖f ′(xk;Sk)‖2h∗
}. Then for any x? ∈ X ?,

Dh(x?, xk+1) ≤ Dh(x?, xk)− γk
2

[f(xk;Sk)− f(x?;Sk)].

Given the progress condition in Lemma 4.1, it is nat-
ural to make an assumption on the growth of f away
from its optimizers.

Assumption A1 (Expected sharp growth). There ex-
ist constants λ0, λ1 > 0 and ρ ∈ (0,∞) such that for

all α ∈ R+ and x ∈ X and x? ∈ X ?,

E

[
min

{
α[f(x;S)− f(x?;S)],

(f(x;S)− f(x?;S))2

‖f ′(x;S)‖2h∗

}]
≥ Dh(X ?, x)

ρ
2 min

{
λ0α, λ1Dh(X ?, x)

ρ
2

}
.

While Assumption A1 is somewhat complex, it holds
when the losses f deviate above f with constant prob-
ability. For example, as in our earlier work [2], a sim-
ple argument with expectations shows that Assump-
tion A1 holds when there exist λ > 0, p > 0 such that

P(f(x;S)− f(x?;S) ≥ λDh(X ?, x)ρ/2) ≥ p (14)

and E[‖f ′(x;S)‖2h∗ ] ≤ M2
h < ∞. We give several ex-

amples in our paper [2] in the Euclidean case, as well as
examples of interpolating problems; let us here provide
a very stylized example to show when Assumption A1
holds for certain Bregman divergences and distance-
generating h, but not for Euclidean cases.

Example 3 (Observations of a consistent vec-
tor): Let p ∈ (1, 2) and let `p(N) = {x ∈ RN |∑∞
i=1 |xi|p < ∞} as is standard. Fix some v ∈ `p(N),

‖v‖p ≤ 1, and let X = {x : ‖x‖p ≤ 2}. Con-

sider the case that S ∈ {0, 1}N has independent
coordinates. Then f(x; s) = ‖s� (x− v)‖p, where
� denotes Hadamard (elementwise) product, satisfies
infx P(f(x;S) ≥ λ ‖x− v‖p) > 0 (as x? = v). Now, we
use the “smoothness” inequalities (11), which, because
‖x‖p ≤ 2, yields that condition (14) holds in that for
some λ = λp > 0 we have

inf
x

P(f(x;S) ≥ λDh(x?, x)
1

2(p−1) ) > 0.

Evidently Assumption A1 cannot hold with h(x) =
1
2 ‖x‖

2
2, as the relevant norms may have infinite expec-

tations. 3

Finally, if Assumption A1 holds, we can prove linear
convergence of our methods, as the next proposition
shows.

Proposition 4. Let F be easy to optimize and As-
sumption A1 hold. Let xk be generated by the stochas-
tic iteration (4) using any model satisfying Condi-
tions (C.i)–(C.iv), where the stepsizes αk = α0k

−β,
β ∈ [0, 1). For any ε > 0, define

k(ε) :=

⌊(
λ1D1ε

ρ−1

λ0α0

)−1/β⌋
for D2

1 = Dh(X ?, x1). Then

E[Dh(X ?, xk+1)] ≤ max

{
ε2, D2

1 · . . .

exp

(
− λ1ε2ρ−2 min{k(ε), k} − λ0ε

ρ−1

D1

k∑
i>k(ε)

αi

)}
.



Hilal Asi, John C. Duchi

If β < 2ρ
3ρ−1 and ρ > 1, then with probability 1,

lim sup
k→∞

Dh(X ?, xk)

k
1
ρ−1

<∞.

In the case that the growth condition of Assump-
tion A1 holds with constant ρ = 1, we recover Propo-
sition 2 of our earlier result [2], that is, that the proce-
dure converges linearly. As it is, under weaker growth
conditions, we see that we have somewhat weaker con-
vergence. Nonetheless, this convergence rate is in fact
adaptive and what we might hope for: in a local mini-
max (instance-specific) sense, stochastic minimization
algorithms of the function f(x) = |x|ρ can have no

better convergence than |x̂k − x?|2 . k
1
ρ−1 (cf. [41]).

Proposition 4 highlights the importance of a good
model, i.e. one satisfying Condition (C.iv), and an
appropriate divergence, i.e. one satisfying Assump-
tion A1. Under such conditions, the method (4) yields
optimization procedures with near optimal conver-
gence guarantees, providing adaptivity to problem dif-
ficulty. In contrast, other methods—such as stochastic
subgradient—or other divergences (Example 3) do not
enjoy similar convergence or adaptivity.

4.2 Strongly convex functions

Strong convexity allows substantially faster conver-
gence for stochastic gradient procedures, including in
cases using generalized notions of convexity with re-
spect to divergences [19, 20, 17], though these meth-
ods are frequently sensitive to the choice of stepsize
(and may exhibit extremely slow convergence [27],
even Ω(1/ log k)). To that end, in this section, we
revisit the stochastic proximal point models when the
functions f(·; s) are strongly convex, showing that the
exact model (7) is insensitive to the stepsize choice in
this case. We have the following assumption.

Assumption A2 (Strong convexity). The functions
f(·; s) are λ-strongly convex with respect to h, that is,

f(y; s) ≥ f(x; s) + 〈f ′(x; s), y − x〉+ λDh(y, x)

for all f ′(x; s) ∈ ∂f(x; s).

If Assumption A2 holds, we have the following conver-
gence guarantees for the exact model.

Proposition 5. Let Assumptions A2 hold, and let xk
be generated by iteration (4) using the exact model (7)
with stepsizes αk = α0k

−β for some β ∈ (0, 1). As-

sume further that E[‖f ′(x?;S)‖2h∗ ] ≤ σ2
h for all x? ∈

X ?, and denote λ0 = λ
1+λα1

. Then for a numerical

constant C <∞,

E[Dh(x?, xk+1)] ≤ exp

(
− λ0

k∑
i=1

αi

)
Dh(x?, x1)

+ C · σ
2
h

λ0
αk · log k.

Proposition 5 demonstrates the two facets of this
paper: while accurate models—the exact model in
this case—are much more robust to stepsize choice
than standard gradient methods for strongly convex
functions, the choice of divergence Dh may modify
the bounds substantially through the dual (gradient)
quantity σ2

h and primal distance Dh(x?, x1).

5 Experiments

We conclude our paper with an empirical study. In
contrast to [2], which provides experiments for the ef-
fects of different models, our experiments test both the
choice of model and divergence, emphasizing the im-
portance of both aspects. We consider six procedures:

(i) SGM: uses the linear model (5) with the Eu-

clidean distance Dh(x, y) = 1
2 ‖x− y‖

2
2.

(ii) Truncated: uses the lower truncated model (6)
with the Euclidean distance.

(iii) SGM-KL: uses the linear model (5) with the KL-
divergence Dh(x, y) =

∑
i xi log xi

yi
.

(iv) Trunc-KL: uses the lower truncated model (6)
with the KL-divergence.

(v) SGM-adagrad: uses the linear model (5) with
Mahalanobis divergence (9) using Adagrad ma-
trix (10).

(vi) Trunc-adagrad: uses the lower truncated
model (6) with Mahalanobis divergence (9) us-
ing Adagrad matrix (10).

In each experiment, we run each procedure for a range
of initial stepsizes for a total of K iterations, where
we decrease the stepsizes using the rule αk = α0k

−β

for β ∈ (1/2, 1). We calculate the number of iterations
to achieve ε-accuracy, F (xk) − F (x?) ≤ ε. We repeat
the above process T times, reporting the median num-
ber of iterations required to achieve ε-accuracy and
displaying 90% confidence intervals.

5.1 Robust Linear Regression

In our robust linear regression experiments, we let A ∈
Rm×n, b ∈ Rm, and F (x) = 1

m ‖Ax− b‖1, where in
each individual experiment we generate x? ∈ Rn uni-
formly at random from the simplex with sparsity s, i.e.
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(a) (b)

Figure 1. Robust linear regression with m = 500,
n = 3000, and s = 20. (a) The noiseless setting
with σ = 0. (b) Noisy setting with σ = 0.01.

X = {x ∈ Rn :
∑n
i=1 xi = 1, xi ≥ 0, ‖x‖0 = s}, giving

rise to the KL-divergence as a natural divergence to
consider for this setting. We generate the entires of A
independently from N(0, 1) and set b = Ax? + σv for
v ∼ N(0, Im). We choose σ differently depending on
the experiment, setting σ = 0 in noiseless experiments
and σ = 0.01 otherwise.

Figure 1 shows our plots for this experiment in the
noisy and noiseless settings, illustrating the depen-
dence of aProx on model and divergence choice. The
plots show that the robustness of the methods to the
stepsize specification is dependent on the accuracy of
the model, regardless of the chosen divergence. How-
ever, the convergence rate for the best stepsize value
significantly depends on the underlying divergence; in-
deed, when using the KL-divergence, the best stepsize
performance of SGM outperforms those achieved by
the truncated model with the Euclidean distance.

5.2 Hinge Classification
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(a) (b)

Figure 2. Hinge classification with m = 5000 and
n = 1000. (a) The noiseless setting with σ = 0. (b)
Noisy setting with σ = 0.05.

In this section, we test our methods for classification
problems, where we have a matrix A ∈ Rm×n and a
vector b ∈ {−1,+1}m, and our goal is find a classifier
x? such that sign(〈ai, x?〉) = bi for almost every i,

where ai is the i’th row of A. To this end, we minimize

F (X) =
1

m

m∑
i=1

[1− bi〈ai, x〉]+ . (15)

We generate the entries Aij as follows: with prob-
ability 1 − 1/j set Aij = 0, and with probability
1/j choose Aij uniformly from {−1,+1}, so that A
is sparse (a situation in which we expect AdaGrad
to exhibit improved performance [12, 26, 13]). We
choose x? uniformly at random from {−1,+1}n, and
set bi = sign(〈ai, x?〉) for every i ∈ [m]. In the noisy
setting we flip the sign of bi with probability σ.

We present the results of this experiment in Figure 2.
The plots tell a similar story to the previous exper-
iment, that is, model choice can affect robustness to
stepsize value, while the divergence can contribute to
the performance achieved by the best stepsize choice.

5.3 CIFAR10 classification
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Figure 3. CIFAR10 dataset. (a) The number of
iterations to achieve ε-accuracy versus initial step-
size α0. (b) The maximal accuracy achieved after
T = 50 iterations.

In our last experiment, we test the performance of
our models for training neural networks for classifica-
tion task over the CIFAR10 dataset [24]. We use the
Resnet18 architechture [21] (while replacing all Relu
activations with Elu), and run each optimization pro-
cedure for T = 50 iterations. Here, we also compare
our optimization methods to Adam, the default opti-
mizer in the TensorFlow package [1].

Figure 3 shows our plots for this experiment, where
Figure 3(a) shows the number of iterations required
to achieve ε = 0.89-classification accuracy, and Fig-
ure 3(b) plots the maximal accuracy that each pro-
cedure achieve after T = 50 iterations. The results
confirm our previous insights in this setting as well,
showing that using accurate models improves robust-
ness to the stepsize choice. Moreover, using better
divergence (i.e. Mahalanobis divergence with Adagrad
in this case) can improve the best convergence rates of
any given model.
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6 Proofs of results from Section 3

6.1 Proof of Theorem 1

First, we prove the following lemma.

Lemma 6.1. Let g be convex and subdifferentiable on
a closed convex set X and let β > 0. Then for all
x0, x1, y ∈ X , and g′(y) ∈ ∂g(y),

g(y)−g(x1) ≤ 〈g′(y), y−x0〉+
1

β
Dh(x1, x0)+

β

2
‖g′(y)‖2h∗

Proof By the first-order conditions for convexity,
we have

g(y)− g(x1)

≤ 〈g′(y), y − x1〉 = 〈g′(y), y − x0〉+ 〈g′(y), x0 − x1〉

≤ 〈g′(y), y − x0〉+
1

2β
‖x1 − x0‖2h +

β

2
‖g′(y)‖2h∗

≤ 〈g′(y), y − x0〉+
1

β
Dh(x1, x0) +

β

2
‖g′(y)‖2h∗ ,

where the second line uses the Fenchel-Young
inequality, and the last one uses the strong convex-
ity of the bregman divergence with respect to ‖·‖h.

We also have the following lemma, which gives a one-
step progress guarantee for any algorithm using models
satisfying Conditions (C.i)–(C.iii).

Lemma 6.2. Let Condition (C.i) hold. In each step
of the method (4), for any x ∈ X ,

Dh(x, xk+1) ≤ Dh(x, xk)− αk [fxk(xk+1;Sk)− fxk(x;Sk)]

−Dh(xk+1, xk)

Proof By the first-order conditions for convex op-
timization, for some gk ∈ ∂fxk(xk+1;Sk) we have that
〈αkgk+(h′(xk+1)−h′(xk)), y−xk+1〉 ≥ 0 for all y ∈ X .
Setting y = x, we obtain

αk〈gk, xk+1 − x〉 ≤ 〈h′(xk+1)− h′(xk), x− xk+1〉
= Dh(x, xk)−Dh(x, xk+1)

−Dh(xk+1, xk).

As fxk(x;Sk) ≥ fxk(xk+1;Sk) + 〈gk, x − xk+1〉 by
Condition (C.i), this gives the result.

With Lemmas 6.1 and 6.2 in place, we can prove the
theorem. Let x? ∈ X ? be an otherwise arbitrary op-
timal point. Applying Lemma 6.2 with x = x?, we

have

Dh(x?, xk+1)

≤ Dh(x?, xk)− αk [fxk(xk+1;Sk)− fxk(x?;Sk)]

−Dh(xk+1, xk)

(i)

≤ Dh(x?, xk)− αk [f(xk+1;Sk)− fxk(x?;Sk)]

− εDh(xk+1, xk) + C(Sk)α2
k

(ii)

≤ Dh(x?, xk)− αk [f(xk+1;Sk)− f(x?;Sk)]

− εDh(xk+1, xk) + C(Sk)α2
k,

where inequality (i) is a consequence of the accurate
model condition (C.v) and (ii) because fx(x?; s) ≤
f(x?; s) by the lower model condition (C.ii). Now, we
apply Lemma 6.1 with x1 = xk+1, x0 = xk, y = x?,
and β = αk

ε to find

Dh(x?, xk+1) ≤ Dh(x?, xk) + αk〈f ′(x?;Sk), x? − xk〉

+
α2
k

2ε
‖f ′(x?;Sk)‖2h∗ + C(Sk)α2

k

for all f ′(x?;Sk) ∈ ∂f(x?;Sk).

For some F ′(x?) ∈ ∂F (x?), we have 〈F ′(x?), y−x?〉 ≥
0 for all y ∈ X . As our choice of f ′(x?; s) ∈ ∂f(x?; s)
above was arbitrary, we may take f ′(x?;Sk) so that
E[f ′(x?;Sk)] = F ′(x?) for any desired F ′(x?) ∈
∂F (x?) (cf. [6]). Thus, taking expectations with re-
spect to Fk−1,

E[Dh(x?, xk+1) | Fk−1]

≤ Dh(x?, xk) +
α2
k

2ε
E
[
‖f ′(x?;S)‖2h∗

]
+ E[C(S)]α2

k + αk〈F ′(x?), x? − xk〉.

As 〈F ′(x?), x? − xk〉 ≤ 0, we obtain the theorem.

6.2 Proof of Corollary 3.1

The first part of the proof follows by iteratively apply-
ing the recursion from Theorem 1.

The second part uses the Robbins-Siegmund almost
supermartingale convergence lemma.

Lemma 6.3 ([31]). Let Ak, Bk, Ck, Dk ≥ 0 be non-
negative random variables adapted to the filtration Fk
and satisfying E[Ak+1 | Fk] ≤ (1 + Bk)Ak + Ck −
Dk. Then on the event {

∑
k Bk < ∞,

∑
k Ck < ∞},

there is a random A∞ < ∞ such that Ak
a.s.→ A∞ and∑

kDk <∞.

By applying Theorem 1 with Ak = Dh(X ?, xk+1),
Ck = αk+1(σ2/ε + E[C(S)]), and Bk = Dk = 0, we
get the corollary.
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6.3 Proof of Proposition 1

To prove Proposition 1, we present a lemma giving a
one-step progress guarantee for any method satisfying
Conditions (C.i)–(C.iii).

Lemma 6.4. Let Conditions (C.i)–(C.iii) hold and
let xk be generated by the updates (4). Then for any
x ∈ X ,

Dh(x, xk+1) ≤ Dh(x, xk)− αk[f(xk;Sk)− f(x;Sk)]

+
α2
k

2
‖f ′(xk;Sk)‖2h∗ .

Proof Using Lemma 6.2, it suffices to show that for
any α > 0 and x0, x1, x ∈ X

−α[fx0
(x1; s)− fx0

(x; s)]−Dh(x1, x0)

≤ −α[f(x0; s)− f(x; s)] +
α2

2
‖f ′(x0; s)‖2h∗ .

To see this, note that

−fx0
(x1; s) + fx0

(x; s)

= −[fx0
(x0; s)− fx0

(x; s)] + fx0
(x0; s)− fx0

(x1; s)

(C.iii)

≤ −[fx0(x0; s)− fx0(x; s)] + 〈f ′(x0; s), x0 − x1〉
(C.ii)

≤ −[f(x0; s)− f(x; s)] + 〈f ′(x0; s), x0 − x1〉.

Then we use the Fenchel-Young inequality and strong
convexity of Dh with respect to ‖·‖h to get

〈f ′(x0; s), x0 − x1〉 ≤
1

2α
‖x1 − x0‖2h +

α

2
‖f ′(x0; s)‖2h∗

≤ 1

α
Dh(x1, x0) +

α

2
‖f ′(x0; s)‖2h∗ ,

which finishes the proof.

We are now ready to prove the proposition. We have
that E[‖f ′(x;S)‖2h∗ ] ≤ Gbig(r) for all x such that
Dh(x?, x) ≤ r. Take x? as the projection of xk onto
X ? with respect to the Bregman divergence Dh(·, ·).
Then Lemma 6.4 implies that

E[Dh(x?, xk+1) | Fk−1] ≤ Dh(X ?, xk)2 − 2αk(F (xk)− F ?)
+ α2

kGbig(Dh(x?, xk)).

On the event that supkDh(X ?, xk) < ∞, we
have

∑
k α

2
kGbig(Dh(X ?, xk)) < ∞, and so

the Robbins-Siegmund Lemma 6.3 implies that
Dh(X ?, xk)

a.s.→ D∞ for some finite random variable
D∞ and

∑
k αk(F (xk) − F (x?)) < ∞. If Γ(ε) > 0,

then a simple argument by contradiction shows that
D∞ = 0 with probability 1, as

∑
k αk =∞.

6.4 Proof of Proposition 2

The proposition follows nearly directly from
Lemma 6.4. Indeed, applying that lemma, for
any x? ∈ X ? we have

E[Dh(x?, xk+1) | Fk−1]

≤ Dh(x?, xk)− αk[F (xk)− F (x?)]

+
α2
k

2
‖f ′(xk;Sk)‖2h∗ ,

where we have used that xk+1 ∈ Fk−1. This implies
that

αkE[F (xk)− F (x?)] ≤ E [Dh(x?, xk)−Dh(x?, xk+1)]

+
α2
k

2
E
[
‖f ′(xk;Sk)‖2h∗

]
.

Summing and telescoping yields
∑k
i=1 αiE[F (xi) −

F (x?)] ≤ Dh(x?, x1) + 1
2

∑k
i=1 α

2
iE
[
‖f ′(xk;Sk)‖2h∗

]
,

and dividing by
∑k
i=1 αi and using Jensen’s inequality

gives the first result of the proposition.

For the second result, we rearrange the first display
above to see that

E[F (xk)− F (x?)] ≤ 1

αk
E[Dh(x?, xk)−Dh(x?, xk+1)]

+
αk
2
M2
h .

Summing this quantity, we obtain

k∑
i=1

E[F (xi)− F (x?)] ≤
k∑
i=2

(
1

αi
− 1

αi−1

)
E[Dh(x?, xi)]

+
1

α1
Dh(x?, x1) +

M2

2

k∑
i=1

αi.

Noting that E[Dh(x?, xi)] ≤ R by assumption, divid-
ing by k and applying Jensen’s inequality to F (xk) ≤
1
k

∑k
i=1 F (xi) gives the result.

6.5 Proof of Proposition 3

For each k, the function Dk(x, y) = 1
2 (x−y)THk(x−y)

is a divergence generated by h(x) = 1
2x

THkx. Thus,
we use Lemma 6.4 to get

‖xk − x?‖2Hk ≤ ‖xk − x
?‖2Hk − 2α[f(xk;Sk)− f(x?;Sk)]

+ α2 ‖f ′(xk;Sk)‖2H−1
k
.
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This implies that

2α

k∑
i=0

f(xi;Si)− f(x?;Si)

≤ ‖x1 − x?‖2H1

+

k∑
i=1

‖xi − x?‖2Hi − ‖xi − x
?‖2Hi−1

+ α2
k∑
i=1

‖f ′(xi;Si)‖
2
H−1
i

The first part of the claim now follows from Jensen’s
inequality. The second part of the proof follows from
the first part using standard arguments from stochas-
tic optimization with adaptive step sizes.

6.6 Proof of inequalities (11)

The lower bound that p−1
2 ‖x− y‖

2
p ≤ Dh(x, y) is a

standard strong convexity result [34, Example 5, Ap-
pendix A]. For the upper bound, we note that (see,
e.g., Gentile [16, Lemma 4]) that

Dh(x, y) ≤ q − 1

2
‖∇h(x)−∇h(y)‖2q .

Now, we compute bounds on the norm error. By the
triangle inequality, we have

‖∇h(x)−∇h(y)‖q

≤
∥∥∥∥∇h(x)

‖y‖2−pp

‖x‖2−pp

−∇h(y)

∥∥∥∥
q

+ ‖∇h(x)‖q

∣∣∣∣∣‖y‖
2−p
p

‖x‖2−pp

− 1

∣∣∣∣∣
= ‖y‖2−pp

( n∑
j=1

| sign(xj)|xj |p−1 − sign(yj)|yj |p−1|q
)1/q

+ ‖x‖p−1p

∣∣∣‖y‖2−pp − ‖x‖2−pp

∣∣∣
≤ ‖y‖2−pp

( n∑
j=1

|xj − yj |q(p−1)
)1/q

+ ‖x‖p−1p

∣∣∣‖y‖2−pp − ‖x‖2−pp

∣∣∣ ,
where we have used that |sp−1 − tp−1| ≤ |t − s|p−1.
Now, noting that q(p− 1) = p and p/q = 1 we have

‖y‖2−pp

( n∑
j=1

|xj − yj |q(p−1)
)1/q

= ‖y‖2−pp ‖x− y‖p−1 .

Now, let us assume that ‖y‖p ≥ ‖x‖p, so that ‖y‖p =
‖x‖p+δ for some 0 ≤ δ ≥ ‖x− y‖p. Letting u = ‖y‖p,
we obtain

‖x‖p−1p

∣∣∣‖y‖2−pp − ‖x‖2−pp

∣∣∣
= up−1

(
(u+ δ)2−p − u2−p

)
≤ (2− p)up−1 δ

up−1
,

where we have used the concavity of δ 7→ (u + δ)2−p,
as p ∈ [1, 2]. We obtain that if ‖y‖p ≥ ‖x‖p, then

‖∇h(x)−∇h(y)‖q ≤ ‖y‖
2−p
p ‖x− y‖p−1p +(2−p) ‖x− y‖p .

The case that ‖x‖p ≥ ‖y‖p is completely similar, and
squaring the gives the result.

7 Proofs of fast convergence on easy
problems

7.1 Proof of Lemma 4.1

We assume without loss of generality that f(x?; s) = 0
for all x? ∈ X ?, as we may replace f with f − inf f .
By Lemma 6.2, the update (4) satisfies

Dh(x?, xk+1) ≤ Dh(x?, xk)−Dh(xk+1, xk)

+ αk [fxk(x?;Sk)− fxk(xk+1;Sk)] .

Denote gk = f ′(xk;Sk), fk = f(xk;Sk) and f̃xk(x) =
[fk + 〈gk, xk+1 − xk〉]+. As fxk(x?;Sk) ≤ f(x?;Sk) =
0, and by Condition (C.iii) and Condition (C.iv) we

have fxk(xk+1;Sk) ≥ f̃xk(xk+1), we have

Dh(x?, xk+1)

≤ Dh(x?, xk)− αkf̃xk(xk+1)−Dh(xk+1, xk)

≤ Dh(x?, xk)− αkf̃xk(xk+1)− 1

2
‖xk+1 − xk‖2h (16)

≤ Dh(x?, xk)− αk inf
x

{
f̃xk(x) +

1

2αk
‖x− xk‖2h

}
.

Let u(∆) = 1
2 ‖∆‖

2
h, so that u∗(v) = 1

2 ‖v‖
2
h∗ and

〈v,∇u∗(λv)〉 = λ ‖v‖2h∗ by standard duality calcula-
tions [22, Chap. X]. Let x̃k+1 denote the unconstrained
minimizer

x̃k+1 = argmin
x

{
[fk + 〈gk, x− xk〉]+ +

1

2αk
‖x− xk‖2h

}
.

(17)
Let us now split the proof to two cases, depending
on whether fk ≶ αk ‖gk‖2h∗ . First, in the case that

fk ≥ α ‖gk‖2h∗ , the minimizer in Eq. (17) is x̃k+1 =
∇u∗(−αkgk), because this also attains the infimum in
the fully unconstrained minimization

inf
x

{
fk + 〈gk, x− xk〉+

1

2αk
‖x− xk‖2h

}
= fk −

αk
2
‖gk‖2h∗ ≥

fk
2
,

as

fk + 〈gk,∇u∗(−αkgk)〉 = fk − αk ‖gk‖2h∗ ≥ 0
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and

1

2αk
‖∇u∗(−αkgk)‖2h =

αk
2
‖gk‖2h∗ .

Here evidently the fully unconstrained solution coin-
cides with x̃k+1 in Eq. (17). In the case that fk <

αk ‖gk‖2h∗ , we must be somewhat more careful. A du-
ality calculation shows that the solution ∆ = x̃k+1−xk
satisfies ∆ = ∇u∗(−λgk) for the unique λ solving

0 = fk + 〈gk,∇u∗(−λgk)〉 = fk − λ ‖gk‖2h∗ ,

or λ = fk
‖gk‖2h∗

and ‖∆‖h ‖gk‖h∗ = 〈gk,∆〉 and ‖∆‖h =
fk

‖gk‖2h∗
. For this ∆ we evidently have

[fk + 〈gk,∆〉]+ +
1

2αk
‖∆‖2h =

λ2

2αk
‖gk‖2h∗ =

f2k
2αk ‖gk‖2h∗

.

Combining these two cases into inequality (16), we
have

Dh(x?, xk+1) ≤ Dh(x?, xk)− 1

2
min

{
αkfk,

f2k
‖gk‖2h∗

}
,

which is the desired result.

7.2 Proof of Proposition 4

Let D2
k = Dh(X ?, xk), so Dk ∈ Fk−1. Then

Lemma 4.1 implies that under Assumption A1, we
have

E[D2
k+1 | Fk−1] ≤ D2

k −min
{
λ0αkD

ρ
k, λ1D

2ρ
k

}
.

Now, let ε > 0. At any iteration, we either have D2
k ≤

ε2, or, because Dk is decreasing, we have

E[D2
k+1 | Fk−1] ≤ D2

k −min{λ0αkερ−1Dk, λ1ε
2ρ−2D2

k}
= max

{
1− λ1ε2ρ−2, 1− λ0αkερ−1/Dk

}
D2
k

≤ max
{

1− λ1ε2ρ−2, 1− λ0αkερ−1/D1

}
D2
k

because D1 ≤ Dk.

Now, we can use an analysis similar to Proposition 2
of our paper [2]. Solving

k(ε) =

(
λ1D1ε

ρ−1

λ0α0

)− 1
β

gives λ0αkε
ρ−1/D1 ≤ λ1ε

2ρ−2 for all k ≥ k(ε), and
thus using 1− x ≤ e−x we have that if D2

k ≥ ε2, then

E[D2
k+1 | Fk−1] ≤

exp

(
− λ1ε2ρ−2 min{k(ε), k} − λ0ε

ρ−1

D1

k∑
i>k(ε)

αi

)
D2

1.

This gives the first claim of the proposition.

Now we ignore all constants λ0, λ1, D1 to obtain the
rate of convergence. Assume that k > 2k(ε). Then for
c > 0, we have

E[D2
k+1 | Fk−1] ≤ max

{
ε2, exp

(
−cερ−1k1−β

)
D2

1

}
for large enough k, and choosing ε = k

β−1
ρ−1 log

2
ρ−1 k

gives

E[D2
k+1 | Fk−1] ≤ max

{
log

4
ρ−1 k

k
2(1−β)
ρ−1

, exp(−c log2 k)D2
1

}
.

Now, we follow the style of argument as in the proof
of Proposition 2 of [2], eliding probabilistic details
(see [2]). Eventually αkD

ρ
k ≤ D

2ρ
k if

k−βk−
2ρ(1−β)
ρ−1 > k−

4ρ(1−β)
β−1 i.e. β <

2ρ

3ρ− 1
.

With this, then eventually the recursion is dominated
by the λ1D

2ρ
k term, and so we have

E[D2
k+1 | Fk−1] ≤ D2

k − λ1D
2ρ
k

eventually, with probability 1. Then a similar calcula-
tion as above yields that eventually, we have

E[D2
k+1 | Fk−1] . max

{
ε2, exp

(
−cε2ρ−2k

)}
,

and setting ε = (log2 k/k)
1
ρ−1 gives the result.

7.3 Proof of Proposition 5

First, we prove the following singe-step progress recur-
sion for proximal models.

Lemma 7.1. Let Assumption A2 hold and the iter-
ates xk be generated by iteration (4) using the exact
model (7). Then

E [Dh(x?, xk+1) | Fk−1] ≤
(

1− αkλ

1 + αkλ

)
Dh(x?, xk)

+
α2
k

2
E
[
‖f ′(x?;S)‖2h∗

]
.

Proof For all gk ∈ ∂f(xk+1;Sk) and y ∈ X , As-
sumption A2 implies

f(y;Sk) ≥ f(xk+1;Sk)+〈gk, y−xk+1〉+λDh(y, xk+1).

Using this inequality in place of the last step of the
proof of Lemma 6.2 yields

Dh(x?, xk+1) + αkλDh(x?, xk+1). (18)

≤ Dh(x?, xk)− αk [f(xk+1;Sk)− f(x?;Sk)]

−Dh(xk+1, xk).
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Applying Lemma 6.1 with y = x?, x1 = xk+1, x0 = xk,
β = αk, and g(·) = f(·;Sk) implies

Dh(x?, xk+1)(1 + λαk)

≤ Dh(x?, xk) + αk〈f ′(x?;Sk), x? − xk〉

+
α2
k

2
‖f ′(x?;Sk)‖2h∗ .

Taking expectations and using that E[〈f ′(x?;S), x? −
x〉] ≤ 0 for all x (as in the proof of Theorem 1) gives
the desired result.

Using Lemma 7.1, we are ready to prove the proposi-
tion. As the sequence of stepsizes αk is decreasing, we
get that λ

1+λαk
≥ λ

1+λα1
. Thus, denoting λ0 = λ

1+λα1
,

Lemma 7.1 implies

E [Dh(x?, xk+1) | Fk−1] ≤ (1−αkλ0)Dh(x?, xk)+
α2
k

2
σ2
h

Applying this inequality recursively gives

E[Dh(x?, xk+1)] ≤
k∏
i=1

(1− αiλ0)Dh(x?, x1)

+
1

2

k∑
i=1

α2
i

k∏
j=i+1

(1− αjλ0)σ2
h,

where we note that αjλ0 < 1 for all j. An inductive
argument [30] implies the proposition.
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